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Abstract: DNA nanotechnology offers to build nanoscale structures with defined chemistries to
precisely position biomolecules or drugs for selective cell targeting and drug delivery. Owing to
the negatively charged nature of DNA, for delivery purposes, DNA is frequently conjugated with
hydrophobic moieties, positively charged polymers/peptides and cell surface receptor-recognizing
molecules or antibodies. Here, we designed and assembled cholesterol-modified DNA nanotubes to
interact with cancer cells and conjugated them with cytochrome c to induce cancer cell apoptosis.
By flow cytometry and confocal microscopy, we observed that DNA nanotubes efficiently bound to
the plasma membrane as a function of the number of conjugated cholesterol moieties. The complex
was taken up by the cells and localized to the endosomal compartment. Cholesterol-modified DNA
nanotubes, but not unmodified ones, increased membrane permeability, caspase activation and cell
death. Irreversible inhibition of caspase activity with a caspase inhibitor, however, only partially
prevented cell death. Cytochrome c-conjugated DNA nanotubes were also efficiently taken up but
did not increase the rate of cell death. These results demonstrate that cholesterol-modified DNA
nanotubes induce cancer cell death associated with increased cell membrane permeability and are
only partially dependent on caspase activity, consistent with a combined form of apoptotic and
necrotic cell death. DNA nanotubes may be further developed as primary cytotoxic agents, or drug
delivery vehicles, through cholesterol-mediated cellular membrane interactions and uptake.

Keywords: DNA nanotechnology; DNA nanostructure; targeted delivery; cytochrome c; choles-
terol; cytotoxicity

1. Introduction

DNA nanostructures have been widely used to understand biological processes and
to improve diagnostic and therapeutic repertoires. DNA self-assembly allows for the
generation of specifically shaped objects at the nanoscale with highly predictable struc-
tures that can be further functionalized by conjugation with other biomolecules [1]. This
flexibility and programmability of DNA nanostructures makes it possible to mimic the
function of complex biological elements, including membrane-associated proteins [2,3] and
pore complexes [4]. Moreover, these structures could be used as nanoscale platforms to
precisely arrange the position of ligands, induce cancer specific cell signaling pathways
and thereby regulate cancer cell behavior. For example, ephrin-A5 ligand functionalized
nanocalipers were used to decrease the invasiveness of breast cancer cells [5]. In another
study, DNA origami structures decorated with both integrin specific peptides and epider-
mal growth factor (EGF) ligands were utilized in the investigation of cancer cell adhesion.
These structures increased cell spreading when the ligands were positioned 60 nm apart [6].
In addition, recent studies have demonstrated the enhancement of apoptosis signaling
through a hexagonal arrangement of the death receptor Fas ligands (FasL) or TRAIL (tu-
mor necrosis factor-related apoptosis-inducing ligand) mimicking peptides on designed
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DNA structures [7,8]. When DNA origami structures were decorated with specific ligands,
T-cells were activated [9], and tumor cells could be killed by CD8+ cytotoxic T cells [10].
In addition, to modulate cellular behavior, DNA origami structures have also been used
as nanocarriers for delivery purposes, by loading them with antibody fragments [11],
enzymes [12] or cytotoxic drugs [13,14]. For the intracellular delivery of these molecules
and to increase the stability of the structures in biological media, DNA nanostructures are
modified with either specific molecules/ligands [15–17], antibodies [18] or aptamers [19,20]
that interact with membrane receptors, such as folate, transferrin and nucleolin, respec-
tively, or with cationic polymers [21], peptoids [22], oligolysine-based positively charged
peptides [23] or hydrophobic lipid molecules [24].

Among these approaches, modification of DNA with lipid molecules may have poten-
tial advantages due to the ability to conjugate a broad range of lipids and thereby increase
their targeting to the cell surface/plasma membrane. Lipid-modified DNA nanostructures
have been extensively studied on artificial lipid membranes as biomimetic nanopores to
understand and regulate the transport of ions [25,26], charged fluorescent dyes [27], cyto-
toxic drugs [28] and the sensing of analytes [29]. DNA origami structures modified with
lipid moieties were also used to mimic membrane-assisted assembly of proteins, to induce
membrane curvature [2,30] and to study membrane fusion processes [31]. In addition to
these in vitro applications, lipid modified DNA nanostructures have been recently used
in vivo to reveal cellular interactions. These lipid-modified DNA nanostructures bind to
cancer cell membranes [32], white blood cells [33] or endothelial cells [34]. Lipid-modified
DNA nanostructures can also be used as membrane-spanning nanopores for doxorubicin
transport [35] or to encapsulate DNA origami nanostructures within liposomes to improve
their in vivo stability [24].

Protein-based anticancer therapy is one of the most efficient strategies for cancer
treatment due to specific targeting, resulting in improved efficacy and reduced side effects
compared to classical chemotherapeutic agents. Proteins can be conjugated efficiently to
DNA-based delivery systems owing to their large surface size and multiple attachment
sides. Cytochrome c is one such potential protein that could be used as an anticancer drug.
It is a small (12 kDa), highly conserved protein that plays a key role in the mitochondrial
electron transport chain. In response to external (e.g., death receptor activation, TRAIL
and Fas) or internal (e.g., DNA damage) signals, cytochrome c is released from the mi-
tochondria to the cytoplasm through Bax/Bid-mediated outer mitochondrial membrane
permeabilization [36]. Cytoplasmic cytochrome c induces apoptosis by interacting with
Apaf-1 to form a large molecular complex, activating caspase 9. In turn, this activates
caspase 3, leading to cell death [37,38]. In many cancer types, however, the mitochondrial
release mechanism of cytochrome c is reduced due to mutations in upstream signaling
or Bcl2 overexpression, resulting in diminished apoptosis. To overcome this limitation,
direct delivery of cytochrome c to the cytoplasm of cancer cells may be considered [39,40].
However, like most proteins, cytochrome c, is membrane-impermeable. Thus, formulations
for its intracellular delivery need to be devised [41]. Previously, several groups have shown
that the cytoplasmic delivery of cytochrome c can be achieved either via conjugation to
ligands of cell surface receptors, such as transferrin and folate, or by its encapsulation in
polymers [42–44].

