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ABSTRACT

YfiBNR is a recently identified bis-(3’-5’)-cyclic dimeric
GMP (c-di-GMP) signaling system in opportunistic
pathogens. It is a key regulator of biofilm formation,
which is correlated with prolonged persistence of
infection and antibiotic drug resistance. In response to
cell stress, YfiB in the outer membrane can sequester
the periplasmic protein YfiR, releasing its inhibition of
YfiN on the inner membrane and thus provoking the
diguanylate cyclase activity of YfiN to induce c-di-GMP
production. However, the detailed regulatory mecha-
nism remains elusive. Here, we report the crystal struc-
tures of YfiB alone and of an active mutant YfiBL43P

complexed with YfiR with 2:2 stoichiometry. Structural
analyses revealed that in contrast to the compact con-
formation of the dimeric YfiB alone, YfiBL43P adopts a
stretched conformation allowing activated YfiB to pen-
etrate the peptidoglycan (PG) layer and access YfiR.
YfiBL43P shows a more compact PG-binding pocket and
much higher PG binding affinity than wild-type YfiB,
suggesting a tight correlation between PG binding and
YfiB activation. In addition, our crystallographic analy-
ses revealed that YfiR binds Vitamin B6 (VB6) or L-Trp at
a YfiB-binding site and that both VB6 and L-Trp are able
to reduce YfiBL43P-induced biofilm formation. Based on
the structural and biochemical data, we propose an
updated regulatory model of the YfiBNR system.

KEYWORDS the YfiBNR system, c-di-GMP, Vitamin B6,
L-Trp, peptidoglycan layer, bioflim formation

INTRODUCTION

Bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) is a ubiquitous
second messenger that bacteria use to facilitate behavioral
adaptations to their ever-changing environment. An increase
in c-di-GMP promotes biofilm formation, and a decrease
results in biofilm degradation (Boehm et al., 2010; Duerig
et al., 2009; Hickman et al., 2005; Jenal, 2004; Romling
et al., 2013). The c-di-GMP level is regulated by two recip-
rocal enzyme systems, namely, diguanylate cyclases
(DGCs) that synthesize c-di-GMP and phosphodiesterases
(PDEs) that hydrolyze c-di-GMP (Kulasakara et al., 2006;
Ross et al., 1991; Ross et al., 1987). Many of these enzymes
are multiple-domain proteins containing a variable N-termi-
nal domain that commonly acts as a signal sensor or
transduction module, followed by the relatively conserved
GGDEF motif in DGCs or EAL/HD-GYP domains in PDEs
(Hengge, 2009; Navarro et al., 2011; Schirmer and Jenal,
2009). Intriguingly, studies in diverse species have revealed
that a single bacterium can have dozens of DGCs and PDEs
(Hickman et al., 2005; Kirillina et al., 2004; Kulasakara et al.,
2006; Tamayo et al., 2005). In Pseudomonas aeruginosa in
particular, 42 genes containing putative DGCs and/or PDEs
were identified (Kulasakara et al., 2006). The functional role
of a number of downstream effectors of c-di-GMP has been
characterized as affecting exopolysaccharide (EPS) pro-
duction, transcription, motility, and surface attachment (Caly
et al., 2015; Camilli and Bassler, 2006; Ha and O’Toole,
2015; Pesavento and Hengge, 2009). However, due to the
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intricacy of c-di-GMP signaling networks and the diversity of
experimental cues, the detailed mechanisms by which these
signaling pathways specifically sense and integrate different
inputs remain largely elusive.

Biofilm formation protects pathogenic bacteria from
antibiotic treatment, and c-di-GMP-regulated biofilm forma-
tion has been extensively studied in P. aeruginosa (Evans,
2015; Kirisits et al., 2005; Malone, 2015; Reinhardt et al.,
2007). In the lungs of cystic fibrosis (CF) patients, adherent
biofilm formation and the appearance of small colony variant
(SCV) morphologies of P. aeruginosa correlate with pro-
longed persistence of infection and poor lung function
(Govan and Deretic, 1996; Haussler et al., 1999; Haussler
et al., 2003; Parsek and Singh, 2003; Smith et al., 2006).
Recently, Malone and coworkers identified the tripartite c-di-
GMP signaling module system YfiBNR (also known as
AwsXRO (Beaumont et al., 2009; Giddens et al., 2007) or
Tbp (Ueda and Wood, 2009)) by genetic screening for
mutants that displayed SCV phenotypes in P. aeruginosa
PAO1 (Malone et al., 2012; Malone et al., 2010). The YfiBNR
system contains three protein members and modulates
intracellular c-di-GMP levels in response to signals received
in the periplasm (Malone et al., 2010). More recently, this
system was also reported in other Gram-negative bacteria,
such as Escherichia coli (Hufnagel et al., 2014; Raterman
et al., 2013; Sanchez-Torres et al., 2011), Klebsiella pneu-
monia (Huertas et al., 2014) and Yersinia pestis (Ren et al.,
2014). YfiN is an integral inner-membrane protein with two
potential transmembrane helices, a periplasmic Per-Arnt-
Sim (PAS) domain, and cytosolic domains containing a
HAMP domain (mediate input-output signaling in histidine
kinases, adenylyl cyclases, methyl-accepting chemotaxis
proteins, and phosphatases) and a C-terminal GGDEF
domain indicating a DGC’s function (Giardina et al., 2013;
Malone et al., 2010). YfiN is repressed by specific interaction
between its periplasmic PAS domain and the periplasmic
protein YfiR (Malone et al., 2010). YfiB is an OmpA/Pal-like
outer-membrane lipoprotein (Parsons et al., 2006) that can
activate YfiN by sequestering YfiR (Malone et al., 2010) in an
unknown manner. Whether YfiB directly recruits YfiR or
recruits YfiR via a third partner is an open question. After the
sequestration of YfiR by YfiB, the c-di-GMP produced by
activated YfiN increases the biosynthesis of the Pel and Psl
EPSs, resulting in the appearance of the SCV phenotype,
which indicates enhanced biofilm formation (Malone et al.,
2010).

