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Abstract. Drug‑induced cardiotoxicity is one of the main 
causes of drug failure, which leads to subsequent withdrawal 
from pharmaceutical development. Therefore, identifying 
the potential toxic candidate in the early stages of drug 
development is important. Human induced pluripotent stem 
cell‑derived cardiomyocytes (hiPSC‑CMs) are a useful tool 
for assessing candidate compounds for arrhythmias. However, 
a suitable model using hiPSC‑CMs to predict the risk of 
torsade de pointes (TdP) has not been fully established. The 
present study aimed to establish a predictive TdP model based 
on hiPSC‑CMs. In the current study, 28 compounds recom‑
mended by the Comprehensive in vitro Proarrhythmia Assay 
(CiPA) were used as training set and models were established 
in different risk groups, high‑ and intermediate‑risk versus 
low‑risk groups. Subsequently, six endpoints of electrophysi‑
ological responses were used as potential model predictors. 
Accuracy, sensitivity and area under the curve (AUC) were 
used as evaluation indices of the models and seven compounds 
with known TdP risk were used to verify model differentia‑
tion and calibration. The results showed that among the seven 
models, the AUC of logistic regression and AdaBoost model 
was higher and had little difference in both training and test 
sets, which indicated that the discriminative ability and model 
stability was good and excellent, respectively. Therefore, 
these two models were taken as submodels, similar weight 
was configured and a new TdP risk prediction model was 
constructed using a soft voting strategy. The classification 
accuracy, sensitivity and AUC of the new model were 0.93, 0.95 
and 0.92 on the training set, respectively and all 1.00 on the 

test set, which indicated good discrimination ability on both 
training and test sets. The risk threshold was defined as 0.50 
and the consistency between the predicted and observed results 
were 92.8 and 100% on the training and test sets, respectively. 
Overall, the present study established a risk prediction model 
for TdP based on hiPSC‑CMs which could be an effective 
predictive tool for compound‑induced arrhythmias.

Introduction

Drug‑induced arrhythmias are new or exacerbated existing 
arrhythmias in patients during or after drug treatment and are 
the most common clinical adverse cardiovascular events (1). 
Drug‑induced TdP is serious and fatal and multiple compounds 
were recalled in the 1990s and early 2000s due to TdP (2). As 
such, drug‑related arrhythmia is one of the main causes of drug 
withdrawal and drug recalls and how to predict drug‑induced 
TdP is a key problem in drug research and development (3).

Human ether‑a‑go‑go related gene (hERG) block and QT 
prolongation are thought to be the main causes of TdP (4). 
Consequently, the International Council on Harmonization of 
Technical Requirements for Registration of Pharmaceuticals 
for Human Use issued guidelines S7B and E14 in 2005 (5). 
S7B recommends in  vitro assays to evaluate whether 
compounds and their metabolites block hERG currents, while 
E14 focuses on the overall clinical QT monitoring to determine 
whether the drugs prolong QT (6). These two are currently 
the main guidelines for the safety evaluation of drug‑induced 
arrhythmias.

The implementation of these two guidelines effectively 
reduces cardiotoxicity risk in the later drug development 
stage  (7). However, hERG block and QT prolongation are 
sensitive but not specific to TdP risk identification  (8). 
Cardiomyocyte repolarization is a complex process resulting 
in multiple time‑ and voltage‑dependent ion flows across 
membrane (9). In addition, hERG is an important outward 
potassium current during repolarization and hERG block 
can lead to prolonged repolarization and prolonged QT 
interval (4). Nevertheless, it does not induce QT prolongation 
if a compound, for instance verapamil, blocks both outward 
potassium and inward calcium currents  (10). Therefore, 
drug‑induced hERG block cannot be definitively proven to be 
exclusively associated with QT prolongation or TdP (11).
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The Food and Drug Administration (FDA) launched the 
CiPA program in 2013 that proposed a new mechanism and 
model information approach to evaluate cardiac safety of new 
drugs (12). The initiative focuses on the effects of drugs on 
multiple ion channels using computer models to simultane‑
ously grade the risk of arrhythmias along with a validation 
assessment using hiPSC‑CMs and evaluates the expected 
risk of drugs in phase I of clinical study (13). A key CiPA 
principle is that ventricular repolarization and TdP depend 
on changes in the equilibrium of ion flows in and outside 
the cell membrane and is not solely on hERG blockade (14). 
Moreover, hiPSC‑CMs are more suitable for the evaluation of 
arrhythmias compared with the noncardiac myocytes stably 
transfected with the human hERG gene. hiPSC‑CMs express 
cardiocontractile proteins and functional ion channels, which 
ensure that the cells simulate the function of the human 
conduction system (15,16). Thus, it has become the preferred 
model to predict TdP (17).

Previous studies of TdP prediction models have mainly 
been based on the electrophysiological effects of compounds 
on hiPSC‑CMs, commonly employing regression‑ and 
machine learning‑based methods  (18). Ando  et  al  (17) 
established a regression‑based risk prediction model based 
on field potential duration (FPD) prolongation and early 
afterdepolarization, which has been used for risk score predic‑
tion of TdP risk. In addition, da Rocha et al (19) established 
a regression‑based TdP risk model based on the Voltage 
Sensitive Dye Assay and used only a single predictor, action 
potential (AP). Raphel et al  (20) constructed an algorithm 
based on the modelling dictionary and greedy optimization to 
predict the risk of proarrhythmia using hiPSC‑CMs and used 
FPD prolongation as a model predictor. The prediction model 
published in the 2018 FDA report included seven predictors 
but only used one algorithm, LR model (21). Single predictor 
models are prone to false positive and false negative results 
in the application and a single algorithm, especially logical 
regression, which may not be able to identify some significant 
non‑linear relations and detect the correlation between predic‑
tive variables, is prone to result in a false‑negative practical 
application (22). Machine learning techniques overcome the 
shortcomings of traditional regression‑based methods and 
have excellent performance in predictive models (23). In addi‑
tion, machine learning can predict accurately using multiple 
predictors following nonlinear links and interaction between 
multiple variables (24).