In this study, we designed and synthesized cholesterol-modified DNA nanotubes
conjugated with cytochrome c and investigated their interaction with cancer cells and
intracellular localization of the delivered cytochrome c. We demonstrate that cholesterol-
modified DNA nanotubes, but not unmodified ones, effectively bound to the cell surface,
were taken up via endocytosis and induced cell death. Cytochrome c conjugated to these
cholesterol-modified DNA nanotubes did not interfere with their surface binding and
uptake and did not further enhance cell death.
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2. Materials and Methods
2.1. DNA Nanotube Design

DNA nanotubes were designed via the single-stranded tile (SST) method as shown pre-
viously [45] by mixing 9 different oligonucleotides (ODN) consisting of 48 or 84 bases. These
include four unmodified oligonucleotides, three cholesterol modified oligonucleotides
(LubioScience-Switzerland IDT, Zurich, Switzerland), azide-modified oligonucleotide for
click reactions (Biomers, Ulm, Germany) and Alexa Fluor 647-labelled oligonucleotide for
microscopy (Eurofins, Ebersberg, Germany) (Appendix A). All modified oligonucleotides
were purified using HPLC. The sequences of the DNA strands are given in Table A1.

2.2. Cytochrome c Conjugation

Cytochrome c (Sigma Aldrich, Buchs, Switzerland) was conjugated to 5′ azide-modified
oligonucleotides through cysteines using a dibenzocyclooctine (DBCO)-maleimide linker-
based click reaction [46]. First, 1–4 mg cytochrome c was dissolved in 1 mL Tris-HCl
buffer (100 mM, pH 7.2). Tris(2-carboxyethyl)phosphine (TCEP) solution (50 mM, Sigma
Aldrich, Buchs, Switzerland) was then added at 1:10 (v/v) to the 100 µL cytochrome c
solution, and the mixture was incubated for 2 h at RT (400 rpm). Excess TCEP was removed
by buffer exchange using 3K Amicon Ultra 0.5 mL centrifuge filters (Merck Millipore,
Darmstadt, Germany) by spinning four times for 6 min at 14,000× g at 4 ◦C. After each
round, the flow through was discarded, and the centrifuge filter tube was filled again with
buffer to 500 µL. The protein concentration was estimated by measuring absorbance at
280 nm using a Nanodrop (Thermo Fisher Scientific, Basel, Switzerland). Then, reduced
cytochrome c (10 nmol) was mixed with a 50-fold excess of DBCO-maleimide (Sigma
Aldrich, Buchs, Switzerland, 50 mM in dimethylformamide (DMF)), and the reaction was
incubated at 4 ◦C on a shaker in the dark overnight. The next day, excess DBCO-maleimide
was removed again using Amicon 3K filters, and the DBCO-conjugated cytochrome c was
mixed with azide-modified oligonucleotides (1:2) for 1 h at RT on a shaker (400 rpm). The
oligonucleotide-conjugated cytochrome c was analyzed by running samples on 12% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were stained ei-
ther with Coomassie blue (Sigma Aldrich, Buchs, Switzerland) or No-Stain protein-labeling
reagent (Thermo Fisher Scientific, Basel, Switzerland).

To determine if cytochrome c conjugates possessed peroxidase activity, 100 µL aliquots
of 3,3′,5,5′-Tetramethylbenzidine (TMB) solution (Sigma Aldrich, Buchs, Switzerland) were
dispensed in a 96-well plate. Subsequently, 5 µL of cytochrome c or cytochrome c-ODN
conjugate were added to the corresponding wells, followed by the addition of 20 µL of
H2O2. The absorbance was measured at 655 nm with a spectrophotometry (TECAN infinite
M200PRO, Männedorf, Switzerland).

To fluorescently label cytochrome c, 2 mg/mL Atto488 NHS (N-hydroxysuccinimide)-
ester (Sigma Aldrich, Buchs, Switzerland) was dissolved in DMF and mixed with 2 mg/mL
cytochrome c (0.1 M bicarbonate buffer, pH 8.3) (2:1). Then, the solution was incubated for
1 h at RT on a shaker (400 rpm). Excess Atto488 NHS-ester was removed by 3K Amicon
filters.

2.3. DNA Nanotube Assembly and Gel Analysis

DNA nanotubes were assembled by mixing all oligonucleotides at equivalent molar
ratios at a final concentration of 100 nM to 1 µM in the folding buffer (10 mM Tris-HCl,
1 mM EDTA, 16 mM MgCl2, pH 8). The structures were folded over the course of different
incubations with increasing incubation times (15 min, 2 h and 16 h) by linear cooling
from 65 ◦C to 25 ◦C using a Biometra TAdvanced Twin PCR thermocycler (Analytik Jena,
Jena, Germany). Assembled DNA nanotubes were then purified using 100K Amicon
Ultra 0.5 mL centrifuge filters to remove excess ssDNA that was not folded into the
structures. After washing four times, the remaining solution containing DNA nanotubes
were collected, and the DNA concentration was determined by measuring the optical
density at 260 nm.
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DNA nanotubes were analyzed by running samples (10 µL of purified DNA nanotube,
100 nM) in a 2% agarose gel with or without GelGreen dye (0.5× TBE buffer, 11 mM MgCl2)
using GeneRuler DNA Ladder mix (Thermo Fischer Scientific, Basel, Switzerland) as
molecular weight ladder. The gel was run for 2 h at 70 V in an ice-cold water bath to prevent
heat-induced denaturation of the DNA nanotubes. Fluorescently labelled nanotubes were
visualized in a G-BOX imaging system (Syngene, Synoptic Ltd., Cambridge, UK).

2.4. Cell Culture

HeLa cells were purchased from American Type Culture Collection (ATCC, Rockville,
MD, USA). Cells were cultured at 37 ◦C, 5% CO2 and 95% humidity in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with Glutamax, 10% fetal bovine serum (FBS)
and 1% Penicillin and Streptomycin. Cells were treated with DNA nanotubes in Opti-
MEM (Minimal Essential Medium) serum-reduced medium. All cell culture reagents were
purchased from Thermo Fischer Scientific (Basel, Switzerland).

2.5. Flow Cytometry and Confocal Microscopy

The interaction of the DNA nanotubes with cells was analyzed by flow cytometry
using a MACSQuant Analyzer 10 flow cytometer (Miltenyi Biotec, Bergisch Gladbach,
Germany), and the data were analyzed with FlowJo Software (FlowJo, version 10.6.2;
FlowJo LLC: Ashland, OR, USA, 2020). Alexa Fluor 647 intensity was depicted as mean
fluorescence intensity (MFI) for all samples. Briefly, cells were precultured for 24 h by
seeding onto 24-well plates with a density of 20,000 cells/well. After overnight incubation,
the medium was discarded, cells were washed with 1× phosphate buffered saline (PBS)
and then treated in triplicates with plain or cholesterol-modified DNA nanotubes (100 nM
in Opti-MEM medium) for different time intervals (30 min, 90 min and 3 h). Then, the
medium containing DNA nanotubes was aspirated, cells were washed 3 times with 1× PBS,
trypsinized and resuspended in FACS buffer (1× PBS, 3% FBS), and transferred into v-
bottom 96-well plates (Thermo Fisher Scientific, Basel, Switzerland) for flow cytometry
analysis. Viable cells were consistently selected based on forward and side scattering.