It has been reported that the activation of YfiN may be
induced by redox-driven misfolding of YfiR (Giardina et al.,
2013; Malone et al., 2012; Malone et al., 2010). It is also
proposed that the sequestration of YfiR by YfiB can be
induced by certain YfiB-mediated cell wall stress, and
mutagenesis studies revealed a number of activation resi-
dues of YfiB that were located in close proximity to the
predicted first helix of the periplasmic domain (Malone et al.,
2012). In addition, quorum sensing-related dephosphoryla-
tion of the PAS domain of YfiN may also be involved in the

regulation (Ueda and Wood, 2009; Xu et al., 2015). Recently,
we solved the crystal structure of YfiR in both the non-oxi-
dized and the oxidized states, revealing breakage/formation
of one disulfide bond (Cys71-Cys110) and local conforma-
tional change around the other one (Cys145-Cys152), indi-
cating that Cys145-Cys152 plays an important role in
maintaining the correct folding of YfiR (Yang et al., 2015).

In the present study, we solved the crystal structures of an
N-terminal truncated form of YfiB (34–168) and YfiR in
complex with an active mutant YfiBL43P. Most recently, Li and
coworkers reported the crystal structures of YfiB (27–168)
alone and YfiRC71S in complex with YfiB (59–168) (Li et al.,
2015). Compared with the reported complex structure,
YfiBL43P in our YfiB-YfiR complex structure has additional
visible N-terminal residues 44–58 that are shown to play
essential roles in YfiB activation and biofilm formation.
Therefore, we are able to visualize the detailed allosteric
arrangement of the N-terminal structure of YfiB and its
important role in YfiB-YfiR interaction. In addition, we found
that the YfiBL43P shows a much higher PG-binding affinity
than wild-type YfiB, most likely due to its more compact PG-
binding pocket. Moreover, we found that Vitamin B6 (VB6) or
L-Trp can bind YfiR with an affinity in the ten millimolar
range. Together with functional data, these results provide
new mechanistic insights into how activated YfiB sequesters
YfiR and releases the suppression of YfiN. These findings
may facilitate the development and optimization of anti-bio-
film drugs for the treatment of chronic infections.

RESULTS

Overall structure of YfiB

We obtained two crystal forms of YfiB (residues 34–168,
lacking the signal peptide from residues 1–26 and periplas-
mic residues 27–33), crystal forms I and II, belonging to
space groups P21 and P41, respectively.

The crystal structure of YfiB monomer consists of a five-
stranded β-sheet (β1-2-5-3-4) flanked by five α-helices
(α1–5) on one side. In addition, there is a short helix turn
connecting the β4 strand and α4 helix (Fig. 1A and 1B). Each
crystal form contains three different dimeric types of YfiB,
two of which are present in both, suggesting that the rest of
the dimeric types may result from crystal packing. Here, we
refer to the two dimeric types as “head to head” and “back to
back” according to the interacting mode (Fig. 2A and 2E),
with the total buried surface areas being 316.8 Å2 and
554.3 Å2, respectively.

The “head to head” dimer exhibits a clamp shape. The
dimerization occurs mainly via hydrophobic interactions
formed by A37 and I40 on the α1 helices, L50 on the β1
strands, and W55 on the β2 strands of both molecules,
making a hydrophobic interacting core (Fig. 2A–C).

The “back to back” dimer presents a Y shape. The dimeric
interaction is mainly hydrophilic, occurring among the main-
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chain and side-chain atoms of N68, L69, D70 and R71 on
the α2-α3 loops and R116 and S120 on the α4 helices of
both molecules, resulting in a complex hydrogen bond net-
work (Fig. 2D–F).

The YfiB-YfiR interaction

To gain structural insights into the YfiB-YfiR interaction, we
co-expressed YfiB (residues 34–168) and YfiR (residues
35–190, lacking the signal peptide), but failed to obtain the
complex, in accordance with a previous report in which no
stable complex of YfiB-YfiR was observed (Malone et al.,
2012). It has been reported that single mutants of Q39, L43,
F48 and W55 contribute to YfiB activation leading to the

induction of the SCV phenotype in P. aeruginosa PAO1
(Malone et al., 2012). It is likely that these residues may be
involved in the conformational changes of YfiB that are
related to YfiR sequestration (Fig. 3C). Therefore, we con-
structed two such single mutants of YfiB (YfiBL43P and
YfiBF48S). As expected, both mutants form a stable complex
with YfiR. Finally, we crystalized YfiR in complex with the
YfiBL43P mutant and solved the structure at 1.78 Å resolution
by molecular replacement using YfiR and YfiB as models.

