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A B S T R A C T   

The creation of predictive models with a high degree of generalizability in chemical analysis and 
process optimization is of paramount importance. Nonetheless, formulating a prediction model 
based on collected data from chemical measurements that maximize quantitative generalizability 
remains a challenging task for chemometrics experts. To tackle this challenge, a range of fore-
casting models with varying characteristics, structures, and capabilities has been developed, 
utilizing either accuracy-based or reliability-based modeling strategies. While the majority of 
models follow the accuracy-based approach, a recently proposed reliability-based approach, 
known as the Etemadi approach, has shown impressive performance across various scientific 
fields. The Etemadi models were constructed through a reliability-based parameter estimation 
process in such a manner that maximizes the models’ reliability. However, the foundation of 
modeling procedures for chemometrics purposes is built upon the assumption that high gener-
alizability in inaccessible/test data is achieved through the accuracy-based training procedure in 
which errors in available historical/training data are minimized. After conducting a thorough 
review of the current literature, we have found that none of the forecasting models for chemo-
metrics purposes incorporate reliability into their modeling procedures. Given the dynamic and 
highly sensitive nature of chemistry experiments and processes, implementing a reliable model 
that controls performance criteria variation is a promising strategy for achieving stable and robust 
forecasts. To address this research gap, this paper introduces several key innovations, which can 
be highlighted as follows: (1) Proposing a general design structure based on a new optimal 
reliability-based parameter estimation process. (2) Introducing a novel risk-based modeling 
strategy that minimizes the performance variation of models implemented under different con-
ditions in chemical laboratory experiments, to generate a more generalizable model for diverse 
applications in chemometrics. (3) Specifying the degree of influence that each reliability and 
accuracy factor has in enhancing the generalizability and uncertainty modeling of chemometric 
models. Empirical evidence confirms the effectiveness and superior performance of reliability- 
based models compared to accuracy-based models in 78.95% of the cases across various fields, 
including Pharmacology, Biochemistry, Agrochemical, Geochemical, Biological, Pollutants, 
Physicochemical Properties, and Gases Experiment. Furthermore, the study’s findings demon-
strate that the reliability-based modeling approach outperforms the accuracy-based strategy in 
terms of MAE, MSE, ARV, and RMSE by an average of 4.697%, 5.646%, 5.646%, and 4.342%, 
respectively. It is also statistically proven that reliability has a more significant impact on 
improving the generalizability of chemometric models than accuracy. This emphasizes the 
importance of including reliability as a crucial factor in chemometrics modeling, a consideration 
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that has been overlooked in traditional modeling processes. Consequently, reliability-based 
modeling approaches can be regarded as a viable alternative to conventional accuracy-based 
modeling methods for chemical modeling purposes.   

1. Introduction 

Chemometrics analysis demands the creation of prediction models capable of accurately generalizing and optimizing the under- 
study process. To achieve this objective, several machine-learning models have been developed within the categories of linear/ 
nonlinear and statistical/intelligent methods. Regression models are recognized as a widely favored statistical approach in chemo-
metrics for determining the correlation between a set of descriptive attributes and a target variable. Commonly utilized regression 
models encompass Multiple Linear Regression (MLR), Partial Least Square Regression (PLSR), Penalized Regression (PR), and Support 
Vector Regression (SVR) methods. These chemometrics regression techniques have diverse applications in fields such as Pharmacology 
[1], Biochemistry [2], Agrochemical [3], Geochemical [4], Biological [5], Toxicity Compound [6], Pollutants [7–10], Physicochemical 
Properties [11], and Chemical compounds of Food Additives and Ingredients [12] (see Tables 1–3). 