In the present study, the effects of compounds on the elec‑
trophysiology of synergistically beating 2D cardiomyocytes on 
a label‑free cardiac safety screening device were examined. A 
total of 28 CiPA compounds (eight high, 11 intermediate and nine 
low TdP risk) were used as training set. Overall, six endpoints 
of electrophysiological responses were used as model predictors 
and seven models were selected. Subsequently, two models [LR 
and Adaptive Boosting (AdaBoost)] with high accuracy and 
good stability were selected as sub‑models, establishing a new 
TdP prediction model with higher accuracy and sensitivity. This 
model is predicted to reduce the impact of differences in species 
and reduce the evaluation shortcomings caused by the use of 
hERG inhibition as a single indicator. This model is expected to 
be used for preclinical drug‑induced TdP prediction and also for 
the re‑evaluation of post‑marketing drugs.

Materials and methods

hiPSC‑CMs culture. hiPSC‑CMs (cat. no. CA2201106; Beijing 
Cellapy Biotechnology Co., Ltd.) were cryopreserved in liquid 
nitrogen (approx. ‑196˚C) for ~30 days after differentiation. The 
cardiomyocytes used in the present study consist mainly of ventric‑
ular myocytes with autonomous electrophysiological activity, but 
also contain a small proportion of atrial myocytes and sinoatrial 
node‑like cells. Cell culture was conducted following the manufac‑
turer's protocols and four batches of hiPSC‑CMs were used. Briefly, 
5 µl fibronectin (50 µg/ml, cat. no. F2006; Sigma‑Aldrich; Merck 
KGaA) was added to the central electrode of the CardioExcyte 96 
sensor plates (cat. no. 020730; Nanion Technologies GmbH), then 
the plate was incubated at 37˚C for 1‑1.5 h. The cells were then 
thawed in a 37˚C water bath and centrifuged at 200 x g for 5 min 
at room temperature. The supernatant was later discarded and the 
cell concentration was adjusted to 4‑5x104 cells/ml. Fibronectin 
coating solution from the sensor plate was discarded and 5 µl of cell 
suspension was added into each well before being incubated for 1 h 
at 37˚C, 5% CO2. Lastly, 200 µl of medium (cat. no. CA2015002; 
Cellapy; Beijing Saibei Biotechnology Co., Ltd.) was added to each 
well and the plate was cultured for 14‑21 days at 37˚C, 5% CO2. 
The medium was replaced 48 h after plating and medium changing 
was performed every other day.

Test compounds. In total, 35 compounds were used (17 were 
purchased from Sigma‑Aldrich, Merck KGaA; 16 were made 
by medicinal chemists at the National Institute for Food 
and Drug Control; one from Selleck Chemicals; and one 
from MedChemExpress). All compounds were dissolved 
in DMSO or H2O2 to prepare the stock solutions, which 
were at least 1,000  times more concentrated compared 
with the highest concentration used experimentally (Table SI).

Myocardial cell activity, beat frequency and field potential detec‑
tion. The sensor plate was placed on the CardioExcyte 96 and 
incubated at 37˚C for 1‑2 days before drug administration. The 
medium was changed on the day of drug administration. Different 
compounds (100 µl) were added 3‑4 h after culture medium change 
and 0.1% DMSO was set as the negative control for each plate. The 
data collection interval was 30 min within 2 h, the interval then 
changed to 2 h. Thus, the data collection period was >24 h. For 
each experiment, three to four concentrations were set for each 
compound and three duplicates were set for each concentration. 
Each experiment was repeated in duplicate or quadruplicate. Data 
for nicotinamide and mannitol were from a single experiment and 
eight replicates were set for each concentration. The main indices 
were amplitude (Ampl, the representative amplitude traces were 
shown in Fig. S1), beats per minute (BPM) and FPD. FPD was 
corrected to FPDc by Fridericia's formula:

FPD, Field potential duration; ISI, Inter‑spike interval.

Recording of arrhythmia‑like waveforms. Asakura et al (25) 
recorded the compound‑induced arrhythmia waveforms; an 
arrhythmia‑like waveform was observed and recorded as 1 
and without arrhythmia‑like waveforms was recorded as 0.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  25:  61,  2023 3

Data processing. CardioExcyTecontrol (version  1.4.5.6; 
Nanion Technologies GmbH) software was used to process 
the data. The negative control, 0.1% DMSO, was used as the 
baseline to calibrate the online analysis parameters. Ampl, 
BPM and FPDc (Corrected FPD) data were then normalized 
to preadministration data. The FPDc change was calculated 
according to the following formula:

Model establishment and evaluation. In total, 28 CiPA 
compounds were used as the training set. In addition, a 
prediction model of TdP risk was constructed following the 
physiological effects of these compounds on hiPSC‑CMs. effec‑
tive therapeutic plasma concentration (ETPC), arrhythmia‑like 
events, drug concentration (folds over ETPC when drug‑induced 
arrhythmias were first observed), type of FPDc change, the 
degree of change in FPDc and drug concentration (folds over 
ETPC) at which the change of FPDc was observed (Table I) 
were used as model predictors. Based on these six predictors, 
seven models were established in the training set for high‑ and 
intermediate‑risk compounds versus low‑risk compounds. 
The seven models were LR, Support Vector Machine (SVM), 
k‑nearest neighbor algorithm (KNN), decision tree (DT), 
AdaBoost, CatBoost and Random Forest (RF).