The YfiB-YfiR complex is a 2:2 heterotetramer (Fig. 3A) in
which the YfiR dimer is clamped by two separated YfiBL43P

molecules with a total buried surface area of 3161.2 Å2. The
YfiR dimer in the complex is identical to the non-oxidized
YfiR dimer alone (Yang et al., 2015), with only Cys145-

α1

α2

α3

α4

η1

α5

β1
β2

β3

β4

β5
α1

α2

α3

α4

η1

α5

1

2 3 45

N C 24.2 kDa
40.5 kDa

Molar mass (kDa)
0 20 40 60 80 100 0 20 40 60 80 100

24.0 kDa

Molar mass (kDa)

0.2
0

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

)L/lo
m(

c

) L/l o
m(

c

YfiB-WT

A B C D

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

YfiB-L43P

Figure 1. Overall structure of YfiB. (A) The overall structure of the YfiB monomer. (B) A topology diagram of the YfiB monomer. (C

and D) The analytical ultracentrifugation experiment results for the wild-type YfiB and YfiBL43P.
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Cys152 of the two disulfide bonds well formed, suggesting
Cys71-Cys110 disulfide bond formation is not essential for
forming YfiB-YfiR complex. The N-terminal structural con-
formation of YfiBL43P, from the foremost N-terminus to resi-
due D70, is significantly altered compared with that of the
apo YfiB. The majority of the α1 helix (residues 34–43) is
invisible on the electron density map, and the α2 helix and
β1 and β2 strands are rearranged to form a long loop con-
taining two short α-helix turns (Fig. 3B and 3C), thus
embracing the YfiR dimer. The observed changes in

conformation of YfiB and the results of mutagenesis suggest
a mechanism by which YfiB sequesters YfiR.

The YfiB-YfiR interface can be divided into two regions
(Fig. 3A and 3D). Region I is formed by numerous main-
chain and side-chain hydrophilic interactions between resi-
dues E45, G47 and E53 from the N-terminal extended loop
of YfiB and residues S57, R60, A89 and H177 from YfiR
(Fig. 3D-I(i)). Additionally, three hydrophobic anchoring sites
exist in region I. The residues F48 and W55 of YfiB are
inserted into the hydrophobic cores mainly formed by the
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main chain and side chain carbon atoms of residues S57/
Q88/A89/N90 and R60/R175/H177 of YfiR, respectively; and
F57 of YfiB is inserted into the hydrophobic pocket formed by
L166/I169/V176/P178/L181 of YfiR (Fig. 3D-I(ii)). In region II,
the side chains of R96, E98 and E157 from YfiB interact with
the side chains of E163, S146 and R171 from YfiR,
respectively. Additionally, the main chains of I163 and V165
from YfiB form hydrogen bonds with the main chains of L166
and A164 from YfiR, respectively, and the main chain of
P166 from YfiB interacts with the side chain of R185 from
YfiR (Fig. 3D-II). These two regions contribute a robust
hydrogen-bonding network to the YfiB-YfiR interface,
resulting in a tightly bound complex.

Based on the observations that two separated YfiBL43P

molecules form a 2:2 complex structure with YfiR dimer, we
performed an analytical ultracentrifugation experiment to
check the oligomeric states of wild-type YfiB and YfiBL43P.
The results showed that wild-type YfiB exists in both
monomeric and dimeric states in solution, while YfiBL43P

primarily adopts the monomer state in solution (Fig. 1C–D).
This suggests that the N-terminus of YfiB plays an important
role in forming the dimeric YfiB in solution and that the
conformational change of residue L43 is associated with the
stretch of the N-terminus and opening of the dimer. There-
fore, it is possible that both dimeric types might exist in
solution. For simplicity, we only discuss the “head to head”
dimer in the following text.

The PG-binding site of YfiB

PG-associated lipoprotein (Pal) is highly conserved in Gram-
negative bacteria and anchors to the outer membrane
through an N-terminal lipid attachment and to PG layer
through its periplasmic domain, which is implicated in
maintaining outer membrane integrity. Previous homology
modeling studies suggested that YfiB contains a Pal-like PG-
binding site (Parsons et al., 2006), and the mutation of two
residues at this site, D102 and G105, reduces the ability for
biofilm formation and surface attachment (Malone et al.,
2012). In the YfiB-YfiR complex, one sulfate ion is found at
the bottom of each YfiBL43P molecule (Fig. 3A) and forms a
strong hydrogen bond with D102 of YfiBL43P (Fig. 4A and
4C). Structural superposition between YfiBL43P and Hae-
mophilus influenzae Pal complexed with biosynthetic pepti-
doglycan precursor (PG-P), UDP-N-acetylmuramyl-L-Ala-α-
D-Glu-m-Dap-D-Ala-D-Ala (m-Dap is meso-diaminopime-
late) (PDB code: 2aiz) (Parsons et al., 2006), revealed that
the sulfate ion is located at the position of the m-Dap5
ϵ-carboxylate group in the Pal/PG-P complex (Fig. 4A). In
the Pal/PG-P complex structure, the m-Dap5 ϵ-carboxylate
group interacts with the side-chain atoms of D71 and the
main-chain amide of D37 (Fig. 4B). Similarly, in the YfiR-
bound YfiBL43P structure, the sulfate ion interacts with the
side-chain atoms of D102 (corresponding to D71 in Pal) and
R117 (corresponding to R86 in Pal) and the main-chain
amide of N68 (corresponding to D37 in Pal). Moreover, a

water molecule was found to bridge the sulfate ion and the
side chains of N67 and D102, strengthening the hydrogen
bond network (Fig. 4C). In addition, sequence alignment of
YfiB with Pal and the periplasmic domain of OmpA (proteins
containing PG-binding site) showed that N68 and D102 are
highly conserved (Fig. 4G, blue stars), suggesting that these
residues contribute to the PG-binding ability of YfiB.

