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Long-Term, CD4* Memory T Cell
Response to SARS-CoV-2

Sebastian Wirsching?, Laura Harder®, Markus Heymanns?, Britta Gréndahl, Katja Hilbert,
Frank Kowalzik, Claudius Meyer and Stephan Gehring*

Children’s Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany

The first cases of coronavirus disease-19 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) were reported by Chinese authorities at the end of
2019. The disease spread quickly and was declared a global pandemic shortly thereafter.
To respond effectively to infection and prevent viral spread, it is important to delineate the
factors that affect protective immunity. Herein, a cohort of convalescent healthcare
workers was recruited and their immune responses were studied over a period of 3 to
9 months following the onset of symptoms. A cross-reactive T cell response to SARS-
CoV-2 and endemic coronaviruses, i.e., OC43 and NL63, was demonstrated in the
infected, convalescent cohort, as well as a cohort composed of unexposed individuals.
The convalescent cohort, however, displayed an increased number of SARS-CoV-2-
specific CD4* T cells relative to the unexposed group. Moreover, unlike humoral immunity
and quickly decreasing antibody titers, T cell immunity in convalescent individuals was
maintained and stable throughout the study period. This study also suggests that, based
on the higher CD4 T cell memory response against nucleocapsid antigen, future vaccine
designs may include nucleocapsid as an additional antigen along with the spike protein.

Keywords: SARS-CoV-2, HCoV, T cell immunity, long-term memory, cross-reactivity

INTRODUCTION

On December 31, 2019, authorities in Wuhan, China reported a cluster of atypical pneumonia cases
(1). The illness, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was
named coronavirus disease 19 (COVID-19) shortly thereafter (2). Approximately 80% of infections
are asymptomatic or cause only mild symptoms such as a dry cough, dyspnea and fever. Fifteen
percent of cases require supplemental oxygen, however, while 5% develop acute respiratory distress
syndrome (ARDS) and need active ventilation (3, 4). The virus spread globally in a matter of weeks
leading the WHO to declare a pandemic in March 2020 (1). Over 200 million cases were identified
and nearly almost 5 million COVID-19-related deaths occurred worldwide by October, 2021 (5).
Early analysis of samples obtained from active, as well as convalescent, SARS-CoV-2-infected
individuals demonstrated humoral and cell-mediated immune responses, and a correlation between
antibody titers and T cell reactivity (6-8).

Recent reports indicate that neutralizing antibody titers decrease significantly over the 8-month
period following symptom onset, and decrease up to 53% after a year (9, 10). Reports of individuals
who contracted COVID-19 a second time within a year emphasize the import of this finding
(11, 12). A better understanding of the dynamics of reinfections would benefit greatly from an
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in-depth study of the development of cellular immunity. In this
regard, other investigators reported that SARS-CoV-2-specific T
cell responses were stable for 8 to 10 months (13, 14). Vaccines
approved currently only target the spike (S) glycoprotein and its
receptor binding domain (RBD) used to gain entrance into host
cells (15-18). Notably, convalescent patients exhibit T cell
response to additional structural proteins, ie., envelope (E),
membrane (M) and nucleocapsid (N) (8). Incorporation of
these other targets into next generation vaccines could
significantly improve protection.

A cohort of convalescent healthcare workers was recruited
and studied for a 9-month period. T cell responses to three
SARS-CoV-2-associated antigens (S, M and N), as well as to the
endemic coronaviruses HCoV-OC43 and HCoV-NL63, were
determined. Individuals previously exposed to SARS-CoV-2
exhibited a greater T cell response than did unexposed people.
Convalescent individuals also clearly showed cross-reactivity
between SARS-CoV-2 and HCoV. Importantly, in contrast to
diminishing antibody titers, stable anti-SARS-CoV-2-specific
T cell responses were observed throughout the 9-month
study period.

