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Abstract
Whether an odorant is perceived as pleasant or unpleasant (hedonic value) governs a range of crucial behaviors: foraging, 
escaping danger, and social interaction. Despite its importance in olfactory perception, little is known regarding how odor 
hedonics is represented and encoded in the brain. Here, we review recent findings describing how odorant hedonic value is 
represented in the first olfaction processing center, the olfactory bulb. We discuss how olfactory bulb circuits might contribute 
to the coding of innate and learned odorant hedonics in addition to the odorant’s physicochemical properties.

Keywords  Olfactory bulb · Hedonic value · Innate and learned valence · Odor preference · Behavior · Mouse · Rat · 
Zebrafish · Human

Introduction

When we smell an odorant, our reaction is often that “I like 
it” or “I don’t like it” (Richardson and Zucco 1989). This 
is known as odor hedonic value. A pleasant odorant has a 
positive hedonic value and may be predictive of a reward, 
whereas an unpleasant odorant has a negative hedonic value 
and may be predictive of a punishment. Odor hedonics can 
be unconditioned (innate) or learned and largely dominates 
olfactory perception. In addition to being the first aspect 
used to describe and categorize odors (Berglund et al. 1973; 
Schiffman et al. 1977), odor hedonic value is the most dis-
criminating dimension in multidimensional analyses of odor 
verbal descriptors (Khan et al. 2007; Moskowitz and Barbe 
1977; Zarzo 2008).

Odor hedonics is also the foundation of olfactory pleas-
ure. Hence, deterioration in odor hedonic value in normal 

aging (Joussain et al. 2013), parosmia (Walliczek-Dworschak 
and Hummel 2017) or neurodegenerative (Joussain et al. 
2015; Mrochen et al. 2016) and neuropsychiatric condi-
tions (Atanasova et al. 2010; Lombion-Pouthier et al. 2006; 
Moberg et al. 2003; Naudin et al. 2014; Walsh-Messinger 
et al. 2018) impairs the wellbeing of a significant number of 
the population. More generally, odor hedonic value governs 
approach/avoidance behavior in most vertebrates, crucially 
contributing to behaviors that are important for fitness and 
survival, such as feeding, social interaction and predator 
avoidance.

Odor hedonic value can be measured directly using 
subjective questionnaires in humans (Ferdenzi et al. 2016; 
Khan et al. 2007; Mandairon et al. 2009; Zarzo 2008) and/
or indirectly by assessing odor-evoked autonomic responses 
(Alaoui-Ismaïli et al. 1997; Bensafi et al. 2002; Brauchli et al. 
1995). In other vertebrates, odor hedonics is most commonly 
inferred from odorant investigation time (rodents (Jagetia 
et al. 2018; Kermen et al. 2016; Kobayakawa et al. 2007; 
Mandairon et al. 2009; Saraiva et al. 2016); fish (Hussain 
et al. 2013)), or from metrics quantifying species-specific 
appetitive and defensive behaviors (Frank et al. 2019; Kermen 
et al. 2020a; Mathuru et al. 2012; Yabuki et al. 2016). Despite 
some interindividual variability in odor hedonics in humans 
(Rouby et al. 2009), mice (Jagetia et al. 2018), and zebrafish 
(Kermen et al. 2020a), these psychophysical and behavioral 
approaches enabled species-specific odor preference 
gradients to be established at population level: from odorants 
with positive hedonic value (attractive, such as food odor) 
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to neutral and negative ones (aversive, such as rotten food, 
which is avoided), or danger signals (predator odor, which 
induces a panic response). Interestingly, odor preferences 
might be partially conserved among some vertebrates; for 
instance, odor investigation times in mice are positively 
correlated with pleasantness ratings in humans (Mandairon 
et al. 2009) (but see (Manoel et al. 2019)).