For confocal imaging, cells were seeded into Ibidi 18-well polymer coverslip slides
with a density of 1000 cells/well and treated with plain or cholesterol-modified nanotubes
(100 nM) for up to 3 h in Opti-MEM medium. At the predetermined time points, cells
were washed 3 times with 1× PBS, and the medium was replaced with DMEM. Confocal
imaging was performed on a Leica TCS SP5 inverted microscope (Leica Microsystems
GmbH, Mannheim, Germany) using a Plan-Apochromat 20×/0.7 NA dry objective (Zeiss
GmbH, Jena, Germany). Laser lines 405, 488 and 633 were used for Hoechst 33452, Alexa
Fluor 647 and Atto488 excitation, respectively. After acquisition, the images were analyzed
by Fiji software (ImageJ, National Institute of Health, Bethesda, MD, USA).

To visualize the localization of DNA nanotubes, cells were treated with DNA nan-
otubes as mentioned above. The medium was discarded at the predetermined time points
(1 h and 3 h), washed with 1× PBS and incubated with Opti-MEM solution containing
both 10 nM BioTracker Orange 560 lysosome dye (Sigma Aldrich, Buchs, Switzerland) and
1µg/mL Hoechst 33342 (Thermo Fisher Scientific, Basel, Switzerland). Cells were washed
after 30 min of incubation, and images were collected using a Zeiss LSM 710 inverted
confocal microscope (Axio Observer.Z1, Zeiss, Feldbach, Switzerland). Image acquisition
was performed using an EC Plan-Neofluar 40×/1.30 NA-immersion oil objective (Zeiss
GmbH, Jena, Germany). Laser lines 405, 488 and 514 were used for Hoechst 33452, Atto488
and Biotracker Orange 560 excitation, with the appropriate band-pass filters. Colocalization
analysis was performed using the fluorescent intensity profile function of ZEN software
(ZEN, version 3.3, blue edition; Zeiss GmbH, Jena, Germany).

2.6. Apoptosis Assay and Western Blotting

Cellular apoptosis was determined with the Annexin V/ Propidium Iodide Apoptosis
assay kit (Thermo Fisher Scientific, Basel, Switzerland) by following the manufacturer’s
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instructions. Briefly, cells were seeded into 6-well plates with a density of 100,000 cells/well
and preincubated overnight in DMEM medium. The next day, the medium was aspirated,
and cells were treated with DNA nanotubes (1 µM) either in Opti-MEM or DMEM (10%
FBS) media for 4 h or 24 h. As apoptosis and necrosis controls, cells were treated with either
1 µM staurosporine (Abcam, Cambridge, UK) or 3 mM H2O2, respectively. Then, cells were
washed with 1× PBS, trypsinized and transferred into v-bottom 96-well plates. Cells were
resuspended in 100 µL of 1× Annexin-binding buffer containing 5 µL of Annexin V-APC
and 1 µL of 100 µg/mL PI and incubated for 15 min at RT. Then, 100 µL of 1× Annexin-
binding buffer was added to the cell suspension and mixed gently. Cells were analyzed
by flow cytometry using the MACSQuant Analyzer 10 flow cytometer (Miltenyi Biotec,
Bergisch Gladbach, Germany). For data analysis, FlowJo Software (v10.6.2, FlowJo LLC)
was utilized.

In order to inhibit caspase activity, cells were treated with the pan caspase inhibitor, Z-
VAD-FMK (carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- fluoromethylketone) (400 µM,
R&D Systems, Minneapolis, MN, USA) for 1 h. Then, cells were mixed with an equal
volume of cell medium containing DNA nanotubes or staurosporine.

For the Western blot analysis, cells were trypsinized after 24 h of incubation with
DNA nanotubes (1 µM) and lysed using 1× Radioimmunoprecipitation Assay (RIPA)
buffer containing 1× protease inhibitor cocktail and phosphatase inhibitors (1 mM phenyl-
methylsulfonylfluoride (PMSF), as well as 1 mM sodium orthovanadate (Na3VO4)) (Sigma
Aldrich, Buchs, Switzerland). After vigorous mixing and cooling on ice for 5 min, protein
lysates were centrifuged at 13,000 rpm for 15 min at 4 ◦C and cleared supernatants were
collected. Protein concentration was measured using a BC assay (Interchim, Montluçon,
France), where bovine serum albumin (BSA) was used as the standard. Proteins were run
on a 12% reducing sodium dodecyl sulfate (SDS) polyacrylamide gel and transferred to
a nitrocellulose membrane (Amersham, United Kingdom) for 45 min at 130 mA. Mem-
branes were blocked with 5% BSA for at least 30 min and then incubated with primary
antibodies (Table A2) at 4 ◦C overnight. The next day, membranes were washed with
1× tris-buffered saline, 0.1% Tween 20 (TBST) for three times and incubated with the
corresponding horseradish peroxidase (HRP)-coupled secondary antibodies for 1 h at
room temperature. After the washing steps, protein detection was performed by a short
incubation with the enhanced chemiluminescence (ECL) reagent (Sigma Aldrich, Buchs,
Switzerland). Signals were detected by ImageQuant Las 4000 (GE Healthcare Life Sciences,
Marlborough, MA, United States). The band intensities were calculated using ImageJ
software. The relative expression of proteins was normalized to the expression of β-actin.

2.7. MTT Cell Viability Assay

HeLa cells were seeded in 96-well plates with a density of 10,000 cells/well and
preincubated overnight in DMEM medium. The next day, the medium was aspirated,
and cells were treated with DNA nanotubes at different concentrations (100 nM, 250 nM,
500 nM and 1µM) in Opti-MEM for 24 h. Then, the medium was discarded, and cells were
incubated in 100 µL of fresh medium containing 0.5 mg/mL MTT (3-(4,5-dimethythiazol-2-
yl)-2,5-diphenyl tetrazolium bromide, Sigma Aldrich, Buchs, Switzerland) for 2 h. After
incubation, the medium was discarded again, the MTT formazan product was solubilized
with 100 µL dimethyl sulfoxide (DMSO). The absorbance was measured at 570 nm with a
spectrophotometry (TECAN infinite M200PRO, Männedorf, Switzerland).