MATERIAL AND METHODS

Human Subjects

Convalescent COVID-19 patients were diagnosed by RT-PCR or
SARS-CoV-2-specific antibody detection. Antibody screening
was conducted throughout April and May 2020. Subjects who
provided proof of a positive RT-PCR test or >3 positive
serological tests using the two assays described immediately
below were deemed SARS-CoV-2-positive. Positive PCR tests
had a median date of March 17, 2020. Blood was collected
between June 2020 and December 2020 at three distinct time
points: at approximately 3 (Visit 1, V1), 6 (Visit 2, V2), and 9
(Visit 3, V3) months following the onset of symptoms. An
unexposed healthy control group was matched by age, gender
and their clinical department. Main criterium for inclusion into
the unexposed control group was no detectable SARS-CoV-2
antibody titer across all three visits. Blood collection was
approved by the local ethics committee (Ethik-Kommission
der Landesirztekammer Rheinland-Pfalz) (No. 2020-14968).
All individuals enrolled in the study provided informed consent.

SARS-CoV-2 Serology

All serological tests were performed using both the Abbott
ARCHITECT SARS-CoV-2 IgG Assay (Abbott Laboratories,
Abbott Park, IL, USA), an automated two-step immunoassay
using SARS-CoV-2 antigen-coated paramagnetic microparticles,
and the Roche Elecsys® Anti-SARS-CoV-2 Assay (Roche
Diagnostics GmbH - Mannheim, Germany), an electro-
chemiluminescence immunoassay that quantifies total SARS-
CoV-2-specific immunoglobulin (19). The Abbott ARCHITECT
SARS-CoV-2 IgG Assay specifically measures anti-SARS-CoV-2
IgG antibodies whereas the Roche Elecsys® Anti-SARS-CoV-2
Assay measures total anti-SARS-CoV-2 antibody, resulting
in ~35-fold higher antibody titers in the Roche assay.

Cell Isolation and Culture

Peripheral blood mononuclear cells (PBMCs) were isolated from
heparinized whole blood by Biocoll density gradient
centrifugation in SepMate tubes (StemCell Technologies,
Vancouver, BC, Canada). Isolated cells were washed twice with
Hank’s Balanced Salt Solution, frozen overnight at -80°C, then
moved and stored in liquid nitrogen until use. The cells were
thawed, suspended in X-VIVO 15 serum-free medium (Lonza
Biologics) supplemented with 1% penicillin/streptomycin and
inoculated into 96-well tissue culture plates at 1 x 10° cells per
well. Afterwards, cells were stimulated with either of the following
peptide pools: SARS-CoV-2 spike glycoprotein (PM-WCPV-S-1,
two peptide pools composed of overlapping spike glycoprotein
sequences; pool S-1, peptide sequences spanning the N-terminus
and pool S-2, peptide sequences spanning the C-terminus), SARS-
CoV-2 NCAP (PM-WCPV-NCAP-1, peptide pool composed of
overlapping nucleocapsid sequences), SARS-CoV-2 VME1 (PM-
WCPV-VME-1, peptide pool composed of overlapping
membrane protein sequences), HCoV-OC43 spike glycoprotein
(PM-OC43-S-1, two peptide pools composed of overlapping spike
glycoprotein sequences; pool OC43-1, peptide sequences
spanning the N-terminus and pool OC43-2, peptide sequences
spanning the C-terminus) and HCoV-NL63 spike glycoprotein
(PM-NL63-S-1, two peptide pools composed of overlapping spike
glycoprotein sequences; pool NL63-1 peptide sequence spanning
the N-terminus and pool NL63-2 peptide sequences spanning the
C-terminus). All peptide pools, synthesized as 15mers with 11
amino acid overlaps, were purchased from JPT Peptide
Technologies GmbH, Berlin, Germany. Pools were dissolved in
DMSO and added to cultures at 1 pg/ml per peptide according to
the manufacturer’s instructions. Negative controls consisted of
cells incubated with DMSO only. Cells stimulated with 1.5 pg/ml
Staphylococcal enterotoxin B (SEB) served as a positive control.
Additionally, unconjugated anti-CD28 (clone CD28.2) and anti-
CD49d (clone 9F10) monoclonal antibodies (0.5 pg/ml each; BD
Biosciences, Franklin, Lakes, NJ, USA) were added to provide co-
stimulation. Cells were incubated for 16 hours at 37°C and 5%
CO,. Brefeldin A (BioLegend, San Diego, CA, USA) was added
after the first two hours incubation to inhibit secretion.