Given that odor hedonics is such a prominent aspect of 
olfactory perception in a broad range of species, abundant 
research has focused on understanding the neural underpin-
nings in the brain. Early research found neural representation 
of odor hedonics in the orbitofrontal cortex, insula, amyg-
dala, and piriform cortex (Bensafi et al. 2007; Grabenhorst 
et al. 2007; Katata et al. 2009; Winston et al. 2005). More 
recently, a number of studies in human and animal models 
converged in showing that representations of odor hedonic 
value can be found at all levels of the olfactory system 
(reviewed in (Mantel et al. 2019)), including early levels, 
the olfactory epithelium (Lapid et al. 2011), and the olfac-
tory bulb (OB) (Doucette et al. 2011; Kay and Laurent 1999; 
Kermen et al. 2016; Kobayakawa et al. 2007; Haddad et al. 
2010).

In this review, we discuss how odor hedonics is repre-
sented and processed by the OB circuits. After briefly intro-
ducing the anatomical and functional features of the OB 
circuits, we discuss (1) a possible topographic OB repre-
sentation of innate odor hedonic value, (2) how OB circuits 
represent and support learned odorant hedonic value, (3) 
how innate and learned odor hedonic values are integrated 
in OB circuits, and (4) the contribution of the OB in process-
ing complex signals composed of odorants with different 
hedonic values.

Olfactory bulb odor maps and plasticity

In vertebrates, information from olfactory sensory neu-
rons (OSNs) located in the nose converges onto the OB. 
There, OSN axons contact OB output neurons—mitral/
tufted cells in rodents and mitral/ruffled cells in fish—and 
local modulatory interneurons, within functional process-
ing units called glomeruli (Nagayama et al. 2014; Satou 
1990). As a result, odors are represented in the OB by 
odorant-specific spatiotemporal maps that are relatively 
consistent across individuals of the same species (Baier 
and Korsching 1994; Rubin and Katz 1999). These glo-
merular activity patterns are modulated by functionally 
diverse populations of pre- and post-synaptic OB interneu-
rons. Periglomerular interneurons mediate interglomerular 
interactions, enabling olfactory contrast enhancement and 
input decorrelation (Cleland and Sethupathy 2006; Wanner 
and Friedrich 2020). Deeper in the OB, the odor pattern is 
regulated by feedback loops between output neurons and 

granule cells that are involved in olfactory discrimination 
and memory (Grelat et al. 2018; Mori and Sakano 2011; 
Mori and Yoshihara 1995; Tan et al. 2010). Interestingly, 
approximately half of the bulbar interneurons are regen-
erated throughout life by adult neurogenesis, conferring 
additional plasticity to the system (Altman 1969; Imayoshi 
et al. 2008; Lledo and Valley 2016). In addition, bulbar 
odor activity patterns are further modulated via top-down 
input from brain regions involved in arousal, learning, and 
hedonics (Linster and Devore 2012; Padmanabhan et al. 
2019).

The function of spatially organized OB activity maps 
and how they guide odor perception remain unclear. A 
coarse chemotopic organization is observed at local scale in 
zebrafish (Friedrich and Korsching 1998) and rodents (Chae 
et al. 2019; Rubin and Katz 1999). OB input and output pat-
terns only partially relate to the odorants’ physicochemical 
properties, which suggests they may also represent contex-
tually and behaviorally relevant information, including fine 
odor discrimination (Linster et al. 2001) and odor hedon-
ics (Chae et al. 2019; Haddad et al. 2010). Hence, both the 
topographical organization of odor maps and the wide range 
of neural computations performed by OB circuits are able 
to represent and impart meaning to an odor according to 
species-specific evolutionary constraints, olfactory context 
and past experience, before it is passed on to higher brain 
centers.

Is there a topographic organization of innate 
odorant hedonics in the olfactory bulb?

In the fruit fly’s antennal lobe, aversive odorants activate 
output neurons innervating glomeruli located more medially 
than those recruited by attractive odorants (Knaden et al. 
2012; Seki et al. 2017). Hence, the hedonic value of an odor-
ant is first represented in the antennal lobe by spatially segre-
gated groups of glomeruli. A similar segregated arrangement 
of hedonic channels could also be present to some extent in 
the vertebrate OB (Fig. 1; Table 1).