2.8. Dye Efflux Analysis by Flow Cytometry

HeLa cells were seeded in 24-well plates with a density of 100,000 cells/well and
preincubated overnight in DMEM medium. The next day, the medium was aspirated,
and cells were incubated in 500 µL of fresh medium containing 10 µM Atto488 NHS-ester
(Sigma Aldrich, Buchs, Switzerland) for 2 h. Then, cells were washed with 1× PBS for
several times and treated with DNA nanotubes or the apoptosis inducer, staurosporine, at
different concentrations (100 nM, 250 nM, 500 nM and 1 µM) for 3 h. Cells were analyzed
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by flow cytometry using the MACSQuant Analyzer 10 flow cytometer (Miltenyi Biotec,
Bergisch Gladbach, Germany). For data analysis, FlowJo Software (v10.6.2, FlowJo LLC)
was utilized.

3. Results
3.1. Design and Self-Assembly of DNA Nanotubes

Our six-helix DNA nanotubes (6HT) consisting of nine oligonucleotides were de-
signed using a single-stranded tile-based assembly method by modifying previously used
sequences as described in Kocabey et al. [16]. In this design, 3 of the oligonucleotides are
84 bases long and 6 of the oligonucleotides are 48 bases long. This design allows for longer
complementation of single-tile segments with neighboring tiles (21 base pairings) in the
assembly, and hence provides higher thermal stability and resistance to Mg2+ depletion as
demonstrated previously [16]. Another advantage of this design is its simplicity in terms
of minimal preparation time and cost-effective assembly (see Table A1). To promote the
interaction of DNA nanotubes with cellular membranes, up to three of the oligonucleotides
were tagged from their 3′ ends with cholesterol using tetraethylene glycol (TEG) linkers,
seven bases apart from the double crossovers that are located at the center of the structure.
To monitor the cellular interaction and the internalization of the nanotubes, one of the
oligonucleotides was labelled with the Alexa Fluor 647 dye at its 3′ end. For conjugation
with cytochrome c, an oligonucleotide with an azide modification was used, allowing for a
click reaction. The length of the designed DNA nanotubes was ~16 nm with an expected
diameter of ~6 nm (Scheme 1). It is important to note that the length of the nanotube was
longer than the thickness of the cellular lipid bilayer (~5–6 nm), which allowed it to span
the lipid bilayer throughout its hydrophobic core.
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Scheme 1. Design of amphiphilic 6-helix DNA nanotubes. Depiction of DNA nanotubes in 2D and
3D views. DNA tile strands are marked with arrows (3′ end) and squares (5′ ends). The length of
the tiles was 48 and 84 bases, respectively. Cholesterol molecules are represented as green circles.
Cytochrome c and Alexa Fluor 647 fluorophore were conjugated to the 5′ and 3′ ends of two tiles,
respectively, as indicated.

DNA oligonucleotides were assembled into nanotube structures by mixing cholesterol-
modified oligonucleotides and unmodified oligonucleotides in Mg+2-containing buffer
(1× TE 16 mM Mg+2) using a thermal annealing process starting at 65 ◦C and cooling
down to room temperature over the course of different time intervals (15 min, 2 h and
16 h). Agarose gel analysis revealed that the nanotubes were assembled properly already
after 15 min of thermal annealing (Figure 1). The prominent bands representing the folded
structures (252 base pairs (bp) + 36 bases, highlighted by arrow) were apparent between
the 200 bp and 300 bp marker bands for the nanotubes without cholesterol at all time
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points. Increasing the amount of cholesterol anchors led to the formation of hetero-dimers
(1× cholesterol) and aggregates (2× and 3× cholesterols) due to hydrophobic interactions
between the cholesterol moieties in the aqueous solution. The mobility of the bands
in the gel decreased accordingly. Cholesterol molecules tend to form aggregates when
their concentration exceeds the critical micelle concentration of cholesterol in solution,
25–40 nM. [47] This is lower than the concentration of our cholesterol-modified DNA
nanotubes (>100 nM). However, when the mixtures of DNA strands were kept at room
temperature, there were no sharp bands representing the nanotubes. Instead, smearing of
bands were observed, indicating that the structures were not properly assembled in the
absence of thermal annealing (Figure 1).
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3.2. Cytochrome c Conjugation and Integration into the DNA Nanotubes

Cytochrome c is highly conserved across species, with a size of 12 kDa. Yeast cy-
tochrome c has three cysteines, of which Cys20 and Cys23 form an intramolecular disulfide
bond within the core of the protein. They are less prone to reduction compared to Cys108,
which is located at the protein surface and thus provides a thiol group available for conju-
gation. Therefore, we covalently conjugated cytochrome c at Cys108 to an azide-modified
oligonucleotide using a DBCO maleimide linker (Figure 2A). Under reducing conditions,
SDS-PAGE analysis revealed that cytochrome c was conjugated to the oligonucleotide with
high efficiency (88%). We also noted additional bands that we attribute to the conjuga-
tion of multiple oligonucleotides to a single cytochrome c, possibly through the internal
cysteines within the core of the protein. According to our analysis of band intensities
by ImageJ, 52% of cytochrome c was conjugated with a single oligonucleotide, 36% was
conjugated with two or more oligonucleotides and 12% was left unconjugated (Figure 2B).
Staining of the conjugated oligonucleotides with SYBR green further validated these results
(Figure A1). Cytochrome c also catalyzes the H2O2 induced oxidation of a wide range
of substrates, including 3,3′,5,5′-tetramethylbenzidine (TMB) [48,49]. Previous studies
have shown substantial peroxidase activity of cytochrome c during apoptosis [50]. H2O2
produced in the mitochondria during apoptosis is used by cytochrome c for the oxidation
of cardiolipins residing in the inner mitochondrial membrane [51,52]. This redox modifica-
tion causes membrane damage and promotes the release of proapoptotic factors into the
cytoplasm, which trigger cell death. In the light of these results, we tested the peroxidase
activity of cytochrome c with or without ODN conjugates (Figure A2). Our results indicate
that modification of cytochrome c through cysteine residue does not impair the crucial
peroxidase activity of this protein (rcytc: 0.018, rcytc-ODN: 0.012). To confirm the integration
of cytochrome c to DNA nanotubes, we covalently labelled cytochrome c first with an
Atto488 fluorophore to primary amines (e.g., lysines and arginines), and then conjugated
cytochrome c with an azide-modified oligonucleotide to a free cysteine residue. After
mixing these oligonucleotides with unconjugated and Alexa Fluor 647-labelled oligonu-
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cleotides, the assembled structures were run in 2% agarose gel. Gel analysis revealed
that cytochrome c was conjugated to the DNA nanotubes, as the band corresponding to
the cytochrome c conjugated DNA nanotubes colocalized in both the 488 nm (Atto) and
647 nm (Alexa Fluor) channels (Figure 2C).
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Figure 2. Conjugation of ssDNA to cytochrome c and gel characterization of adducts. (A) Stepwise conjugation of azide-
modified ssDNA to cytochrome c using a DBCO-maleimide based click reaction. (B) SDS-PAGE analysis of DNA-protein
conjugates. Cytochrome c and ssDNA-conjugated cytochrome c were stained with the fluorescent No-Stain labeling reagent,
visualized in both the 488 nm and white-light channels and highlighted with arrows. (C) Agarose gel analysis of DNA
nanotube assembly after mixing and annealing of Atto488-labelled cytochrome c-conjugated ssDNA with unconjugated
tiles. Gels were visualized in both the 647 nm and 488 nm channels to distinguish between the 6-helix DNA nanotubes
(6HT) with or without cytochrome c conjugation. L, molecular weight marker.