Flow Cytometry

Stimulated cells were transferred to FACS tubes and washed. The
cells were stained extracellularly for 10 min at room temperature
with Viobility 405/452 Fixable Dye, antibodies against CD14,
CD20, both conjugated to VioBlue (Miltenyi Biotec, Bergisch
Gladbach, Germany) and CD4 conjugated to PerCP (BD
Biosciences). Subsequently, the stained cells were permeabilized
using the BD Cytofix/Cytoperm kit (BD Biosciences) according
to manufacturer’s instructions. Permeabilized cells were then
stained intracellularly for 10 min at room temperature with
antibodies against IL-2 conjugated to BV605 (BD Biosciences),
TNE- o conjugated to PE-Vio 770, CD154 conjugated to PerCP-
Vio 700, and IFN-y conjugated to APC-Vio770 (Miltenyi Biotec)
according to the methods of the supplier. Stained cells were
quantified with a MACSQuant16® analyzer flow cytometer
(Miltenyi Biotec). FACS data were evaluated using FlowLogic
software version 8.4 (Inivai Technologies, Victoria 3194
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Australia). Reactive T cells were defined as CD4" T cells
expressing >2 of the following Ty activation markers: CD154,
IEN-y, IL-2 and TNF-o. DMSO background controls were
subtracted from the data shown. The gating strategy used for
all analyses can be found in the supplementary material (Figures
S1 and S2).

Statistical Analysis

Statistical analysis was performed using GraphPad Prism version
7. FACS data were analyzed using a non-paired two-tailed
Mann-Whitney-U tests; a Friedman test was used to analyze
the serological data. Data was deemed significant if it passed
a P<0.05.

RESULTS
Study Cohort

Thirty-six convalescent SARS-CoV-2 patients with a mean age
of 35.8 years were included in the study; 69.4% were female
(Table S1). An unexposed control group was matched both in
age (37.1 years) and sex (69.4% female). SARS-CoV-2 infection
was verified by PCR test in 63.9% of the convalescent group;
94.4% of the individuals showed a positive anti-SARS-CoV-2
antibody titer. All convalescent subjects experienced a mild
infection. The most frequently reported symptoms (64%) were
loss of taste or smell and headache. Other commonly reported
symptoms included a dry cough (44%) and fever (42%). Sixteen
percent of individuals reported no symptoms albeit SARS-CoV-2
infection was verified by PCR or antibody testing. One subject
had no detectable serum antibodies throughout the course of the
study although infection was verified by PCR.

Convalescent Individuals Exhibit Broad
Reactivity Against SARS-CoV-2

Initial experiments were undertaken to determine and compare
the percentages of SARS-CoV-2-specific T cells among the
PBMC:s obtained from convalescent and unexposed individuals
at 3 months post symptom onset. Convalescent individuals
showed a greater frequency of CD4" T cells specific for the N-
terminal (S-1) and C-terminal (S-2) spike glycoprotein peptide
pools, as well as for the membrane (M) and nucleocapsid (N)
peptide pools (Figures 1A-D). Of these individuals, 88.9%
exhibited a response toward at least one of the peptide pools
(Figure 1E). Both the S-1 and S-2 pools were recognized by
approximately 60% of individuals; 61.8% of individuals
recognized the M peptide pool. The strongest and most
frequent response exhibited by 69.44% of convalescent
individuals was specific for N. Of the individuals in the control
group, 47.2% recognized at least one of the SARS-CoV-2 antigen
pools tested. Responses of the control group to S-1 and S-2 were
19.4% and 27.8%, respectively. Additionally, a greater number of
convalescent patients recognized >2 SARS-CoV-2 peptide pools
(Figure 1F). Of the 32 reactive study participants, 15.6%
responded to only one, while a greater percentage of
individuals in the convalescent group recognized two (25%),
three (18.7%) or four (40.6%) peptide pools. Comparison of