The ventral domain of the vertebrate OB may be 
specialized in detecting appetitive and social odors. In the 
zebrafish, appetitive food-derived odors and attractive sex 
pheromones activate the ventrolateral and ventromedial 
OB, respectively (Kermen et  al. 2020b; Yabuki et  al. 
2016; Yoshihara 2014). Mice of both sexes are strongly 
attracted to the odor of opposite-sex urine, which activates 
mitral cells located in the ventral OB (Kang et al. 2009; 
Xu et al. 2005). In rats, systematic analysis of hundreds 
of 2-deoxyglucose glomerular activation patterns revealed 
that floral, woody, fruity and herbaceous odorants, which 
are rated as pleasant by humans, preferentially activate the 
rat ventral OB (Auffarth et al. 2011).
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In contrast, the dorsal OB, although it also responds to a 
large number of odorants with neutral hedonic value, plays a 
specific role in the processing of odorants signaling danger. 
The OSNs expressing trace amine-associated receptors, 
which mediate detection of spoiled flesh and/or predator 
odorants, project onto the dorsal OB in both zebrafish and 
mice (Dieris et al. 2017; Hussain et al. 2013; Pacifico et al. 
2012). In the zebrafish, aversive odorants signaling decaying 
flesh and fear-inducing alarm odorants mostly activate the 
dorsal and dorsolateral OB domains, respectively (Dieris 
et  al. 2017; Kermen et  al. 2020a; Mathuru et  al. 2012; 
Yoshihara 2014). Although spoiled food and predator 
odorants activate multiple glomeruli in both ventral and 
dorsal OB domains in rodents (Kobayakawa et al. 2007), 
the innate response to these odorants seems to rely solely 
on information conveyed by the dorsal domain. Optogenetic 
activation of a posterodorsal glomerulus responding to 
2,3,5-trimethyl-3-thiazoline (TMT; a component of fox 
odor) is sufficient to induce freezing (Saito et al. 2017), 
whereas disrupting the function of dorsal TMT-responsive 
glomeruli impairs TMT-induced aversive behavior (Cho 
et al. 2011; Saito et al. 2017). Additionally, mutant mice 
devoid of dorsal glomeruli can detect the smell of spoiled 
food or predators, but do not display the same innate aversive 
response to these odors as their wild-type conspecifics 
(Kobayakawa et al. 2007).

In line with the role of the dorsal OB in mediating 
responses to aversive odorants with strong ethological rel-
evance, unpleasant odorants described by human as “medici-
nal” (wintergreen, eucalyptus) or reminiscent of detergents 
strongly activate the dorsal OB in rats (Auffarth et al. 2011). 
Another study in mice showed that unlearned unattractive 
odorants with no particular ethological relevance activate 
the posterodorsal part of the glomerular layer to a greater 
extent than unlearned attractive odorants (Kermen et al. 
2016). Furthermore, this study revealed an additional level 
of OB functional organization, in which odor hedonic infor-
mation is represented along the anteroposterior axis of the 
ventral OB. The authors showed that unpleasant odorants 
evoked greater activity in the posteroventral OB, whereas 
pleasant odorants evoked greater activity in the anteroven-
tral area. Manipulation of this OB hedonic signature using 
optogenetics reverted the initial odorant preference (Kermen 
et al. 2016).

Are these segregated hedonic OB representations pre-
served in the projections to higher brain centers? In mice, 
depending on their anteroposterior location in the OB, mitral 
cells differentially target the olfactory tubercle (Imamura 
et al. 2011; Midroit et al. 2020), a brain region known to 
code odor hedonic value (Gadziola et al. 2015; Midroit 
et al. 2020). The cortical amygdala, which is a brain region 
involved in innate olfactory behavior (Root et al. 2014), pri-
marily receives dorsal OB input (Miyamichi et al. 2011). 

Moreover, the anterior olfactory nucleus receives topo-
graphically organized projections from the dorsoventral axis 
of the OB (Miyamichi et al. 2011). These topographically 
organized cortical projections suggest that certain cortical 
OB targets might utilize the spatial segregation of hedonic 
information within the OB.