3.3. Interaction of DNA Nanotubes with Cancer Cell Membranes

We next addressed the interaction of our designed nanotubes with cancer cells. For
this purpose, we chose the cervical cancer cell line HeLa, which is commonly used to study
the interaction of DNA nanostructures with cell membranes. We used flow cytometry
to quantify the impact of the number of cholesterol anchors on DNA nanotubes, on cell
surface binding. For this purpose, cells were incubated with DNA nanotubes (100 nM)
for up to 3 h at 37 ◦C. After 30 min of incubation, the mean fluorescence intensity (MFI)
of cells treated with DNA nanotubes containing three cholesterol moieties was 10-fold
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higher compared to the MFI obtained with unmodified DNA nanotubes, whereas DNA
nanotubes carrying 1 cholesterol showed only a 2-fold-higher MFI in comparison to the
unmodified nanotubes (Figure 3A). The increase in hydrophobic interaction with the cell
membrane or, possibly, an increased aggregation of DNA nanostructure in the solution
could both explain the enhanced cell surface binding of the DNA nanotubes modified with
three cholesterol moieties. Kinetic analysis showed that the MFI of cells incubated with
the different nanotubes increased only minimally upon longer periods of incubation, i.e.,
90 min or 3 h, indicating that binding of DNA nanotubes to cell membranes occurred
rapidly, mostly within the first 30 min of incubation (Figure 3B). Similar binding kinetics of
DNA nanotubes have been reported in recent studies [32,35].
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To further analyze cell surface binding and the possible internalization of DNA nan-
otubes, we performed confocal microscopy imaging. After 30 min of incubation with DNA
nanotubes (3× chol) a red fluorescent signal arising from DNA nanotube clusters was
clearly observed. The prevalent localization of the fluorescence to a perinuclear region,
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rather than at the cell periphery or the edges where cell adhesion molecules are normally
concentrated (Figure 3C), suggests that these clusters were internalized. The green, flu-
orescent signal of cytochrome c was also visible around the cell nucleus as highlighted
by arrows (Figure 3C). No fluorescent signal was observed in the cells incubated with
unmodified DNA nanotubes (0× chol).

To obtain further evidence for the internalization of the nanotube, we incubated cells
with cholesterol-modified and unmodified, cytochrome c-conjugated DNA nanotubes for
1 h and 3 h and then with Hoechst and Biotracker 560, a molecule that accumulates in
endosomes, for an additional 30 min. We observed that the green, fluorescent signal of the
cytochrome c-conjugated DNA nanotubes (Atto488) colocalized with the red Biotracker
560 signal after 1 h of incubation (Figure 4). Fluorescent intensity analysis by Zen software
(3.3) indicated that the green signal of cytochrome c and the red signal of Biotracker 560 (en-
dosomes) consistently overlapped across multiple cells (Figure A3). The fluorescent signal
of Atto488-labelled cytochrome c was higher when the DNA nanotubes carried cholesterol,
consistent with the effect of cholesterol on membrane binding and internalization of the
nanotube. With longer incubation times, accumulation of cytochrome c in endosomes
increased. However, its localization remained limited to the endosomal/perinuclear com-
partment. The internalization of DNA nanotubes and the localization of cytochrome c in
endosomes was further visualized by z-stack imaging (Figure A4). Enhanced fluorescent
intensities inside the cells were visible in the z direction when DNA nanotubes were modi-
fied with cholesterol. From these results, we concluded that cytochrome c was internalized
and trapped in the endosomal system but not released into the cytosol. The fluorescence
intensity of DNA nanotubes lacking cholesterol only slightly increased after 3 h of incuba-
tion but remained at a fraction of the intensity of the DNA nanotube containing cholesterol
(Figure 4).

3.4. Induction of Cell Death by DNA Nanotubes

To evaluate the capacity of the different nanotubes to induce cell death in HeLa cells,
we first performed Annexin V/ Propidium Iodide assays after incubation of cells with DNA
nanotubes (1µM) for 4 h. This assay detects apoptotic cells through the high-affinity binding
of Annexin V protein to membrane phosphatidylserine (PS), which is translocated from the
inner to the outer leaflet of the plasma membrane during apoptosis [53]. Propidium Iodide
(PI) was used to detect the necrotic/dead cells. It is a membrane-impermeable dye that
binds to the nucleic acid only when cells have a disrupted plasma membrane and hence are
dead. Flow cytometry analysis revealed that cholesterol-modified DNA nanotubes induced
significantly stronger apoptosis than DNA nanotubes without cholesterol (Figure 5A).
Compared to untreated cells and plain DNA nanotubes, we observed a significant increase
in dying cells (52%, sum of right quarters for cells in the stage of early and late apoptosis,
respectively; 18%, top left quarter for cells undergoing necrosis). However, there was no
significant increase in the fraction of dying cells when cholesterol-modified DNA nanotubes
were conjugated to cytochrome c: 65% of the total population were apoptotic cells, and
23.6% were necrotic cells. As a positive control of apoptosis, we treated cells with 1 µM
staurosporine, a pan-protein kinase inhibitor, known to induce apoptosis, and observed
that 88% of cells were apoptotic after treatment. As a positive control of necrosis, we treated
cells with 3 mM H2O2 and observed that 54% of cells were necrotic after this treatment. To
further understand the effect of the lipid modification on DNA nanotubes on apoptosis, we
conjugated the nanotubes with palmitate, a common saturated (16:0) fatty acid. Compared
to untreated cells, there was a significant increase in apoptotic cells treated with palmitate-
conjugated DNA nanotubes (52%). However, there was again no additive effect when the
nanotubes were conjugated with cytochrome c (51.5%) (Figure A5).