Accuracy, recall rate or sensitivity and AUC were used to 
evaluate the ability to distinguish capacity, where the larger the 
index value is, the higher the prediction ability of the model 
is (26,27). Seven compounds with known TdP risk were used 
as the test set to evaluate the calibration capacity‑defined as the 
consistency between predicted and observed results (28). The 
models with excellent comprehensive performance and good 
stability in the training and test data sets were selected and the 
voting classifier strategy was then used for model training. Each 
sub‑model was assigned a similar weight and the new voting clas‑
sifier (VC) prediction model was established through soft voting; 
the weight here refers to the relative importance of the indicator 
in the overall evaluation. The VC model is the combination of 
two classifiers that combined the predicted probabilities for each 
classifier and the highest probability is then voted (Fig. 1).

Statistical analysis. Data are expressed as the mean ± standard 
deviation. SPSS 26.0 (IBM Corp) was used to perform 
Pearson's and Spearman's correlation analysis, P<0.05 was 
considered to indicate a statistically significant difference. 
Python 3.8.0 (python.org/) and Prism 8.0 (GraphPad Software, 
Inc.) were used to establish prediction models and plot data.

Results

Effects of compounds on myocardial cell activity and beating 
frequency. Ampl is an impedance parameter, which is a key 
parameter for the estimation of cell viability (29). In total, four 
out of eight high TdP risk compounds resulted in decreased cell 
viability (Fig. 2), among which, disopyramide, ibutilide and 
quinidine could cause decreased cell activity at concentrations 
less than ETPC. Moreover, nine (Astemizole, Chlorpromazine, 
Cisapride, Clarithromycin, Droperidol, Ondansetron, 
Pimozide, Risperidone and Terfenadine) out of eleven 
and eight (Diltiazem, Loratadine, Metoprolol, Mexiletine, 

Nifedipine, Nitrendipine, Tamoxifen and Verapamil) out of 
nine intermediate and low TdP risk compounds, respectively, 
decreased the activity of cardiomyocytes at a concentration 
higher than ETPC (Figs. 3 and 4, Table SII). In addition, three 
(Amiodarone, Methadone and Nicotinamide) out of seven of 
the non‑CiPA compounds decreased the cell activity of cardio‑
myocytes at concentrations greater than ETPC (Fig. 5).

BPM was used to evaluate the effect of compounds on 
the contractile function of the cardiomyocytes. Of the high 
TdP risk compounds, six out of eight lead to a decrease in 
BPM (Fig. 2). In addition, ibutilide, quinidine, sotalol and 
vandetanib all led to BPM decrease at concentrations less 
than ETPC. In the intermediate TdP risk compounds set, nine 
(Astemizole, Chlorpromazine, Cisapride, Clarithromycin, 
Droper idol,  Ondanset ron,  Pimozide,  Risper idone 
and Terfenadine) out of eleven were found to decrease BPM 
(Fig.  3, Table  SⅡ), with only domperidone concentration 
having been lower than ETPC. BPM was decreased by four 
(Diltiazem, Metoprolol, Mexiletine and Tamoxifen) out 
of nine low TdP risk compounds at concentrations greater than 
ETPC (Fig. 4, Table SⅡ). Furthermore, four (Amiodarone, 
Moxifloxacin, Methadone and Nicotinamide) out of seven of 
the non‑CiPA compounds decreased BPM at a concentration 
greater than ETPC, excluding nicotinamide (Fig. 5).

By contrast, two out of eight, two out of eleven and five out 
of nine compounds with high, intermediate and low TdP risk, 
respectively, led to increases in BPM (Figs. 2‑4). In addition, 
the incidence of arrhythmia and FPDc prolongation was 57.89 
and 84.21%, respectively, when BPM was decreased (Table Ⅱ). 
Spearman correlation analysis showed that reducing BPM was 
significantly correlated with the occurrence of FPDc prolonga‑
tion (ρ=0.438, P<0.01). However, the incidence of arrhythmia and 
FPDc prolongation were 66.67 and 44.44%, respectively (Table Ⅱ), 
when BPM was increased. However, no relationship was noted 
between BPM increase, arrhythmia and FPDc prolongation.

Effect of compounds on cardiomyocyte rhythm. Of the high TdP 
risk compounds, seven (Azimilide, Bepridil, Disopyramide, 
Ibutilide, Quinidine, Sotalol and Vandetanib) out of eight 
were observed to induce arrhythmia‑like waveforms (Table I). 
Similarly, ibutilide was observed to cause arrhythmia‑like 

Figure 1. Flow chart depicting the prediction model with soft voting. LR, 
logistic regression; SVM, support vector machine; KNN, k‑nearest neighbor 
algorithm; DT, decision tree; RF, random forest. 
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waveforms at 10% of the ETPC, which was the minimum 
multiple of the ETPC. Bepridil induced arrhythmia‑like 
waveforms at 312.5 times of the ETPC, which was the highest 
multiple of the ETPC. No arrhythmia‑like waveforms were 
observed in dofetilide up to 150 times of the ETPC (Table Ⅰ).