From a technical perspective, research and studies in the field of chemometrics can be categorized into three main types: appli-
cation papers, comparative studies, and techniques based on pre-processing and optimization. Pre-processing-based regression 
techniques aim to improve the predictive capability of models by either augmenting input data or using feature selection methods, 
while optimization-based algorithms fine-tune the model’s parameters. For example, Courand et al. [13] enhanced the prediction 
performance of PLSR in forecasting grape berry sugar content by developing a robust version of PLSR capable of handling outliers. 
Similarly, Yang et al. [14] applied SVR to predict the nitrate-nitrogen isotopic composition and made efforts to improve the model’s 
generalizability. In this regard, Principal Component Analysis (PCA) and Grid Search (GS) techniques were employed to reduce input 
variables and optimize the model’s parameters, respectively. Researchers in the field of chemometrics regression have demonstrated 
various approaches to achieve highly accurate predictions. Chen et al. [15] applied MLR to estimate the quality of river water and 
detect pollution sources, employing the absolute principal component score as a feature selection technique. Arthur et al. [16] 
employed MLR to predict the anti-leukemia activities and toxicities of NCI anticancer compounds, utilizing the Genetic Algorithm (GA) 
for selecting appropriate features. Similarly, Yang et al. [17] applied MLR and GA to identify relevant input variables and analyze the 
physical and chemical properties of different materials. In contrast, Kaneko and Funatsu [18] enhanced the predictive accuracy of their 
chemometric model by implementing Cross-Validation (CV), Grid Search (GS), and theoretical techniques to determine the optimal 
hyperparameters of the model. 

Regression models have proven their effectiveness in various specialized fields, as evidenced by numerous application papers. For 
example, Lago et al. [19] employed PLSR to estimate cation exchange capacity, while Brown [20] developed a regression model to 
determine solvent-air partitioning with acceptable precision. In the field of biochemical methane, Raposo et al. [21] used predictive 
regression models to specify the organic content of biomass samples, and the research concluded that accurate laboratory measure-
ments are essential for reliable predictions. Barra et al. [22] achieved desirable accuracy in estimating the cetane number, one of the 
most critical quality parameters of diesel fuel, using PLSR. Naguib and Abdallah [23] assessed the predictive capabilities of PLSR in the 
quality control analysis of pharmaceutical dosage forms in two modes: with and without a UV cutoff area. Ávila et al. [24] applied 
high-performance regression techniques to estimate various physicochemical attributes associated with meat quality characteristics. 

Table 1 
Summarized information from the chemistry benchmarks obtained from Kaggle and UCI databases.  

Scope Number of 
cases 

Title of datasets Sample Size Number of 
Attributes 

Attribute 
Type 

Pharmacology 2 Drug Consumptions (UCI), Pharmaceutical Drug Spending 
by countries 

1036–1884 4–11 Real- 
Integer 

Biochemistry 2 Chemical element abundances, Basal Metabolic Rate 280–500 4–19 Real- 
Integer 

Agrochemical 2 Chemical Fertilizers, Agriculture & Weather 3084–10151 4–19 Real- 
Integer 

Geochemical 3 Comprehensive database of Minerals, Geochemical 
Variations in Igneous Rocks–Mining, Multivariate 
Geochemical classification 

1125–3907 9–81 Real- 
Integer 

Biological 2 QSAR Bioconcentration classes, covid19 blood sample and 
biochemistry tests 

779–1133 9–22 Real- 
Integer 

Toxicity Compound 2 QSAR aquatic toxicity, QSAR fish toxicity 546–908 7–8 Real 
Pollutants 3 Beijing Multi-Site Air-Quality Data, Shanghai air pollution 

and weather 2014–2021, Full Scale Waste Water Treatment 
Plant Data 

1382–32907 15–18 Real- 
Integer 

Physicochemical Properties 1 Physicochemical Properties of Protein Tertiary Structure 45730 9 Real 
Gases Experiment 1 Gas sensor array temperature modulation 295679 19 Real 
Chemical compounds of Food 