Nanomaterials 2021, 11, 2003 11 of 24Nanomaterials 2021, 11, 2003 11 of 25 
 

 

 
Figure 4. Confocal microscopy analysis of the cellular uptake and internalization of cytochrome c-
conjugated DNA nanotubes. Cells treated with cytochrome c-conjugated DNA nanotubes (either 
having or lacking cholesterol) were imaged after 1 and 3 h of incubation. Cytochrome c was labelled 
with Atto488 before assembly of DNA nanotubes. Colocalization of nanotubes inside endosomes 
stained with Biotracker orange 560 lysosome dye. Scale bar: 10 µm. 

3.4. Induction of Cell Death by DNA Nanotubes 
To evaluate the capacity of the different nanotubes to induce cell death in HeLa cells, 

we first performed Annexin V/ Propidium Iodide assays after incubation of cells with 
DNA nanotubes (1µM) for 4 h. This assay detects apoptotic cells through the high-affinity 
binding of Annexin V protein to membrane phosphatidylserine (PS), which is translocated 
from the inner to the outer leaflet of the plasma membrane during apoptosis [53]. Propid-
ium Iodide (PI) was used to detect the necrotic/dead cells. It is a membrane-impermeable 
dye that binds to the nucleic acid only when cells have a disrupted plasma membrane and 
hence are dead. Flow cytometry analysis revealed that cholesterol-modified DNA nano-
tubes induced significantly stronger apoptosis than DNA nanotubes without cholesterol 
(Figure 5A). Compared to untreated cells and plain DNA nanotubes, we observed a sig-
nificant increase in dying cells (52%, sum of right quarters for cells in the stage of early 
and late apoptosis, respectively; 18%, top left quarter for cells undergoing necrosis). How-
ever, there was no significant increase in the fraction of dying cells when cholesterol-mod-
ified DNA nanotubes were conjugated to cytochrome c: 65% of the total population were 
apoptotic cells, and 23.6% were necrotic cells. As a positive control of apoptosis, we 
treated cells with 1 µM staurosporine, a pan-protein kinase inhibitor, known to induce 
apoptosis, and observed that 88% of cells were apoptotic after treatment. As a positive 

Figure 4. Confocal microscopy analysis of the cellular uptake and internalization of cytochrome c-conjugated DNA
nanotubes. Cells treated with cytochrome c-conjugated DNA nanotubes (either having or lacking cholesterol) were imaged
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To collect further evidence for the induction of apoptosis, we monitored the activation
of caspases after treating cells with cholesterol-modified DNA nanotubes for 24 h by
Western blot analysis (Figure 5B). Cleaved (active) caspase 3 and cleaved caspase 9 levels
were increased compared to untreated cells. However, they remained lower compared to
cells treated with staurosporine for 4 h. Cytochrome c levels were slightly increased when
cells were incubated with cytochrome c-conjugated DNA nanotubes, consistent with a
delivery of cytochrome c. However, there was no apparent increase in the levels of cleaved
caspases due to the uptake of DNA nanotubes containing cytochrome c. Furthermore, cell
viability assay also confirmed a cholesterol-dependent cytotoxicity when cells were treated
with 1 µM DNA nanotubes (Figure A6). Next, we treated other cancer cells (BT-474 &
MDA-MB-468) with cholesterol-modified DNA nanotubes and again observed an increase
in the necrotic fractions of the cell populations, further confirming the cytotoxicity of
cholesterol-conjugated DNA nanotubes (Figure A7).
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During apoptosis, cells lose their membrane stability, resulting in swelling and bleb-
bing, but also lose their membrane integrity due to membrane rupture [54]. Recent studies
have demonstrated that lipid modified DNA nanopores can penetrate the lipid membranes
and allow the transport of cytotoxic drugs across membranes [28,35]. This penetration of
the DNA nanopore itself could be cytotoxic [55]. To further validate the possible effects
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on membrane integrity and leakage caused by cholesterol-modified DNA nanotubes, we
preincubated cells with Atto488 dye for 2 h and then treated them with either cholesterol-
modified or unmodified DNA nanotubes for an additional 3 h. We observed an efflux
of Atto488 dye in cells incubated with cholesterol modified DNA nanotubes at the con-
centrations of 500 nM and 1 µM, but not with unmodified ones (Figure 6). On the other
hand, cells treated with the apoptosis inducer, staurosporine, revealed an Atto488 dye
efflux at all concentrations tested (100 nM–1 µM). It is apparent that staurosporine caused
membrane damage at lower concentrations compared to the cholesterol-modified DNA
nanotubes. However, treatment of cells with lower concentrations of cholesterol-modified
DNA nanotubes cause an opposite effect: an increase in fluorescence intensity. This could
be explained by variations in autofluorescence of cells. It is well known that cellular aut-
ofluorescence is prone to changes in response to their metabolic state. A recent study in
bacteria showed an increase in green autofluorescence (excitation at 488 nm with bandpass
filters of 530/30) in cells stressed with ampicillin, owing to changes in flavins, including
flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and riboflavin [56]. This
elevation was attributed to the activation of an adaptive response to combat stress. It
seems that even though the viability of cells and their membrane integrity is not signifi-
cantly affected after treatment with the cholesterol-modified nanotubes at 100 and 250 nM
concentrations (Figure A6), their autofluorescence nevertheless appears altered.
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To further investigate the underlying mechanism of cell death, we treated cells with
the pan-caspase inhibitor, Z-VAD-FMK, prior to the incubation of cells with DNA nan-
otubes or staurosporine. Flow cytometry analysis revealed that Atto488 dye-efflux was
not affected when cells were pretreated with the caspase inhibitor (Figure A8). Moreover,
the Annexin V/Propidium Iodide assay indicated a slight decrease in the apoptotic and
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necrotic cell fractions upon treatment of cells with the cholesterol-modified DNA nan-
otubes or staurosporine (especially at 500 nM and 1 µM concentrations) in the presence
of the pan-caspase inhibitor (Figure A9). This indicates that the pretreatment with the
pan-caspase inhibitor only partially prevents cell death, implying the involvement of ad-
ditional, caspase-independent mechanisms of cell death. It was previously shown that
staurosporine can induce apoptosis through both caspase-dependent and -independent
mechanisms in leukemia cell lines [57], and treatment with the pan-caspase inhibitor could
reduce the rate of cell death by up to 40%. Overall, these experiments reveal caspases
cleavage upon treatment with cholesterol-modified DNA nanotubes and staurosporine,
but caspase inhibition does not appear to be sufficient to fully prevent the induction of cell
death.