In the intermediate TdP risk compound group, seven 
(Astemizole, Clozapine, Domperidone, Droperidol, 
Ondansetron, Pimozide and Risperidone) out of eleven caused 
arrhythmia‑like waveforms (Table I). Ondansetron induced 

arrhythmia‑like waveforms at 81% of the ETPC, which was the 
minimum multiple of the ETPC. In addition, arrhythmia‑like 
waveforms were observed with risperidone at 555.6 times of 
the ETPC, which was the highest multiple times of the ETPC. 
For the other four compounds, no arrhythmia‑like waveforms 
were observed at the tested concentrations (Table Ⅰ).

Among the low TdP risk compounds, ranolazine, nitrendipine 
and tamoxifen were observed with arrhythmia‑like waveforms 
at 15.4, 331.1 and 142.9 times of the ETPC, respectively. Only 

Table I. Model predictors for all compounds tested.

TdP		  ETPC,	 	 Arrhythmia‑		  FPDc	 %change
risk	 Compounds	 µM	 ETPC1	 like Events	 ETPC2	 changes	 in FPDc

H	 Azimilide	 7.0x10‑2	 7.1x10‑1	 1	 7.1x10‑1	 1	 35
H	 Bepridil	 3.2x10‑2	 3.1x102	 1	 9.4x10‑1	 3	 ‑11
H	 Disopyramide	 7.0x10‑1	 1.4x10‑1	 1	 1.4x10‑1	 1	 65
H	 Dofetilide	 2.0x10‑3	 ‑	 0	 1.5x101	 1	 30
H	 Ibutilide	 1.0x10‑1	 1.0x10‑1	 1	 1.0x10‑1	 1	 77
H	 Quinidine	 3.0x10 	 3.0x10‑2	 1	 3.0x10‑2	 1	 33
H	 Sotalol	 1.5x101	 2.0x10 	 1	 7.0x10‑2	 1	 59
H	 Vandetanib	 3.0x10‑1	 3.0x10‑2	 1	 3.3x101	 1	 53
I	 Astemizole	 3.0x10‑4	 3.3x102	 1	 3.3x10	 1	 50
I	 Chlorpromazine	 3.5x10‑2	 ‑	 0	 8.7x101	 1	 57
I	 Cisapride	 2.6x10‑3	 ‑	 0	 1.2x103	 2	 10
I	 Clarithromycin	 1.2x10 	 ‑	 0	 8.0x10‑2	 3	 ‑43
I	 Clozapine	 7.1x10‑2	 1.4x102	 1	 4.2x10‑1	 1	 65
I	 Domperidone	 2.0x10‑2	 1.5x10 	 1	 1.5x101	 1	 45
I	 Droperidol	 1.6x10‑2	 1.9x101	 1	 6.3x10	 1	 38
I	 Ondansetron	 3.7x10‑1	 8.1x10‑1	 1	 8.1x10	 2	 9
I	 Pimozide	 4.3x10‑4	 2.3x10 	 1	 2.3x10	 1	 49
I	 Risperidone	 1.8x10‑3	 5.6x102	 1	 5.6x101	 1	 35
I	 Terfenadine	 2.9x10‑4	 ‑	 0	 3.5x103	 2	 10
L	 Diltiazem	 1.3x10‑1	 ‑	 0	 2.3x10‑1	 3	 ‑16
L	 Loratadine	 4.5x10‑4	 ‑	 0	 6.7x101	 3	 ‑19
L	 Ranolazine	 1.9x10 	 1.5x101	 1	 5.1x10‑1	 1	 27
L	 Metoprolol	 1.8x10 	 ‑	 0	 6.0x10‑2	 1	 60
L	 Mexiletine	 2.5x10 	 ‑	 0	 1.2x10	 2	 10
L	 Nifedipine	 7.7x10‑3	 ‑	 0	 1.3x102	 3	 ‑10
L	 Nitrendipine	 3.0x10‑3	 3.3x102	 1	 9.9x10‑1	 3	 ‑51
L	 Tamoxifen	 2.1x10‑2	 1.4x102	 1	 1.4x101	 3	 ‑46
L	 Verapamil	 4.5x10‑2	 ‑	 0	 ‑	 0	 0
Non	 Amiodarone	 7.0x10‑4	 ‑	 0	 1.4x104	 1	 25
Non	 Flecainide	 7.5x10‑1	 1.3x10 	 1	 1.3x10‑1	 1	 41
Non	 Moxifloxacin	 3.6x10 	 ‑	 0	 8.4x101	 1	 40
Non	 E4031	 8.4x10‑3	 ‑	 0	 1.2x10‑1	 3	 ‑33
Non	 Methadone	 9.9x10‑1	 ‑	 0	 2.0x10‑1	 1	 51
Non	 Nicotinamide	 1.2x103	 ‑	 0	 4.0x10‑2	 1	 37
Non	 Mannitol	 2.4x103	 ‑	 0	 2.0x10‑5	 1	 33