Taken together, the above findings suggest that the ver-
tebrate OB is coarsely organized into nested axes that dif-
ferentially mediate behavioral response to odorants, depend-
ing on hedonic value and ethological relevance. It would 
be interesting to determine whether these hedonic axes are 
conserved in the OB of other species than mice, rats and 
zebrafish, reflecting a general organizational principle in 
vertebrate olfaction. Additional systematic studies of down-
stream OB projection patterns would help in understand-
ing how OB hedonic channels are distributed toward higher 
brain regions.

Representation of learned hedonic value 
in olfactory bulb circuits

How does the OB network contribute to learned odor 
hedonics? The general contribution of OB circuits to dif-
ferent types of olfactory learning (habituation, perceptual, 
and associative learning) has been extensively reviewed 
elsewhere (Lledo and Valley 2016; Ross and Fletcher 2019; 
Tong et al. 2014; Wilson and Sullivan 1994). Here, we spe-
cifically discuss how bulbar activity patterns are modified 
when odorant hedonic value switches from neutral to appeti-
tive or aversive, and the underlying mechanisms.

Early evidence, by unit recordings in the OB of anes-
thetized and awake mice performing an associative learn-
ing task, indicated that mitral cell firing rate is influenced 
by conditioned odor hedonic value (Doucette et al. 2011; 
Kay and Laurent 1999). Both appetitive and fear associative 
learnings durably modify behavioral response and odorant 
representation in the OB (at input, and possibly in the output 
layers) (Coopersmith et al. 1986; Fletcher 2012; Kass and 
McGann 2017; Sullivan and Leon 1987). Interestingly, fear 
learning—compared to appetitive learning—alters the ani-
mal’s defensive responses and the bulbar network in a way 
that is not odorant specific. Animals conditioned by foot 
shock developed a generalized fear response, not only to 
the learned odorants but also to odorants that were structur-
ally unrelated (Kass and McGann 2017; Ross and Fletcher 
2018). Paralleling this, olfactory fear learning enhances not 
only the representation of the learned odorant but also that 
of the unconditioned odorants in periglomerular interneu-
rons (Kass and McGann 2017) and output neurons (Ross 
and Fletcher 2018).

The OB network has a specificity in rodents: it is the 
target of adult neurogenesis that has been shown to be 
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involved in different types of olfactory learning. Adult 
neurogenesis underlies the acquisition and/or memory of 
associative appetitive learning (Alonso et al. 2012; Kermen 
et al. 2010; Mandairon et al. 2011; Mouret et al. 2009; Sultan 
et al. 2010) and fear conditioning (Valley et al. 2009). While 
a large number of studies focused on how adult-born neurons 
support olfactory learning, it remains unclear whether adult 
OB neurogenesis is involved in the acquisition of a new odor 
hedonic value after conditioning.

Different olfactory bulb neuronal 
populations support innate and learned 
hedonic value, respectively

How are innate and learned odor hedonics represented in 
OB circuits? Recent studies indicate that innate responses to 
odorants signaling danger and learned appetitive responses 
to novel odorants might be mediated by developmentally 
distinct populations of OB neurons. Innate aversion to preda-
tor odorants appears to depend on OB circuits formed in 
early development, around birth. In adult mice, fear response 

to the predator odor TMT was abolished by inactivation of 
subsets of perinatally born, but not adult-born, olfactory 
neurons (Muthusamy et al. 2017; Sakamoto et al. 2011). 
Perinatal exposure to aversive odorants disturbs aversion 
behavior later in life, which indicates that innately aversive 
odorants exhibit a very restricted window of perinatal plas-
ticity (Qiu et al. 2020a), after which their hedonic value 
cannot be altered. In contrast, detection of novel odorants 
paired with a positive reward is resilient to early-born neuron 
silencing, but impaired by inactivation of subpopulations of 
adult-born granule cells (Muthusamy et al. 2017). Similar 
lines of evidence show that the activity of adult-born but not 
perinatally born granule cells contains information about an 
odor’s learned positive hedonic value (Grelat et al. 2018). 
This differential involvement of early- and late-born neurons 
in learned odor hedonics could be explained by the fact that 
late-born but not early-born granule cells display a rapid 
form of structural plasticity (Breton-Provencher et al. 2016).