4. Discussion and Conclusions

In this study, we developed cholesterol-modified DNA nanotubes that bind to and
are taken up by HeLa cervical cancer cells, and induce cell death associated with caspase
activation and increased membrane permeability. However, irreversible caspase inhibition
only partially prevented cell death, consistent with a combined form of apoptotic and
necrotic cell death. Our results show that induction of cell death requires the modification
of the DNA nanotubes with lipids, either cholesterol or palmitic acid, but not cytochrome
c. The hydrophobic part of the structure decorated with lipid molecules was designed
to span the lipid bilayer so that the conjugated cytochrome c could reach the cytoplasm
upon membrane insertion. Using flow cytometry and confocal microscopy, we observed
that lipid-modified DNA nanotubes bound the cell surface efficiently, and that they were
taken up by the cells to localize to a perinuclear/endosomal compartment. The lipid-
dependent cytotoxicity of nanotubes is likely due to their efficient surface targeting and
uptake compared to unmodified nanotubes. Their cytotoxicity is possibly due to their
ability to affect the integrity of the plasma membrane (Figure 6). DNA nanotubes are known
to have pore-like properties and can thus disrupt the membrane potential. Alternatively,
they might exhibit cytotoxic effects once they are taken up by the cells and might potentially
disturb trafficking through the endosomal system.

The membrane potential is essential for cell viability. In nature, there are various
examples of pore-forming peptides that target the cell membrane and thereby induce cell
death. These include the antibacterial channel-forming peptides, such as alamethicin, pro-
duced by the fungus Trichoderma viride and ceratotoxin A, produced by the medfly Ceratitis
capitata [58,59]. Pore-forming toxins made of proteins such as the cholesterol-dependent
cytolysin can also be secreted by gram-positive bacteria and induce apoptosis upon pore
formation on the target cell membrane [60]. However, from our results, we cannot distin-
guish whether the cytotoxicity of the cholesterol-conjugated DNA nanotubes is due to their
possible pore-forming activity at the plasma membrane, or whether they become toxic only
once they are taken up by the cells, and possibly affect trafficking through the endosomal
system. Previously, it has been demonstrated that a DNA nanopore with a hydrophobic
belt, composed of ethyl phosphorothioate, induced cytotoxicity on HeLa cells within 1 h at
a concentration of 100 nM [55]. In another study, 50 nM phosphorothioate-modified DNA
nanopore induced 20% cytotoxicity after 40 min of incubation. However, no cytotoxicity
was observed when cells were treated at 4 ◦C. In other words, the phosphorothioate-
modified DNA nanopore blocked endocytosis. Thereby, the DNA nanopores were retained
at the cell surface [35]. In our experiments, we observed cholesterol-dependent cyto-
toxicity when cells were incubated with DNA nanotubes within a range of 500 nM to
1 µM (Figures 5, A6 and A9). On the other hand, we could not observe the endoso-
mal escape of cytochrome c and cytochrome c-triggered apoptosis at 1 µM of the DNA
nanotubes, a concentration much lower compared to other studies, where cancer cells
were treated with 10–50 µM cytochrome c containing nanoparticles [42,43]. To increase
the capacity of cytochrome c to escape from the acidic environment of the endosomal
compartment, other disulfide-based linkers, such as Sulfo-LC-SPDP (sulfosuccinimidyl
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6-[3′-(2-pyridyldithio)propionamido]hexanoate) and DBCO-S-S-NHS ester, which could be
reduced at low pH, might be tested. Furthermore, more sophisticated designs to puncture
lipid membranes can be tested in which cytochrome c is conjugated to the long inner helix
and cholesterol moieties are conjugated to the surrounding shorter outer helices. This
would allow more efficient penetration into the membrane, as such structures would be
more similar to the natural pore-forming protein α-hemolysin [25,61]. Moreover, other
DNA-based polyhedral designs, such as tetrahedrons [62] or icosahedrons [63], could be
an alternative strategy to encapsulate cytochrome c within their inner void.

The cytotoxic effect of DNA nanotubes observed in this study could be applicable to
other cancer cell types by combining the cholesterol-mediated cellular binding of DNA
nanotubes with antibody/nanobody conjugations, peptides or DNA/RNA aptamers to
specifically target cancer antigens. Lipidomic analyses have revealed significant lipid
alterations in cancer cells in terms of both lipid class and their molecular species composi-
tion. One remarkable change was observed in the membrane phospholipids, which are
crucial for adaptation to carcinogenic processes by orchestrating membrane fluidity and
signal transduction [64]. The enrichment of saturated phospholipids (particularly in phos-
phatidylcholine, phosphatidylethanolamine) is regarded as a signature of cancer cells [65],
and enriched saturated phospholipids are well known for their contribution to protect
against lipid peroxidation [66]. These saturated lipid species also promote interactions
with cholesterol [67]. We expect that our cholesterol-modified DNA nanotubes display
a higher affinity to cancer cells and hence increase the efficiency of their treatment. In
conclusion, the lipid-modified DNA nanotube-based structures designed here provide a
promising tool for targeted cell therapies through their increased interactions with cellular
membranes, particularly those of malignant cells.
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Appendix A. Supporting Figures & Tables

Table A1. Sequences of oligonucleotides used in 6-helix DNA nanotube assembly. All conjugated oligonucleotides were
purified using HPLC.