Interestingly, superposition of apo YfiB with YfiR-bound
YfiBL43P revealed that the PG-binding region is largely
altered mainly due to different conformation of the N68
containing loop. Compared to YfiBL43P, the N68-containing
loop of the apo YfiB flips away about 7 Å, and D102 and
R117 swing slightly outward; thus, the PG-binding pocket is
enlarged with no sulfate ion or water bound (Fig. 4D).
Therefore, we proposed that the PG-binding ability of inac-
tive YfiB might be weaker than that of active YfiB. To validate
this, we performed a microscale thermophoresis (MST)
assay to measure the binding affinities of PG to wild-type
YfiB and YfiBL43P, respectively. The results indicated that the
PG-binding affinity of YfiBL43P is 65.5 μmol/L, which is about
16-fold stronger than that of wild-type YfiB (Kd = 1.1 mmol/L)
(Fig. 4E–F). As the experiment is performed in the absence
of YfiR, it suggests that an increase in the PG-binding affinity
of YfiB is not a result of YfiB-YfiR interaction and is highly
coupled to the activation of YfiB characterized by a stretched
N-terminal conformation.

The conserved surface in YfiR is functional for binding
YfiB and YfiN

Calculation using theConSurf Server (http://consurf.tau.ac.il/),
which estimates the evolutionary conservation of amino acid
positions and visualizes information on the structure surface,
revealed a conserved surface on YfiR that contributes to the
interaction with YfiB (Fig. 3E and 3F). Interestingly, the
majority of this conserved surface contributes to the interac-
tion with YfiB (Fig. 3E and 3F). Malone JG et al. have reported
that F151, E163, I169 and Q187, located near the C-terminus
of YfiR, comprise a putative YfiN binding site (Malone et al.,
2012). Interestingly, these residues are part of the conserved
surface of YfiR (Fig. 3G). F151, E163 and I169 form a
hydrophobic core while, Q187 is located at the end of the α6
helix. E163 and I169 are YfiB-interacting residues of YfiR, in
which E163 forms a hydrogen bond with R96 of YfiB
(Fig. 3D-II) and I169 is involved in forming the L166/I169/
V176/P178/L181 hydrophobic core for anchoring F57 of YfiB
(Fig. 3D-I(ii)). Collectively, a part of the YfiB-YfiR interface
overlaps with the proposed YfiR-YfiN interface, suggesting
alteration in the association-disassociation equilibrium of
YfiR-YfiN and hence the ability of YfiB to sequester YfiR.

YfiR binds small molecules

Previous studies indicated that YfiR constitutes a YfiB-inde-
pendent sensing device that can activate YfiN in response to
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the redox status of the periplasm, and we have reported YfiR
structures in both the non-oxidized and the oxidized states
earlier, revealing that theCys145-Cys152 disulfidebond plays
an essential role in maintaining the correct folding of YfiR
(Yang et al., 2015). However, whether YfiR is involved in other
regulatory mechanisms is still an open question.

Intriguingly, a Dali search (Holm and Rosenstrom, 2010)
indicated that the closest homologs of YfiR shared the
characteristic of being able to bind several structurally similar
small molecules, such as L-Trp, L-Phe, B-group vitamins and
their analogs, encouraging us to test whether YfiR can rec-
ognize these molecules. For this purpose, we co-crystallized
YfiR or soaked YfiR crystals with different small molecules,
including L-Trp and B-group vitamins. Fortunately, we found
obvious small-molecule density in the VB6-bound and Trp-
bound YfiR crystal structures (Fig. 5A and 5B), and in both
structures, the YfiR dimers resemble the oxidized YfiR

structure in which both two disulfide bonds are well formed
(Yang et al., 2015).

Structural analyses revealed that the VB6 and L-Trp
molecules are bound at the periphery of the YfiRdimer, but not
at the dimer interface. Interestingly, VB6 and L-Trp were found
tooccupy the samehydrophobicpocket, formedbyL166/I169/
V176/P178/L181 of YfiR, which is also a binding pocket for
F57 of YfiB, as observed in theYfiB-YfiRcomplex (Fig. 5C). To
evaluate the importance of F57 in YfiBL43P-YfiR interaction,
thebindingaffinities of YfiBL43P andYfiBL43P/F57A for YfiRwere
measured by isothermal titration calorimetry (ITC). The results
showed Kd values of 1.4 × 10−7 mol/L and 5.3 × 10−7 mol/L for
YfiBL43P and YfiBL43P/F57A, respectively, revealing that the
YfiBL43P/F57Amutant caused a 3.8-fold reduction in the binding
affinity compared with the YfiBL43P mutant (Fig. 6F and 6G).