Taken together, these studies support the idea that innate 
(predator) odorants are processed via hardwired circuits, 
established during early life stages and with a narrow win-
dow of plasticity, whereas the appetitive learning of novel 

Fig. 1   Spatial olfactory bulb domains activated by aversive and appetitive 
odorants in the mouse and the zebrafish Colored areas correspond to 
the olfactory bulb domain either responding to an odorant, or mediating 
the behavioral response to that odorant. Red areas represent domains 
responding to predator odors. Magenta areas represent domains 
responding to aversive spoiled food or decaying flesh. Green areas 
represent domains responding to food odors. Blues areas represent 
domains responding to putative social cues released by conspecifics. 
These maps are based on previously published works that are listed in 

Table 1. In the mouse olfactory bulb, the grayscale gradient represents 
zones of the granule cell layer that are preferentially activated by 
attractive versus unattractive odors (Kermen et  al. 2016). Note that on 
this lateral view of the olfactory bulb, no distinction is made between 
domains located in the medial and lateral halves. nucl, nucleotides; 
TMT, 2,3,5-trimethyl-3-thiazoline; 2PEA, 2-phenylethylamine; pgf2α, 
prostaglandin F2α; 17,20 PS, 17alpha, 20beta-dihydroxy-4-pregnene-3-
one-20-sulfate
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odors is flexibly supported throughout life via remodeling 
of OB response by plastic adult-born neurons.

Odor hedonics in realistic conditions: 
olfactory bulb processing of hedonically 
complex odor blends

In natural situations, odors often consist of hedonically com-
plex sensory signals comprising both positive and negative 
hedonic components. In order to survive, animals need to 
make rapid behavioral decisions based on these conflict-
ing sensory inputs. For example, it might be evolutionarily 
advantageous to detect the odor of a predator even in pres-
ence of appetitive feeding or reproductive olfactory cues. 
Despite a few attempts at predicting the hedonic value of 
odorant mixtures in humans (reviewed in Thomas-Danguin 
et al. (2014)), surprisingly little is known regarding the inte-
gration of ethologically relevant odorants with contrasting 
hedonic values in the OB circuits.

The neural representation of complex odor blends at 
different stages of the olfactory system primarily involves 
component suppression, which can result in a new percept, 
qualitatively different from the individual components, or 
in the dominance of one odorant over the others (Thomas-
Danguin et al. 2014). Although suppressive interactions 
between odorants can arise from peripheral effects in the 
nose, a large part originates from local OB circuit compu-
tations (Economo et al. 2016; Linster and Cleland 2004; 

Qiu et al. 2020b; Tabor et al. 2004). In the OB, interac-
tions have been documented between odorants of similar or 
opposite hedonic value. The odor of fennel or clove, which 
are spices commonly used by humans to mask the flavor of 
spoiled food, suppresses the activity of spoiled food odorant-
responsive mitral cells in mice (Takahashi et al. 2004). In 
the zebrafish, appetitive food extracts suppress mitral cell 
response to an attractive reproductive pheromone (Kermen 
et al. 2020b), which indicates that OB circuits might favor 
the detection of sensory cues relevant to immediate rather 
than delayed physiological needs. Interestingly, odorants 
with negative hedonic value, such as the predator odorants 
TMT and 2-phenylethylamine (a component of bobcat urine 
which is avoided by rats and mice (Ferrero et al. 2011)), 
systematically block or override mice’s behavioral attrac-
tion to appetitive odorants, and result instead in neutral or 
avoidance responses (Saraiva et al. 2016). In addition, when 
predator odorants are presented as a target stimulus atop a 
continuous neutral hedonic odor background, the resulting 
OB and behavioral responses are highly correlated to those 
elicited by the predator odorants alone (Qiu et al. 2020b). 
This indicates that predator odorants are relatively well pro-
tected against suppression by other odorants and dominate 
behavioral outcome. Since OB representations of target 
odorants without ethological relevance can on some occa-
sions be completely masked by the background (Vinograd 
et al. 2017), one hypothesis is that the animal’s ability to 
detect an odorant within an olfactory background depends 
on the hedonic value of the target odorant. Whether the 