Oligonucleotide Sequence Modification

U1R1 AAAAACTTACTGAGGATATTGCCTGAAGCTGTACCGTTTTAGGGGAAA 5′ azide

U1R2 ACGTACCTGAACTCCAGACTCGGGGCGAAAAAAAAGTCTTAGTACCGC 3′ chol

U2R1 CCCCTAAAACGGTACAGCTTCGGTACGTGCGGTACTAAGACTGGGGCG AATA-
GACAGGCTCCCCTCTCACTCGCTAGGAGGCAA

U3R1 AAATTGCCTCCTAGCGAGTGAGAGGTTTCCCGCATATTAACGCCTAAA

U3R2 CAGCGTCGGGAGCCTGTCTATTCGCCCCAAAAAATACCGTGGTTGAGT 3′ chol

U4R1 AGGCGTTAATATGCGGGAAACGACGCTGACTCAACCACGGTACGTTAG ATGC-
CTCGCTGTACTAATAGTTGTCGACAGATCGTC

U5R1 AAAGACGATCTGTCGACAACTATTGGTCGGATCTGAGTCGACCAAAAA 5′ Atto647

U5R2 ATGGAGCAGTACAGCGAGGCATCTAACGAAAAAAGCTCTTTGAGTATC 3′ chol

U6R1 TTGGTCGACTCAGATCCGACCGCTCCATGATACTCAAAGAGCTCGCCC CGAGTCTG-
GAGTTCAAGGCAATATCCTCAGTAAGTT
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Table A2. Antibodies used in the Western blot analysis.

Antibody Source Dilution

Anti-caspase 9 Cell Signaling, Danvers, MA, USA
(#9502)—rabbit 1:1000

Anti-cleaved caspase 3 (Asp175) Cell Signaling, Danvers, MA, USA
(#9661)—rabbit 1:1000

Anti-cytochrome c Biolegend, San Diego, CA, USA
(#612503)—mouse 1:500

β-actin Sigma Aldrich, Buchs, Switzerland
(#A3853)—mouse 1:10,000

Goat-anti mouse Ig/HRP Dako, Glostrup, Denmark (#P0447) 1:10,000

Goat-anti rabbit Ig/HRP Dako, Glostrup, Denmark (#P0448) 1:10,000
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Figure A4. Internalization of cytochrome c-conjugated DNA nanotubes. (A) Orthogonal xz and yz 
cross sections of cells treated with cholesterol-conjugated DNA nanotubes. (B) Fluorescent inten-
sity profile of the respective z-stack image. (C) Orthogonal xz and yz cross sections of cells treated 
with DNA nanotubes without cholesterol molecules. (D) Fluorescent intensity profile of the re-
spective z-stack image. Scale bar: 20 µm. 

Figure A4. Internalization of cytochrome c-conjugated DNA nanotubes. (A) Orthogonal xz and yz cross sections of cells
treated with cholesterol-conjugated DNA nanotubes. (B) Fluorescent intensity profile of the respective z-stack image. (C)
Orthogonal xz and yz cross sections of cells treated with DNA nanotubes without cholesterol molecules. (D) Fluorescent
intensity profile of the respective z-stack image. Scale bar: 20 µm.
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Figure A5. Palmitate-conjugated DNA nanotubes induce cell death in HeLa cells. Flow cytometry analysis of the Annexin 
V/Propidium Iodide-stained cells, 4 h after treatment with 1 µM palmitate-modified 4-helix DNA nanotubes (4HT). A 
palmitate-dependent increase of the apoptotic and necrotic fractions in the cell populations was observed. 

 
Figure A6. Viability of HeLa cells incubated with different DNA nanotube concentrations. The MTT viability assay of cells 
demonstrates the viability of cells 24 h after treatment with DNA nanotubes at various concentrations. Absorbance values 
at 570 nm were normalized to untreated cells. Statistical analysis was performed by an unpaired t-test. ns = no statistical 
difference, *** p < 0.005. n = 3. 

Figure A5. Palmitate-conjugated DNA nanotubes induce cell death in HeLa cells. Flow cytometry analysis of the Annexin
V/Propidium Iodide-stained cells, 4 h after treatment with 1 µM palmitate-modified 4-helix DNA nanotubes (4HT). A
palmitate-dependent increase of the apoptotic and necrotic fractions in the cell populations was observed.
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Figure A6. Viability of HeLa cells incubated with different DNA nanotube concentrations. The MTT viability assay of cells
demonstrates the viability of cells 24 h after treatment with DNA nanotubes at various concentrations. Absorbance values
at 570 nm were normalized to untreated cells. Statistical analysis was performed by an unpaired t-test. ns = no statistical
difference, *** p < 0.005. n = 3.
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Figure A7. Viability of breast cancer cells (BT-474 and MDA-MB-468) after 24 h of incubation with cholesterol-conjugated 
DNA nanotubes. Flow cytometry analysis of the Annexin V/Propidium Iodide-stained cells 24 h after incubation with 1 
µM cholesterol-modified DNA nanotubes. A cholesterol-dependent increase of the necrotic fractions in the cell popula-
tions was observed. 

 
Figure A8. Atto488 efflux upon treatment of HeLa cells with cholesterol-modified DNA nanotubes 
or staurosporine in the presence of the pan-caspase inhibitor, Z-VAD-FMK. Flow cytometry analysis 
of cells was performed after 3 h of incubation with DNA nanotubes or the apoptosis inducer, stau-
rosporine, at a concentration range of 100 nM to 1 µM. The bar graphs below show the mean fluo-
rescence intensity (MFI) normalized to untreated cells. Statistical analysis was performed by an un-
paired t-test. ** p < 0.005, **** p < 0.0001. n = 3. 

Figure A7. Viability of breast cancer cells (BT-474 and MDA-MB-468) after 24 h of incubation with cholesterol-conjugated
DNA nanotubes. Flow cytometry analysis of the Annexin V/Propidium Iodide-stained cells 24 h after incubation with 1 µM
cholesterol-modified DNA nanotubes. A cholesterol-dependent increase of the necrotic fractions in the cell populations was
observed.
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Figure A8. Atto488 efflux upon treatment of HeLa cells with cholesterol-modified DNA nanotubes
or staurosporine in the presence of the pan-caspase inhibitor, Z-VAD-FMK. Flow cytometry analysis
of cells was performed after 3 h of incubation with DNA nanotubes or the apoptosis inducer,
staurosporine, at a concentration range of 100 nM to 1 µM. The bar graphs below show the mean
fluorescence intensity (MFI) normalized to untreated cells. Statistical analysis was performed by an
unpaired t-test. ** p < 0.005, **** p < 0.0001. n = 3.
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Figure A9. Flow cytometry of the Annexin V/Propidium Iodide-stained cells after 3 h of treatment with cholesterol mod-
ified DNA nanotubes (left panel) and the apoptosis inducer, staurosporine (right panel), at a concentration range of 100 
nM to 1 µM in the absence or presence of the pan-caspase inhibitor, Z-VAD-FMK (400 µM), as indicated. 
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