In parallel, to better understand the putative functional
role of VB6 and L-Trp, yfiB was deleted in a PAO1 wild-type
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ε-carboxylate group of PG-P. Pal is shown in wheat and PG-P is in magenta. (C) Close-up view showing the key residues of YfiR-

bound YfiBL43P interacting with a sulfate ion. YfiR-bound YfiBL43P is shown in cyan; the sulfate ion, in green; and the water molecule,

in yellow. (D) Structural superposition of the PG-binding sites of apo YfiB and YfiR-bound YfiBL43P, the key residues are shown in

stick. Apo YfiB is shown in yellow and YfiR-bound YfiBL43P in cyan. (E and F) MST data and analysis for binding affinities of (E) YfiB

wild-type and (F) YfiBL43P with PG. (G) The sequence alignment of P. aeruginosa and E. coli sources of YfiB, Pal and the periplasmic

domain of OmpA.
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strain, and a construct expressing the YfiBL43P mutant was
transformed into the PAO1 ΔyfiB strain to trigger YfiBL43P-
induced biofilm formation. Growth and surface attachment
assays were carried out for the yfiB-L43P strain in the
presence of increasing concentrations of VB6 or L-Trp. As
shown in Fig. 6A and 6B, the over-expression of YfiBL43P

induced strong surface attachment and much slower growth
of the yfiB-L43P strain, and as expected, a certain amount of
VB6 or L-Trp (4–6 mmol/L for VB6 and 6–10 mmol/L for
L-Trp) could reduce the surface attachment. Interestingly, at
a concentration higher than 8 mmol/L, VB6 lost its ability to
inhibit biofilm formation, implying that the VB6-involving
regulatory mechanism is highly complicated and remains to
be further investigated.

Of note, both VB6 and L-Trp have been reported to cor-
relate with biofilm formation in certain Gram-negative bac-
teria (Grubman et al., 2010; Shimazaki et al., 2012). In
Helicobacter pylori in particular, VB6 biosynthetic enzymes
act as novel virulence factors, and VB6 is required for full
motility and virulence (Grubman et al., 2010). In E. coli, mu-
tants with decreased tryptophan synthesis show greater
biofilm formation, and matured biofilm is degraded by
L-tryptophan addition (Shimazaki et al., 2012). However, the
detailed mechanism remains elusive.

To answer the question whether competition of VB6 or
L-Trp for the YfiB F57-binding pocket of YfiR plays an
essential role in inhibiting biofilm formation, we measured
the binding affinities of VB6 and L-Trp for YfiR via BIAcore
experiments. The results showed relatively weak Kd values
of 35.2 mmol/L and 76.9 mmol/L for VB6 and L-Trp,
respectively (Fig. 6C and 6D). Based on our results, we

concluded that VB6 or L-Trp can bind to YfiR, however, VB6
or L-Trp alone may have little effects in interrupting the YfiB-
YfiR interaction, the mechanism by which VB6 or L-Trp
inhibits biofilm formation remains unclear and requires fur-
ther investigation.

DISCUSSION

Previous studies suggested that in response to cell stress,
YfiB in the outer membrane sequesters the periplasmic
protein YfiR, releasing its inhibition of YfiN on the inner
membrane and thus inducing the diguanylate cyclase activity
of YfiN to allow c-di-GMP production (Giardina et al., 2013;
Malone et al., 2012; Malone et al., 2010). However, the
pattern of interaction between these proteins and the
detailed regulatory mechanism remain unknown due to a
lack of structural information.

Here, we report the crystal structures of YfiB alone and an
active mutant YfiBL43P in complex with YfiR, indicating that
YfiR forms a 2:2 complex with YfiB via a region composed of
conserved residues. Our structural data analysis shows that
the activated YfiB has an N-terminal portion that is largely
altered, adopting a stretched conformation compared with
the compact conformation of the apo YfiB. The apo YfiB
structure constructed beginning at residue 34 has a compact
conformation of approximately 45 Å in length. In addition to
the preceding 8 aa loop (from the lipid acceptor Cys26 to
Gly34), the full length of the periplasmic portion of apo YfiB
can reach approximately 60 Å. It was reported that the dis-
tance between the outer membrane and the cell wall is
approximately 50 Å and that the thickness of the PG layer is
approximately 70 Å (Matias et al., 2003). Thus, YfiB alone
represents an inactive form that may only partially insert into
the PG matrix. By contrast, YfiR-bound YfiBL43P (residues
44–168) has a stretched conformation of approximately 55 Å
in length. In addition to the 17 preceding intracellular resi-
dues (from the lipid acceptor Cys26 to Leu43), the length of
the intracellular portion of active YfiB may extend over 100 Å,
assuming a fully stretched conformation. Provided that the
diameter of the widest part of the YfiB dimer is approximately
64 Å, which is slightly smaller than the smallest diameter of
the PG pore (70 Å) (Meroueh et al., 2006), the YfiB dimer
should be able to penetrate the PG layer.

These results, together with our observation that activated
YfiB has a much higher cell wall binding affinity, and previous
mutagenesis data showing that (1) both PG binding and
membrane anchoring are required for YfiB activity and (2)
activating mutations possessing an altered N-terminal loop
length are dominant over the loss of PG binding (Malone
et al., 2012), suggest an updated regulatory model of the
YfiBNR system (Fig. 7). In this model, in response to a
particular cell stress that is yet to be identified, the dimeric
YfiB is activated from a compact, inactive conformation to a
stretched conformation, which possesses increased PG
binding affinity. This allows the C-terminal portion of the
membrane-anchored YfiB to reach, bind and penetrate the
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Figure 5. Overall Structures of VB6-bound and Trp-bound

YfiR. (A) Superposition of the overall structures of VB6-bound

and Trp-bound YfiR. (B) Close-up views showing the key

residues of YfiR that bind VB6 and L-Trp. The electron densities

of VB6 and Trp are countered at 3.0σ and 2.3σ, respectively, in

|Fo|-|Fc| maps. (C) Superposition of the hydrophobic pocket of
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cell wall and sequester the YfiR dimer. The YfiBNR system
provides a good example of a delicate homeostatic system
that integrates multiple signals to regulate the c-di-GMP
level. Homologs of the YfiBNR system are functionally con-
served in P. aeruginosa (Malone et al., 2012; Malone et al.,
2010), E. coli (Hufnagel et al., 2014; Raterman et al., 2013;
Sanchez-Torres et al., 2011), K. pneumonia (Huertas et al.,