Table 1    List of odorants and references used in Fig. 1

Note that the list of bibliographic references used to map the OB domain activated by a given odorant is not exhaustive. TMT, 2,3,5-trimethyl-
3-thiazoline; 2PEA, 2-phenylethylamine; pgf2α, prostaglandin F2α; 17,20 PS, 17alpha, 20beta-dihydroxy-4-pregnene-3-one-20-sulfate

Odorants Odor category Species References

Cadaverine Aversive decay odor Zebrafish (Dieris et al. 2017)
Zebrafish blood Alarm odor Zebrafish (Kermen et al. 2020a)
Zebrafish skin extract Alarm cue Zebrafish (Chia et al. 2019; Diaz-Verdugo et al. 2019; Kermen et al. 2020a; Mathuru et al. 

2012; Yoshihara 2014)
Amino acids Attractive food odor Zebrafish (Friedrich and Korsching 1998; Koide et al. 2009; Tabor et al. 2004; Yaksi et al. 

2009)
Food extract Attractive food odor Zebrafish (Kermen et al. 2020b,a; Tabor et al. 2004)
Nucleotides Attractive food odor (Friedrich and Korsching 1998; Wakisaka et al. 2017)
Pgf2α; 17,20 PS Reproductive pheromones Zebrafish (Dieris et al. 2017; Friedrich and Korsching 1998; Kermen et al. 2020b; Yabuki 

et al. 2016)
Bile acids Putative social odor Zebrafish (Friedrich and Korsching 1998; Kermen et al. 2020a; Koide et al. 2009; Yaksi 

et al. 2009)
TMT Predator odor Mouse (Cho et al. 2011; Igarashi et al. 2012; Kobayakawa et al. 2007; Saito et al. 2017)
2PEA Predator odor Mouse (Ferrero et al. 2011)
Mouse urine Attractive conspecific odor Mouse (Kang et al. 2009; Martel and Baum 2007; Martel et al. 2007; Schaefer et al. 

2001; Xu et al. 2005)
Pentanal; 

2-methylbutyric 
acid; alkylamines

Spoiled food Mouse (Igarashi et al. 2012; Kobayakawa et al. 2007; Takahashi et al. 2004)
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representation of odorants with negative hedonic value is 
specifically preserved in a noisy olfactory context, or if it 
is rather a general feature of salient odorants important for 
survival (Vinograd et al. 2017), remains unknown and is an 
exciting area for future research.

Studying the organization of interglomerular inhibitory 
circuits (i.e., the periglomerular and short axon cell net-
works), which are thought to mediate suppressive interac-
tions between odorants, could shed light on how the OB 
integrates hedonically complex odors. Recent anatomical 
and functional evidence shows that interglomerular inhibi-
tion, far from being randomly organized, is odor and/or glo-
merulus specific in zebrafish (Wanner et al. 2016) and mouse 
(Economo et al. 2016) OBs, which could favor inhibition 
between processing channels with different hedonic value. In 
particular, some murine glomeruli are suppressed by a large 
number of odorants, whereas other glomeruli are particu-
larly resilient to suppression (Economo et al. 2016). Stud-
ies investigating the odor tuning of resilient and suppressed 
glomeruli with respect to ethological relevant stimuli would 
help to determine whether interglomerular suppression con-
tributes to the representation of hedonically complex signals, 
as reported in the fruit-fly’s antennal lobe (Berck et al. 2016; 
Mohamed et al. 2019).

Taken together, these studies show that nonlinear inter-
actions within OB circuits between components of hedoni-
cally complex odor signals can support biased behavioral 
response to a specific component. Nonlinear interactions in 
the vertebrate OB may thus play an important and under-
explored role in hedonic perception in natural conditions.

Conclusion

Several representations of odor hedonics are present in the 
OB and seem to recruit different circuit mechanisms and/or 
topographical locations according to whether the odorant is 
ethologically relevant or not and whether the hedonic value 
was innate or learned. Overall, these studies critically dem-
onstrate the crucial contribution of OB circuits in attributing 
hedonic value to odorants throughout life. To provide a bet-
ter understanding of these differences, future studies should 
focus on the comparison between innate hedonic value of 
odorants with or without biological significance and learned 
odor hedonic value.
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