T cell responses against SARS-CoV-2 peptide pools of individual
convalescent donors revealed that T cell frequencies are very
dependent on the respective individual. Some donors, e.g., 32, 33
and 34, showed very similar responses against all four antigens,
whereas others, e.g., donors 2, 8 and 11, react differently against
each antigen. (Figure S3). Analysis of CD154"/IFN-y*, CD154"/
IL-2" and CD154"/TNF-0." SARS-CoV-2-reactive CD4" T cells
revealed similar frequencies of antigen-specific T cells
(Figure S4).

SARS-CoV-2 and Endemic Coronaviruses
Spike Glycoproteins Exhibit Strong
Cross-Reactivity

Cross-reactivity between the spike glycoproteins expressed by
SARS-CoV-2 and the endemic coronaviruses, HCoV-OC43 and
HCoV-NL63, was examined. A comparison of the SARS-CoV-2-
convalescent and unexposed groups showed that the percentage
of reactive CD4" T cells specific for the HCoV-OC43 and HCoV-
NL63 spike glycoprotein peptide pools was very similar
(Figures 2A-D). Eighty-three percent of the convalescent
subjects recognized at least one of the four HCoV peptide pools
tested compared to only 66.7% of the unexposed subjects
(Figure 2E). Interestingly, convalescent individuals tended to
respond slightly more frequently to the peptide pools that
comprise the two C-terminal peptide sequences, OC-43-2 (50%)
and NL63-2 (61.1%), than did the unexposed individuals (i.e.,
30.6% and 47.2% respectively). Specific responses to the N-
terminal peptide pools (OC-43-1 and NL-63-1) occurred in 30-
40% of the study participants enrolled in both groups.

To analyze cross-reactivity between the HCoV and SARS-
CoV-2 spike glycoproteins, the convalescent group was divided
into subgroups reactive or unreactive against either the N- or C-
terminus of OC43 and NL63; the percentages of SARS-CoV-2 S-
1- and S-2-specific T cells were then determined (Figure 3). Study
participants that reacted against OC43-1 and NL63-1 also
possessed a slightly higher percentage of S-1-specific T cells
(Figures 3A, B). Moreover, those participants exhibited an
approximately two-fold higher response rate than the HCoV-
unreactive group (Figure 3C). The OC43-2-reactive subgroup
demonstrated a similar effect, i.e., a significantly larger percentage
of S-2-specific T cells (Figure 3D). NL63-2-reactive T cells, on the
other hand, showed only a marginal difference compared to the
unreactive group (Figure 3E). Both C-terminal groups, however,
showed similar increases in response rate that were greater than
the N-terminal groups (Figure 3F). OC43-2-reactive subjects
showed an approximately two-fold increase in overall response
rate whereas NL63-2-reactive subjects exhibited nearly a three-
fold increase. Notably, the unexposed group displayed similar
trends in its T cell response rates demonstrating a greater
response to peptide pools composing the C terminus, compared
to the N terminus, of the HCoV spike glycoprotein (Figure S5).