TdP, torsades de pointes; H, high; I, intermediate; L, low; Non, non‑Comprehensive in vitro Proarrhythmia Assay; ETPC, effective thera‑
peutic plasma concentration; ETPC1, drug concentration (folds over ETPC) when drug‑induced arrhythmia‑like events were first observed. 
Arrhythmia‑like events an arrhythmia waveform was observed and recorded as 1, no arrhythmia waveform was recorded as 0. ETPC2, drug 
concentration (folds over ETPC) at which the FPDc change was observed. FPDc changes the type of FPDc change, 1 ≥30%, 2 ≥10%, 3 <0, 
0=no change.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  25:  61,  2023 5

Figure 2. Effects of high torsades de pointes risk compounds on Ampl and BPM. Y‑axis on the left represents the change in Ampl. Y‑axis on the right represents 
the change in BPM. Concentrations are expressed on a logarithmic scale and the first data point is from zero concentration (0.1% DMSO). Ampl, amplitude; 
BPM, beats per minute; ETPC, effective therapeutic plasma concentration. 
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flecainide was observed with arrhythmia‑like waveforms at 
1.33 times of the ETPC of the seven non‑CiPA compounds, 
while no arrhythmia‑like waveforms were observed in other 
compounds (Table I).

Effect of compounds on FPDc of cardiomyocytes. Only 
bepridil was observed to not induce FPDc prolongation among 
the eight high TdP risk compounds, with the other seven 
compounds showing FPDc prolongation in hiPSC‑CMs after 
administration (Fig. 6, Table Ⅰ), among which, dofetilide and 
vandetanib caused FPDc prolongation at concentrations higher 
than ETPC. Moreover, azimilide, disopyramide, ibutilide, 
quinidine and sotalol were observed with FPDc prolongation 
at concentrations lower than ETPC (Fig. S2).

Only clarithromycin had no FPDc prolongation among the 
eleven intermediate TdP risk compounds, while the remaining 
ten compounds were observed with FPDc prolongation (Fig. 6, 
Table Ⅰ), of which, clozapine's concentration was 42% of the 

ETPC. The other nine compounds' concentrations were higher 
compared with the ETPC (Fig. S3).

Among the nine compounds with low TdP risk, rano‑
lazine (51% of the ETPC), metoprolol (6% of the ETPC) 
and mexiletine (1.2 times of the ETPC) could induce FPDc 
prolongation, while no FPDc prolongation was observed 
in the remaining six compounds (Figs. 6 and S4, Table Ⅰ). 
The seven non‑CiPA compounds, except for E4031, were 
all observed to cause FPDc prolongation (Figs. 6 and S5; 
Table Ⅰ).

Model establishment and validation
Model selection. The classification accuracy of LR, 

SVM and DT was 0.86, 0.79 and 0.93, respectively, when the 
training set was used for modeling; the recall rates of these 
three models for intermediate‑ and high‑risk compounds 
were 0.89, 0.74 and 0.89, respectively; and the AUC were 0.84, 
0.81 and 0.95, respectively (Table SⅢ). The classification 

Figure 3. Effects of intermediate torsades de pointes risk compounds on Ampl and BPM. Y‑axis on the left represents the change in Ampl. Y‑axis on the right 
represents the change in BPM. Concentrations are expressed on a logarithmic scale and the first data point is from zero concentration (0.1% DMSO). Ampl, 
amplitude; BPM, beats per minute; ETPC, effective therapeutic plasma concentration. 
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accuracy of KNN, AdaBoost, CatBoost and RF were all 1.00 
and the recall rates in the training set were all 1.00, and all the 
AUC were 1.00 (Table SⅢ). According to the performance 

of each model in the training and test sets (Table Ⅲ), a high 
AUC value indicates a strong distinguishing ability of the 
model, while a small difference in AUC, observed between 

Table II. Correlation of BPM with Arrhythmia‑like Events and FPD prolongation

		  Number of	 Number of FPD
TdP risk	 BPM changes	 Arrhythmia‑like Events	 prolongation

High	 Reduced (n=6)	 5	 6
	 Elevated (n=2)	 2	 1
Intermediate	 Reduced (n=9)	 5	 8
	 Elevated (n=2)	 2	 2
Low	 Reduced (n=4)	 1	 2
	 Elevated (n=5)	 2	 1
Proportion of Arrhythmia‑like			   57.89%
events due to reduced BPM
Proportion of Arrhythmia‑like			   66.67%
events due to elevated BPM
Proportion of FPD prolongation			   84.21%
due to the reduced BPM
Proportion of FPD prolongation			   44.44%
due to the elevated BPM

TdP, torsades de pointes.

Figure 4. Effects of low torsades de pointes risk compounds on Ampl and BPM. Y‑axis on the left represents the change in Ampl. Y‑axis on the right represents 
the change in BPM. Concentrations are expressed on a logarithmic scale and the first data point is from zero concentration (0.1% DMSO). Ampl, amplitude; 
BPM, beats per minute; ETPC, effective therapeutic plasma concentration. 
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Figure 5. Effects of non‑CiPA compounds on Ampl and BPM. Y‑axis on the left represents the change in Ampl. Y‑axis on the right represents the change in 
BPM. Concentrations are expressed on a logarithmic scale and the first data point is from zero concentration (0.1% DMSO). Ampl, amplitude; BPM, beats per 
minute; ETPC, effective therapeutic plasma concentration. 
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the training and the test sets, indicates good model stability. 
According to the discriminative ability and stability, LR and 
AdaBoost were the two models with best performance in both 
the training and test sets and were selected as sub‑models 
going forward. Each sub‑model is assigned a similar weight 
and the new prediction model (VC model) is established 
through soft voting.