2014) and Y. pestis (Ren et al., 2014), where they affect c-di-
GMP production and biofilm formation. The mechanism by
which activated YfiB relieves the repression of YfiN may be
applicable to the YfiBNR system in other bacteria and to
analogous outside-in signaling for c-di-GMP production,
which in turn may be relevant to the development of drugs
that can circumvent complicated antibiotic resistance.
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MATERIALS AND METHODS

Protein expression and purification

P. aeruginosa YfiR (residues 35–190, lacking the predicted N-termi-

nal periplasmic localization signaling peptide) and YfiB (residues

34–168, lacking the signal peptide from residues 1–26 and

periplasmic residues 27–33) were cloned intoORF1 of the pETDuet-1

(Merck Millipore, Darmstadt, Germany) vector via the BamHI and

HindIII restriction sites, with a constructed N-terminal His6 and a TEV

cleavage site, respectively. In addition, YfiB (residues 34–168) was
ligated into the NdeI and XhoI restriction sites of ORF2 in the previ-

ously constructed YfiR expression vector. Site-directed mutagenesis

was carried out using a QuikChange kit (Agilent Technologies, Santa

Clara, CA), following the manufacturer’s instructions.

The proteins were over-expressed in the E. coli BL21-CodonPlus

(DE3)-RIPL strain. Protein expression was induced by adding

0.5–1 mmol/L IPTG at an OD600 of approximately 0.8. The cell cul-

tures were then incubated for an additional 4.5 h at 37°C. The cells

were subsequently harvested by centrifugation and stored at −80°C.
Cell suspensions were thawed and homogenized using a high-

pressure homogenizer (JNBIO, Beijing, China). YfiR was first puri-

fied by Ni affinity chromatography and then incubated with His6-

tagged TEV protease overnight. The His6-TEV cleavage site was

subsequently removed by incubation with Ni-NTA resin. Finally, YfiR

was purified with a HiTrap STM column (GE Healthcare), followed by

a Superdex 200 (GE Healthcare) column. YfiB was purified with Ni

affinity chromatography, followed by a Superdex 200 (GE Health-

care) column. The YfiB-YfiR complex was first purified by Ni affinity

chromatography, then by a Superdex 200 (GE Healthcare) column,

and finally by a HiTrap STM column (GE Healthcare). All of the

purified fractions were collected and concentrated to ∼40 mg/mL in

20 mmol/L Tris-HCl (pH 8.0) and 200 mmol/L NaCl, frozen in liquid

nitrogen and stored at −80°C.

Crystallization and data collection

Crystal screening was performed with commercial screening kits

(Hampton Research, CA, USA) using the sitting-drop vapor diffusion

method, and positive hits were optimized using the hanging-drop

vapor diffusion method at 293 K. Crystals of the YfiB protein were

obtained and optimized in buffer containing 0.2 mol/L lithium sulfate

monohydrate, 0.1 mol/L Tris-HCl (pH 8.0) and 30% w/v polyethylene

glycol 4000. After being soaked for a few seconds in cryoprotection

solution (well solution complemented with 25% xylitol), the crystals

were cooled by plunging them into liquid nitrogen. Diffraction-quality

crystals of the YfiB-YfiR complex were grown in buffer containing

0.2 mol/L ammonium sulfate, 0.1 mol/L Tris-HCl (pH 8.0) and 12%

w/v polyethylene glycol 8000. The crystals were cryoprotected with

8% (w/v) polyethylene glycol 8000 and 0.1 mol/L Tris-HCl (pH 7.5)

supplemented with saturated sucrose prior to being flash frozen.

Crystals of the native YfiR were obtained and optimized in 0.1 mol/L

HEPES (pH 7.5) and 1.8 mol/L ammonium sulfate. VB6-bound YfiR

crystals were obtained by soaking the native YfiR crystals in

2 mmol/L VB6 molecules. Trp-bound YfiR crystals were obtained by

co-crystalizing the YfiR protein and 4 mmol/L L-Trp molecules in

0.2 mol/L NaCl, 0.1 mol/L BIS-TRIS (pH 5.5), and 25% w/v poly-

ethylene glycol 3350. For cryoprotection, both the VB6-bound and

the L-Trp-bound YfiR crystals were soaked in 2.5 mol/L lithium sul-

fate monohydrate for a few seconds before data collection. Diffrac-

tion data for the YfiB crystal belonging to space group P21 was

collected in house, the data for the YfiB crystal belonging to space

group P41 and for the Trp-bound YfiR crystal were collected on
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~60 Å

~90 Å
Inner wall

zone
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YfiN PAS
domain

YfiN PAS
domain

YfiR dimer

Inactive YfiBInactive PG-
binding site Active YfiB

Active PG-
binding site

Cell wall stress?

Figure 7. Regulatory model of the YfiBNR tripartite system. The periplasmic domain of YfiB and the YfiB-YfiR complex are

depicted according to the crystal structures. The lipid acceptor Cys26 is indicated as blue ball. The loop connecting Cys26 and Gly34

of YfiB is modeled. The PAS domain of YfiN is shown as pink oval. Once activated by certain cell stress, the dimeric YfiB transforms

from a compact conformation to a stretched conformation, allowing the periplasmic domain of the membrane-anchored YfiB to

penetrate the cell wall and sequester the YfiR dimer, thus relieving the repression of YfiN.