T Cell Anti-SARS-CoV-2 Reactivity
Remains Stable for at Least 9 Months
Experiments were undertaken to determine and compare the
longevities of the cellular and humoral responses of convalescent
patients to SARS-CoV-2. Twenty-seven of the initial 36
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FIGURE 1 | CD4" T cell response specific for SARS-CoV-2. T cell responses of unexposed (circles) and convalescent (squares) individuals against S-1 (A), S-2 (B), M
(C) or N (D) SARS-CoV-2 peptide pooals. (E) Proportional CD4* T cell response rates of unexposed (black) and convalescent (grey) study participants to individual (S-1, S-2,
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Reactive T cells were defined as CD4" T cells expressing >2 Ty activation markers (CD154, IFN-y, IL-2, TNF-a). DMSO background controls were subtracted from the data
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convalescent patients were monitored over the complete 9-
month period following the onset of symptoms. The
percentages of S-1, S-2, M and N peptide pool-specific T cells
decreased only slightly over the 9-month period post infection
(Figures 4A-D). Comparable results were also obtained when
analyzing the frequencies of CD154"/IFN-y*, CD154"/IL-2" or
CD154"/TNF-a" CD4" T cells. The amount of S-2-reactive
CD154"/IFEN-y" cells decreased significantly between V1 and
V3. Similarly, the amount of either N-reactive CD154"/IFN-y" or
CD154"/IL-2" CD4" T cells also decreased significantly between
V2 and V3 (Figure S6). Breaking down the T cell responses of
each individual against the SARS-CoV-2 peptide pools revealed
that there are some donor-specific fluctuations in T cell
frequency. In some donors the frequency of reactive T cells
increased with each consecutive visit whereas it waned over time
in others (Figure S7). The differences between the percentages of
reactive T cells obtained from unexposed and convalescent
groups remained similar (Figure S8).

Focusing on the proportional response rates, antigen
recognition increased slightly between 3 and 6 months then
decreased by 9 months (Figure 4E). The number of subjects
that recognize at least one SARS-CoV-2 peptide pool increased

from 88.9% to 100% and then decreased to 74% after 9 months.
Similar trajectories were observed when analyzing the responses to
the individual pools. The response to the N peptide pool was
unique, inducing a CD4™ T cell response in 70.4% of convalescents
at 3 months post symptom onset, which increased to 92.3% after 6
months, then declined to 55.6% at 9 months, a value comparable
to the response to the spike and membrane proteins. There was
also a slight shift in the number of peptide pools recognized as the
time post symptom onset increased (Figure 4F). Initially, 41% of
patients responded to four peptide pools. After 9 months, this
response rate fell to 35%. At the same time, the number of subjects
who recognized only one pool increased by about 10%. The
number of patients recognizing two or three peptide pools
peaked after 6 months and then decreased thereafter.

To compare cellular and humoral immunity to SARS-CoV-2
post symptom onset over time, total and IgG-specific anti-SARS-
CoV-2 immunoglobulin titers in convalescent donors were
monitored using the Roche and Abbott serologic assays,
respectively (Figure 5). Antibody titers displayed a wide range,
but typically decreased regardless of the serologic assay used for
analysis. In general, antibody titers started to decrease with each
consecutive time point. The median antibody levels decreased ~75%
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over the course of the 9-month study according to the results of
both assays. Breaking down antibody titers for each individual
donor revealed similar results, ie., titers decreased with each
consecutive visit in most donors (Figure S9).

DISCUSSION

The emergence of COVID-19 at the end of 2019 has exerted a
global impact on mankind. A better understanding of the factors
affecting the immune response to SARS-CoV-2 infections, the
longevity of immunity and the effectivity of vaccines are vital
issues facing society today. Previous reports clearly showed that
SARS-CoV-2 infections induce virus-specific cellular and
humoral immune responses (20-23). T cells and serum
antibodies specific for a number of virus structural proteins
were readily detected in convalescent patients (6, 21, 22).
Compared to unexposed individuals, convalescent patients
exhibited greater CD4" T cell reactivity toward peptide pools
derived from the SARS-CoV-2 structural proteins S, M and N at
approximately 3 months post infection. Those individuals showed
increased percentages of specific CD4" T cells, and reacted in
much greater frequency to peptide pools derived from more than
one structural protein. Indeed, Grifoni and co-workers also
reported as well that convalescent subjects reacted to peptide
pools derived from different structural proteins (8). Other
investigators reported frequencies ranging from 60 to 80% of
reactive individuals (23-25). The frequency of individuals who
responded to a peptide pool derived from any single structural
protein in the study reported herein was approximately the same.