Model predictors evaluation. Arrhythmia‑like waveforms 
and FPDc prolongation the two most important model‑
ling indicators. Spearman correlation analysis showed that 
arrhythmia‑like waveforms were correlated with the predictive 
values (r=0.40, P<0.05, data not shown). Pearson correlation 
analysis showed that FPDc prolongation was also significantly 
correlated with the predictive values (r=0.744, P<0.001, data 
not shown)

Model evaluation. The newly established VC model was 
compared with the LR and AdaBoost models. The LR and 
AdaBoost models both performed poorly on the training and 
test sets (Fig. 7, Table Ⅳ). However, the VC model performed 
well in both the training and test sets. Only a small differ‑
ence was noted in all the parameters between the two sets, 
indicating that the VC model had good stability.

Threshold setting. The default threshold of intermediate 
and high to low risk was 0.5 in the process of model establish‑
ment. When the threshold was set as 0.5, clarithromycin at 
intermediate‑risk was predicted to be low‑risk and ranolazine 
(low‑risk) was predicted to be an intermediate‑ or high‑risk 
compound with a consistency of 92.8% (Fig. 8). In the test 

set, amiodarone, flecainide, moxifloxacin and methadone were 
all predicted to be of intermediate or high‑risk, while E4031, 
nicotinamide and mannitol were low risk with a consistency 
of 100% (Fig. 8).

Discussion

Primary rat cardiomyocytes are currently the main cellular 
model for cardiac toxicity evaluation  (30). However, 
pronounced differences in species have been noted between 
mice and humans, resulting in 37% tolerance of compounds 
in mice, which was 10  times higher compared with that 
of humans  (31). Increasing attention has highlighted the 
advantages of hiPSC‑CMs in previous studies. Moreover, 
hiPSC‑CMs express various human cardiac ion channels 
and genes encoding key components of the Ca2+ cycle, which 
greatly reduces the impact of differences between species 
and reduces the discrepancy between rat and adult primary 
human cardiomyocytes  (32‑34). hiPSC‑CMs display the 
complex physiological functions associated with human 
myocardial cells in vitro and possess the biochemical and 
molecular biological characteristics of human cardiac 
myocytes. Moreover, hiPSC‑CMs are easy to purify and can 
be cultured in vitro for extended periods of time compared 
to rat primary cardiomyocytes (data not shown). Hence, it 
is an excellent model for in vitro prediction of arrhythmia 
in  vivo. In the present study, hiPSC‑CMs has a clonal 
morphology and gene expression that highly resembles 

Figure 6. Changes in field potential of compounds with different TdP risk levels and non‑CiPA compounds. Non‑CiPA compound risk labels were predicted 
using the established voting classifier model. CiPA, Comprehensive in vitro Proarrhythmia Assay; TdP, torsades de pointes; FPDc, corrected field potential 
duration. 
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human embryonic stem cells. It is probable that different 
hiPSC‑CM lines can behave differently in response to elec‑
trophysiological changes, so three hiPSC‑CM lines were 
evaluated in previous studies. The prolongation of FPDc 
was used as a single predictor for the TdP risk, showing 
the sensitivity and specificity of the hiPSC‑CM line from 
Cellapy were optimal, as such this cell line was selected for 
further investigations.

The effects of different compounds on cell activity, 
which aimed to observe cytotoxicity and the rationality 
of dose design, were evaluated in the present study. Ampl 
also reflects the beating pattern of the hiPSC‑CMs and the 
change in beating patterns reflects which ion channels in the 
cell membrane are affected (35). The results showed that no 
cytotoxicity was noted at all concentrations of the compounds 
(Table SⅠ), but the correlation between the change of Ampl and 
TdP risk needs further evaluation. Simultaneously, the effects 
of compounds on the BPM of cardiomyocytes were tested. 

Abnormal heart rate correlates with drug-induced cardio‑
toxicity (36). According to the present data, compounds that 
inhibited the contractile function of cardiomyocytes resulted 
in reduced BPM, which is more likely to cause arrhythmia and 
more likely to induce prolonged FPDc. This suggested that 
inhibition of cell beating may be a risk factor for TdP.

Drug effects and adverse reactions are closely related 
to dose, for some compounds, the risk of side effects can 
increase with increasing dose, ETPC is usually proportional 
to the dose, and is a common indicator of the dose adminis‑
tered (37). Thus, ETPC was also accepted as a model predictor. 
The arrhythmia‑like waveforms are another important model 
predictor. Arrhythmia‑like waveforms were observed in all 
three TdP risk compound groups and high‑risk compounds 
were more likely to induce arrhythmia‑like waveforms. A 
notable event, which advises compound risk prediction, is the 
possibility of increased TdP if arrhythmia‑like waveforms 
appeared at a dose lower than the ETPC.

Figure 7. Predicted TdP risk for all compounds using LR, AdaBoost and VC models. TdP, torsades de pointes; LR, logistic regression; AdaBoost, adaptive 
boosting; VC, voting classifier. 

Table III. AUC results of seven models.