Structural insights into the regulatory mechanism RESEARCH ARTICLE

© The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn 411

P
ro
te
in

&
C
e
ll



beamline BL17U at the Shanghai Synchrotron Radiation Facility

(SSRF), and the data for the VB6-bound YfiR crystal were collected

on beamline BL18U at SSRF. Finally, the data for the YfiB-YfiR

complex crystal were collected on beamline BL-1A at the Photon

Factory in Japan. The diffraction data were processed with the

HKL2000 software program (Otwinowski and Minor, 1997).

Structure determination and refinement

The two YfiB crystal structures respectively belonging to space

groups P21 and P41 were both solved by molecular replacement

(Lebedev et al., 2008) using the putative MotB-like protein

DVU_2228 from D. vulgaris as a model (PDB code: 3khn) at 2.15 Å

and 2.8 Å resolution, respectively. Both the VB6-bound and the Trp-

bound YfiR crystals belonging to space group P43212, with a dimer

in the asymmetric unit, were solved by molecular replacement

(Lebedev et al., 2008) using native YfiR as a model (PDB code:

4YN7) at 2.4 Å and 2.5 Å resolution, respectively. The YfiB-YfiR

crystal belonging to space group P1, with a 2:2 heterotetramer in the

asymmetric unit, was solved by molecular replacement using YfiR

and YfiB as models. Electron density maps were calculated using

PHENIX (Adams et al., 2010). Model building was performed using

COOT (Emsley et al., 2010) and refined with PHENIX (Adams et al.,

2010; Afonine et al., 2012). The final structures were analyzed with

PROCHECK (Laskowski et al., 1993). Data collection and refine-

ment statistics are presented in Table 1. The figures depicting

structures were prepared using PyMOL (http://www.pymol.org).

Atomic coordinates and structure factors have been deposited in the

RCSB Protein Data Bank (http://www.pdb.org) under accession

codes 5EAZ, 5EB0, 5EB1, 5EB2 and 5EB3.

Analytical ultracentrifugation

Sedimentation velocity measurements were performed on a Beck-

man ProteomeLab XL-I at 25°C. All protein samples were diluted to

an OD280 of 0.7 in 20 mmol/L Tris (pH 8.0) and 200 mmol/L NaCl.

Data were collected at 60,000 rpm. (262,000 ×g) every 3 min at a

wavelength of 280 nm. Interference sedimentation coefficient dis-

tributions, or c(M), were calculated from the sedimentation velocity

data using SEDFIT (Schuck, 2000).

PG preparation

PG was extracted from the E. coli DH5α strain by following a method

described previously (Desmarais et al., 2014). Briefly, cells were

cultured until they reached an OD600 of 0.7–0.8 and then collected at

5,000 ×g, 4°C. The collected bacteria were dripped into the boiling

6% (w/v) SDS and stirred at 500 rpm in a boiling water bath for 3 h

before incubating overnight at room temperature. The large PG

polymers were collected by ultracentrifugation at 130,000 ×g for 1 h

at room temperature and washed repeatedly to remove SDS. The

pellet was treated with Pronase E (200 μg/mL final concentration) for

3 h at 60°C followed by SDS to remove contaminating proteins and

washed three times to remove the SDS by ultracentrifugation. Next,

the samples were treated with lysozyme (200 μg/mL final concen-

tration) for 16 h at 37°C. Finally, the purified PG is obtained by

treating the samples in a boiling water bath for 10 min and cen-

trifuging it at 13,000 ×g to remove the contaminating lysozyme.

Microscale thermophoresis (MST)

Purified YfiB wild-type and it mutant YfiBL43P were fluorescently

labeled using the NanoTemper blue protein-labeling kit according to

the manufacturer’s protocol. This resulted in coupling of the fluo-

rescent dye NT-495. PG was titrated in 1:1 dilutions starting at

1 mmol/L. To determine of the Kd values, 10 μL labeled protein was

mixed with 10 μL PG at various concentrations in Hepes buffer

(20 mmol/L Hepes, 200 mmol/L NaCl, 0.005% Tween-20, pH 7.5).

After 10 min of incubation, all binding reaction mixtures were loaded

into the MST-grade glass capillaries (NanoTemper Technologies),

and thermophoresis was measured with a NanoTemper Monolith-

NT115 system (20% light-emitting diode, 20% IR laser power).

Deletion of the yfiB genes

The yfiB deletion construct was produced by SOE-PCR (Hmelo

et al., 2015) and contained homologous flanking regions to the target

gene. This construct was ligated into the pEX18Gm vector between

the HindIII and the KpnI sites. The resulting vector was then used to

delete yfiB by two-step allelic exchange (Hmelo et al., 2015). After

being introduced into PAO1 via biparental mating with E. coli SM10

(λpir), single crossovers were selected on Vogel-Bonner Minimal

Medium (VBMM), which was used for counter-selection against

E. coli (P. aeruginosa can utilize citrate as a sole carbon source and

energy source, whereas E. coli cannot), containing 50 μg/mL gen-

tamycin. Restreaking was then performed on no-salt Luria-Bertani

(NSLB) agar that contained 15% sucrose to force the resolution of

double crossovers. Deletion of yfiB in the strains was confirmed by

colony PCR.