Interestingly, T cells specific for SARS-CoV-2-related peptide
pools were also detected in a sizable number of unexposed
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S-2, M, N) or a combination of all four (combined) peptide pools. (F) Proportion of convalescent donors that respond to one or an aggregate of more than one
peptide pool during the period indicated. Reactive T cells were defined as CD4" T cells expressing =2 Tyy markers (CD154, IFN-y, IL-2, TNF-0). DMSO background
controls were subtracted from the data shown. Data are shown with means (A-E) n = 27; (F) V1 n =24, V2 n =27, V3 n = 20.

individuals. Forty-seven percent of these individuals recognized
at least one peptide pool; 28% recognized the spike glycoprotein
S-2 pool most often. Similar numbers were reported by Braun
and colleagues who measured specific T cells against the S-2
peptide pool in 35% of unexposed, healthy individuals (23).
Several other groups reported comparable numbers of 20-50% of
unexposed, healthy individuals reacting against SARS-CoV-2 (6,
8, 20, 26, 27). Furthermore, Braun et al. showed that T cells
derived from these unexposed individuals reacted toward
common coronavirus strains (23). Indeed, comparing
unexposed and convalescent subjects in the present study, little
difference was found in their reaction toward endemic
coronaviruses assessed in terms of cell number and frequency
of response. Bonifacius et al. reported similar results, ie., no
difference in the responses of unexposed and convalescent study
participants (25). Only active COVID-19 patients showed lower
frequencies of HCoV-reactive T cells.

Immunity against seasonal coronaviruses tends to be short-
lived as it is not uncommon to be infected with the same virus
strain every 12 months (28, 29). Nevertheless, in a study
performed by Gorse et al. 90-100% of subjects were seropositive
for the four most common HCoV strains (30). There are
conflicting reports, however, concerning the ability of a
preceding HCoV infection to confer SARS-CoV-2 protection.
Reportedly, SARS-CoV-2 patients capable of producing anti-
OC43 antibodies did not develop severe pneumonia (31).
Similarly, Loyal et al. were able to show that pre-existing spike-
cross-reactive T cells were activated after COVID-19 mRNA
vaccination and showed signs similar to a secondary immune
response (32). Contrasting studies that measured a high degree of
cross-reactivity between SARS-CoV-2 and HCoV, however,
found no correlation between HCoV reactivity and increased
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COVID-19 immunity (33, 34). This is in line with other studies
showing that HCoV-specific antibody titers increased in
convalescent individuals but did not correlate with increased
SARS-CoV-2 titers or protection (35-37). In the study reported
here, increased numbers of SARS-CoV-2-reactive T cells were
detected in individuals who were also HCoV-reactive. Conversely,
HCoV-reactive individuals tended to react more frequently to the
peptide pools derived from SARS-CoV-2 structural proteins. This
increase in frequency was also noted in the cohort not exposed to
SARS-CoV-2. Interestingly, this finding is in contrast to a study
performed by Woldemeskel et al. in which only 1 of 21 tested
healthy donors showed a response against SARS-CoV-2 spike or
nucleocapsid protein (38). This effect was more pronounced for
C-terminal peptide pools derived from spike. This could be due to
greater homology between the C-terminuses, than the N-
terminuses, of the spike proteins of SARS-CoV-2 and endemic
human coronaviruses (23). Nevertheless, it is not possible to
conclude from the present study those individuals previously
infected with endemic coronaviruses were better protected from
severe COVID-19 outcomes since all convalescent individuals
enrolled in the current study were either asymptomatic or
experienced only mild disease.