Sample set	 LR	 SVM	 KNN	 DT	 AdaBoost	 CatBoost	 RF

Training set	 0.84 	 0.81 	 1.00 	 0.95 	 1.00 	 1.00 	 1.00 
Test set	 0.83 	 0.75 	 0.71 	 0.50 	 0.83 	 0.71 	 0.83

LR, logistic regression; SVM, support vector machine; KNN, k‑nearest neighbor algorithm; DT, decision tree; AdaBoost, adaptive boosting; 
RF, random forest.
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AP detection is based on individual cardiomyocytes and 
in this context there is a lack intercellular communication, so 
instead small populations cardiomyocytes were chosen (38). 
Instead of recording individual APs and early depolarization, 
the CardioExcyte 96 recorded field potential. FPDc prolonga‑
tion was considered to be closely related to TdP occurrence. 
In the multi‑electrode array (MEA) test, adjacent recording 
electrodes can record spontaneous APs of the cell population 
as external field potential. The recording electrode can monitor 
the change in field potential when an AP spreads across mono‑
layer cells (39). Halbach et al (40) revealed a direct relationship 
between the rise in time of APs and field potentials, showing 
that APs and field potentials are linearly correlated. In the 
present study, FPDc change was observed to be consistent with 
instances of arrhythmia, with the higher the FPDc prolongation 
probability, the higher the risk of TdP. Arrhythmia‑like events 
and the type of FPDc change were the most important among 
the six predictors. Though no FPDc prolongation was observed 
for bepridil and clarithromycin in the present study, thus, they 
were classified as low‑risk compounds; no arrhythmia‑like 
events were observed during administration of dofetilide, so 
dofetilide was also classified as a low‑risk compound.

Sharifi et al (41) developed a TdP prediction model based 
on the chemical structure of the compounds, though this model 

works only if compounds with similar structures possess 
the same electrophysiological responses. Additionally, the 
drugs' effects on different ion channels have also been used 
as predictors for TdP risk (42). However, previous studies 
of TdP prediction models have mainly been based on the 
electrophysiological effects of compounds on hiPSC‑CMs. 
The classical models for predicting TdP risk based on 
hiPSC‑CMs mainly include the LR model  (43). However, 
in the current study, its classification accuracy was only 
0.86 and the recognition rate of intermediate‑ and high‑risk 
compounds was only 0.89, which showed that the model clas‑
sification ability was not sufficient. Blinova et al (21) used the 
LR model to assess the risk of dysrhythmia, one high‑risk 
compound (bepridil) and four intermediate‑risk compounds 
(risperidone, terfenadine, chlorpromazine and clozapine) 
were incorrectly predicted to be low‑risk; this indicated that 
the logical regression classifier may not be able to identify 
some significant nonlinear relationships and detect the corre‑
lation between predictive variables, making it prone to false 
negatives in practical application (22).

In the current study, the classification accuracy, the recall 
rate and the AUC of KNN, CatBoost and RF were all 1.00 in 
the training set, but these models performed poorly in the test 
set. Thus, these models may be overfitted. The main influencing 

Figure 8. Consistency between the predicted value of the VC model and the actual observed value. The observed results were retrieved from the Comprehensive 
in vitro Proarrhythmia Assay program or other published literature. TdP, torsades de pointes; VC, voting classifier.

Table Ⅳ. Model evaluation results.

	 Training set	 Test set
	----------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------- 
Model	 Accuracy 	 Recall 	 AUC	 Accuracy 	 Recall 	 AUC

LR	 0.86 	 0.89 	 0.84 	 0.86 	 1.00 	 0.83 
AdaBoost	 1.00 	 1.00 	 1.00 	 0.86 	 1.00 	 0.83 
VC	 0.93 	 0.95 	 0.92 	 1.00 	 1.00 	 1.00

AUC, area under the curve; LR, logistic regression; AdaBoost, adaptive boosting; VC, voting classifier.
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factors of overfitting may include small sample size in the 
training set and the inconsistency of data distribution in the 
training and test sets (44). The difference between data distribu‑
tion may have introduced bias into the models. Considering that a 
precise classification is difficult to achieve with only one model, 
the combination of multiple models was used in the current 
study. Thus, LR and AdaBoost (a black box model widely used 
in computer‑aided diagnosis), were chosen as the sub‑models 
according to the classification performance of each model (45). 
Finally, a new model named VC was established through a soft 
voting strategy. The AUC of the VC model had little difference 
between training set and test set and the consistency of the VC 
model between the predicted and observed results was optimal. 
This suggested that this model could tolerate a certain degree 
of differential data distribution through the soft voting strategy.

Moreover, 28 CiPA compounds were considered to be a 
small sample size (46). The data showed that AdaBoost had 
improved performance compared with VC in the training set, 
but VC outperformed AdaBoost in the test set. Whether data 
distribution of an unknown compound is consistent with the 
training set is unknown, thus the soft voting strategy was used 
and the VC model was chosen to avoid overfitting and enhance 
the generalization of the model.

The prediction results of VC for the training set of 28 known 
compounds showed that bepridil, dofetilide and clarithromycin 
were classified as a low‑risk at a threshold of 0.7, but bepridil 
and dofetilide are high TdP risk compounds, which can cause 
QT interval prolongation and induce TdP (47,48). In the present 
study, bepridil was predicted as a low‑risk compound owing 
to no FPDc prolongation was observed. Bepridil is a calcium 
antagonist and also blocks sodium and potassium channels, so 
the effect of potassium channel blocking may be counterbal‑
anced by calcium channel blocking (49). This may be one of 
the reasons for the shortening of its FPDc. No arrhythmia‑like 
waveforms were observed in dofetilide, which may be the main 
reason why this compound was predicted to be low‑risk. The 
minimum and maximum concentrations of dofetilide were 0.03 
(15 times of the ETPC) and 0.3 µm (150 times of the ETPC), 
respectively. The cells stopped beating at the maximum 
concentration, thus, the concentrations used may have been inap‑
propriate and further experimental confirmation is required.