For complementation experiments, yfiB wild-type and L43P

mutant genes were cloned into the pJN105 vector via the EcoRI and

XbaI restriction sites, respectively. The plasmids were then individ-

ually transformed into the PAO1 ΔyfiB strain using the rapid elec-

troporation method described in Choi KH et al. (Choi et al., 2006).

Transformants were selected on LB plates containing 50 μg/mL

gentamycin. For induction, arabinose was added to a final concen-

tration of 0.2%.

Attachment assays

The attachment assays were carried out using the MBECTM (Mini-

mum Biofilm Eradication Concentration, Innovotech, Inc.) biofilm

inoculator, which consists of a plastic lid with 96 pegs and 96 indi-

vidual wells. The MBEC plates containing 150 μL LB medium/well

were inoculated with 1% overnight cultures of the yfiB-L43P strain

and incubated overnight at 37°C without shaking. VB6, L-Trp and

arabinose were added as appropriate. The peg lids were washed

with distilled water, and the attached cell material was then stained

with 0.1% crystal violet solution (5% methanol, 5% isopropanol)

before further washing to remove excess dye. The crystal violet was

re-dissolved in 20% acetic acid solution, and the absorbance was

measured at 600 nm. Assays were performed with 12 wells/strain

and repeated independently for each experiment.

BIAcore analysis

The interaction kinetics of YfiR with VB6 and L-Trp were examined

on a SPR machine Biacore 3000 (GE Healthcare) at 25°C. The
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running buffer (20 mmol/L HEPES, pH 7.5, 150 mmol/L NaCl,

0.005% (v/v) Tween-20) was vacuum filtered, and degassed

immediately prior to use. YfiR at 10 μg/mL in 10 mmol/L sodium

acetate (pH 5.5) was immobilized to 3000 response units on the

carboxymethylated dextran surface-modified chip (CM5 chip). The

binding affinities were evaluated over a range of 2.5–40 mmol/L

concentrations. Meanwhile, for both binding assays, the concentra-

tion of 10 mmol/L was repeated as an internal control. All of the data

collected were analyzed using BIAevaluation software version 4.1.

ITC assays

ITC experiments were performed in a buffer composed of 20 mmol/L

Tris (pH 8.0) and 150 mmol/L NaCl at 25°C using an iTC200

calorimeter (GE Healthcare). YfiB wild-type or its mutants (YfiBL43P,

YfiBL43P/F57A) (0.4 mmol/L, in the syringe) was titrated into YfiR

(0.04 mmol/L, in the cell), respectively. The titration sequence

included a single 0.5 µL injection, followed by 19 injections of 2 µL

each, with a 2-min interval between injections and a stirring rate of

Table 1. Data collection, phasing and refinement statistics

Data collection YfiB (crystal
form I)

YfiB (crystal
form II)

VB6-bound YfiR Trp-bound YfiR YfiBL43P-YfiR

Space group P21 P41 P43212 P43212 P1

Wavelength (Å) 1.54187 0.9791 0.97861 0.9791 1.10000

Resolution (Å)a 50.0–2.15
(2.19–2.15)

50.0–2.80
(2.85–2.8)

50.0–2.4
(2.44–2.4)

50.0–2.5
(2.54–2.5)

50–1.78
(1.86–1.78)

Cell dimensions

a, b, c (Å) 65.85, 90.45,
66.30

46.95, 46.95,
154.24

120.24, 120.24,
84.99

120.88, 120.88,
88.46

49.50, 58.57,
69.86

α, β, γ (°) 90, 113.87, 90 90, 90, 90 90, 90, 90 90, 90, 90 72.93, 96.98,
90.19

Unique reflections 37,625 (1866) 8,105 (412) 24,776 (1202) 23170 (1132) 67,774 (6615)

I/σI 19.59 (2.62) 12.36 (4.15) 20.17 (2.4) 39.5 (4.68) 17.75 (1.89)

Completeness (%) 97.1 (95.4) 97.8 (100) 99.1 (98.8) 99.9 (100) 96.5 (94.6)

Rmerge (%) 6.5 (44.5) 14.6 (49.7) 8.9 (56.8) 9.4 (89.2) 5.6 (46.3)

Rmeas (%) 7.4 (51.6) 15.4 (52.0) 9.6 (61.7) 9.6 (90.8) 6.6 (55.1)

CC1/2b 0.747 0.952 0.899 0.974 0.849

Refinement

Rwork (%) 20.14 19.17 17.82 18.66 17.90

Rfree(%) 26.29 26.49 19.81 23.05 20.61

Average B factors (Å2)

Protein 25.54 42.70 38.68 35.03 32.54

VB6 - - 44.08 - -

Trp - - - 87.51 -

SO4
2− 37.16 66.52 51.55 41.93 45.51

H2O 32.91 36.09 40.58 34.75 43.52

Root mean square deviations

Bond lengths (Å) 0.009 0.009 0.007 0.007 0.007

Bond angles (°) 1.085 1.132 1.021 0.977 1.110

Ramachandran plot

Most favored (%) 92.6 87.7 96.5 98.1 94.2

Additionally allowed (%) 7.4 12.3 3.5 1.9 5.8

Generously allowed (%) 0 0 0 0 0

Disallowed 0 0 0 0 0

a Numbers in parentheses are for the highest resolution shell.
b The values of CC1/2 are for the highest resolution shell.
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1000 rpm. The calorimetric data were then analyzed with OriginLab

software (GE Healthcare).
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