Persistence of immune memory to SARS-CoV-2 infection
was a central issue of the current study. A cohort of convalescent
healthcare workers studied over a 9-month period following
infection and symptom onset demonstrated a stable cellular
immune response. This finding correlates with the results of
other studies (13, 14, 21, 24). Notably, most studies including the
one described here focused primarily on mild and asymptomatic
COVID-19 cases; conflicting reports exist regarding immune
persistence in hospitalized patients (39, 40).

In contrast to a relatively stable T cell response, sharp
declining SARS-CoV-2-specific antibody titers were found over
the 9-month period following infection and symptom onset. This
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FIGURE 5 | Humoral immunity to SARS-CoV-2 expressed over time. Total (A, Roche) and IgG-specific (B, Abbott) anti-SARS-CoV-2 immunoglobulin titers were
quantified in the serum of convalescent individuals at: 3 months (V1, circles), 6 months (V2, squares) and 9 months (V3, triangles) post infection and symptom onset.
Data are shown with medians (n = 27). Statistically different: *P < 0.05, **P < 0.01, ***P < 0.0001 (Friedman test).

decline in antibody titers agrees with the reports of other
investigators, and is apparently not related to the response to a
specific viral protein or region (41-43). Cohen and coworkers
calculated the half-life of serum IgG specific for the spike
glycoprotein, spike receptor binding domain or the spike N-
terminal domain was ~120 days, roughly equivalent to the decline
determined herein for the median SARS-CoV-2-specific antibody
titers (24). Taken together, these finding emphasize the import of
considering T cell responses, rather than antibody titers, as a
measure of SARS-CoV-2 protection. Notably, ~10% of SARS-
CoV-2-infected patients did not produce IgG following recovery
although circulating, virus-specific T cells were detected (44-46).

The SARS-CoV-2 nucleocapsid protein induced the greatest
CD4" T cell response by the convalescent cohort in the study
reported herein. Indeed, N induced the biggest increase in T cell
reactivity between the third- and sixth-months post infection.
Other studies report increased anti-spike glycoprotein T cell
reactivity with the passage of time post infection (22, 24, 25). In
this regard, it is relevant that all approved COVID-19 mRNA
vaccines focus solely upon spike glycoprotein sequences (17, 18).
However, in light of the current study, it seems reasonable to
explore the construction of new vaccines that target the
nucleocapsid as well, and thus improve vaccine efficacy. The
nucleocapsids of SARS-CoV-2 and other betacoronaviruses
exhibit a high degree of homology (20, 47). The N protein
should be less prone to mutation since it is not under the same
selective pressure as the spike receptor binding domain. SARS-
CoV-2 variants have already demonstrated resistance to
neutralizing antibodies (48, 49). Le Bert et al. reported that long-
term memory T cells obtained from SARS-CoV patients 17 years
after the outbreak of SARS still reacted to the N protein of SARS-
CoV (20). Interestingly, they also observed these T cells cross-
reacted with the N protein of SARS-CoV-2; notably, the response
to other SARS-CoV-2 structural proteins was not examined.
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In summary, new evidence is presented that documents the
degree of cross-reactivity between SARS-CoV-2 and HCoV in
SARS-CoV-2-convalescent, as well as unexposed, individuals. It
is not clear, though, whether prior immunity to HCoV increases
protection against SARS-CoV-2. Cellular immunity acquired as a
consequence of SARS-CoV-2 infection remains stable for up to 9
months. Determining whether SARS-CoV-2-specific T cell
reactivity persists for a longer period will require additional
studies. Humoral immunity and SARS-CoV-2-specific antibody
titers, on the other hand, decline fairly rapidly over the course of
a 9-month period following infection. As such, T cell reactivity
may be a much more suitable correlate of protective immunity.
Moreover, the data indicate that incorporating sequences that
encode structural SARS-CoV-2 protein sequences in addition to
the spike glycoprotein could improve the efficacy of next
generation COVID-19 mRNA vaccines.
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