Clarithromycin is an intermediate‑risk compound and an 
hERG channel blocker (50). No QT prolongation was found 
in healthy individuals after clarithromycin administration (51). 
However, women, the elderly and patients with underlying heart 
disease may exhibit increased QTc prolongation and increased 
risk of TdP induced by clarithromycin (52). In the present study, 
FPDc showed shortening after clarithromycin administration 
and was predicted as low risk. Ando et al (17) reported that 
clarithromycin at 13 times (42.9 µM) of the free plasma concen‑
tration can lead to 10% FPDc prolongation. The experiment for 
clarithromycin was repeated in triplicate and no FPDc prolon‑
gation was observed at the highest concentration of 100 µM, 
therefore, experimentation should be continued for verification.

According to the prediction results with 0.7 as the 
threshold, amiodarone and flecainide, both known compounds 
with associated TdP risk, were predicted to be high‑ or 
intermediate‑risk compounds. Amiodarone is a class III 
antiarrhythmic drug, which can inhibit the hERG channel and 
cause QT prolongation (53). The TdP incidence of amiodarone 

~15% after intravenous administration (54). Flecainide is a 
class IC antiarrhythmic drug, which can inhibit K+ channels, 
causing prolonged QT interval and TdP (55). According to the 
established model, the prediction results of amiodarone and 
flecainide are consistent with literature reports.

The risk threshold was adjusted to 0.5 because numerous 
false negatives were noted in the training set at 0.7 threshold 
value. Clarithromycin should be predicted as a high‑ or inter‑
mediate‑risk compound, and ranolazine should be predicted 
as a low‑risk compound, so clarithromycin was not identified 
and ranolazine was misidentified in the training set. However, 
amiodarone, flecainide, moxifloxacin and methadone in the test 
set were all correctly predicted to be high or intermediate risk 
compounds, while E4031, nicotinamide and mannitol were all 
predicted to have low‑risk compounds. Tisdale (53) previously 
reported moxifloxacin to have known TdP risk, which supports 
the findings of the present study. Moxifloxacin is more prone 
to TdP in patients with multiple risk factors for prolonged QT 
interval (56). Methadone is also high risk at low doses and has 
the potential to prolong QT interval and develop TdP (57). E4031 
is an hERG blocker that can prolong QT interval (58). However, 
to the best of our knowledge, no clinical report has been on the 
risk of E4031‑induced TdP. Niacinamide and mannitol had not 
been reported to induce TdP risk. Therefore, the consistency 
between the predicted and the observed results was 92.8 and 
100% in the training and test sets, respectively, when 0.5 was 
used as the threshold value. In toxicity evaluation, false positives 
could be supported by other experiments, while false negatives 
could cause serious clinical risks. Thus, the low false‑negative 
value of 0.5 was chosen as the threshold value.

A number of uncertainties have been noted in extrapolating 
animal data to humans in the nonclinical safety evalua‑
tions of new drugs and remains a troubling issue in toxicity 
research (59). Thus, hiPSC‑CMs are a viable way to reduce 
uncertainty caused by species differences. As such, the false 
positive and false negative rates in toxicity evaluation caused 
by a single predictor was avoided in the present study. The 
prediction model was able to reveal the relationship between 
prediction indicators and results based on the specific algo‑
rithms. Each model had its advantages in a particular sample 
set, though the two models with improved performance were 
selected to establish a new model. Thus, avoiding the defects 
of a single model methodology and improving the prediction 
accuracy and stability of the model.

Though a functional TdP prediction model was established 
based on hiPSC‑CMs in the present study, data was generated 
from only a single cell batch. Hence, assessing the differen‑
tiation variability and reproducibility of this model is still 
necessary. Although hiPSC‑CMs are considered an improve‑
ment on rodent cells, this type of CMs bear more resemblance 
to neonatal CMs or those in early development rather than 
adult CMs, and their functional and electrophysiological prop‑
erties are not fully mature, so there are still some limitations 
in their application (60). In the present study, small sample size 
was used for both training and test sets and no risk labels were 
assigned to the test set, which is inconsistent with the training 
set. These two factors may have led to over‑fitting of the 
models. Thus, expanding the sample size for further verifica‑
tion is needed in future investigations. Additionally, consistent 
dataset risk labels are needed and ‘Transfer learning’ may 
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also be useful to overcome differences in data distribution, 
for small data sets, transfer learning is a useful strategy to 
increase model power for specific tasks (61).

In the present study, a normal cell model was used, there‑
fore, it is mainly applicable to the prediction of TdP in healthy 
patients after drug treatment or during treatment. For specific 
clinical contexts, such as patients with long QT syndrome, a 
disease model cell line should be used as the research subject to 
establish a risk prediction model for TdP. In total, 28 compounds 
were used to establish the TdP risk prediction model based on 
hiPSC‑CMs. LR and AdaBoost were taken as sub‑models, with 
the same assigned weight, to create a new TdP risk prediction 
model using a soft voting strategy. This improved upon the accu‑
racy of the individual models and enhanced the generalization 
ability. In the established TdP risk prediction model, 0.5 was set 
as the threshold of TdP risk. All the seven compounds in the test 
sets were accurately classified, achieving good consistency. The 
current study also found that the multiple compounds inhibited 
the beating of cardiomyocytes and those with reduced beating 
frequency were more likely to have arrhythmic waveforms and 
more likely to induce prolonged FPDc.
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