Additives & Ingredients 
1 Wine Quality 1599 11 Real  
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Michanowicz et al. [25] designed a regression model to predict intra-urban NO2, demonstrating the versatility of regression models in 
diverse fields. Several studies have successfully utilized the MLR model in chemometrics. For instance, Adeniji et al. [26] accurately 
forecasted the activity of anti-tubercular compounds using MLR, while Xu et al. [27] applied the model to identify suitable areas for 
cultivating pharmaceutical plants. In a separate study, Nakamura et al. [28] utilized physical and chemical soil properties to predict 
the concentrations of cadmium, lead, and fluorine with the MLR model. Furthermore, Bertelkamp et al. [29] effectively forecasted the 
rates of organic micropollutants in the river bank filtration process using MLR, and Ewaid et al. [30] developed a precise MLR for 
predicting the quality of river water. Additionally, Olaya-Abril et al. [31] successfully estimated the distribution of soil organic carbon, 
while Palmer et al. [32] employed MLR to estimate the toxicity of samples in the municipal solid waste incineration process. Other 
successful applications of the MLR model in chemometrics include the identification of compounds responsible for aquatic contam-
ination by Dieguez-Santana et al. [33] and the estimation of phenol removal from wastewater by Mandal et al. [34]. 

Comparative studies have consistently highlighted the superior performance of regression models in comparison to other machine 
learning models. In one study, More and Gupta [35] utilized MLR and Non-Linear Regression (NLR) to estimate the chromium removal 
efficiency in the cathode chamber of a bioelectrochemical system, and the findings revealed the superiority of MLR over NLR. 
Similarly, Abrougui et al. [36] discovered that MLR outperformed an Artificial Neural Network (ANN) when predicting organic potato 
crops based on soil chemical properties, a result that could be leveraged to select appropriate tillage techniques and enhance culti-
vation. Furthermore, Du et al. [37] evaluated the predictive performance of several regression models, which included GRA-MLR, 
PCA-MLR, and PLSR, combined with feature selection techniques, to estimate the physical and chemical properties of tea stems. 
The outcomes demonstrated that GRA-MLR outperformed the other two models. In a separate study conducted by Robert et al. [38], 
the aim was to predict the effectiveness of anticancer drugs. They employed three different models: MLR, modified MLR-Weighted 
Least Square (MLR-WLS), and enhanced MLR-WLS. Upon analyzing the results, they concluded that the enhanced MLR-WLS exhibi-
ted superior performance compared to the other two models. Hosseinzadeh et al. [39] assessed the accuracy of two different models, 
MLR and ANN, for estimating nutrient recovery from solid waste. Tang et al. [40] predicted the biodegradability of organic chemicals, 
a crucial parameter for evaluating the environmental persistence of chemicals, using two models, MLR and Support Vector Machines 
(SVM). Finally, Rendall et al. [41] evaluated the performance of four models, PR, MLR, latent variables regression, and tree-based 
ensemble methods, to forecast the age of the wine. Their findings indicated that the PR method outperformed the other models. 

As previous research indicates, all predictive models in chemometrics are formulated with the aim of maximizing accuracy in 
historical and training data. The primary objective of these models is to attain a high level of generalizability in a manner that 
significantly enhances the quality of decision-making. Thus, despite the apparent differences among various modeling approaches, the 
basic foundation of all these models originates from an accuracy-based identical concept. Although, it seems that the accuracy-based 
strategy is a practical and logical approach for modeling and forecasting. However, in certain situations, especially when training and 
testing data do not follow a similar paradigm, it is incorrect to expect the results of the training data to repeat in the test data. Thus, this 
strategy loses its effectiveness. Additionally, it appears that employing an accuracy-based strategy to model chemistry processes that 
fall within the category of high-risk and sensitive situations with significant variations is not the most suitable approach. Therefore, 

Table 2 
The performance criteria in the accuracy- and Etemadi reliable-based models.  

Category Data 
Set 

Etemadi reliability-based MLR Classic accuracy-based MLR 

MAE MSE RMSE ARV MAE MSE RMSE ARV 

1) Pharmacology #1 0.539 0.460 0.678 0.469 0.540 0.462 0.680 0.471 
#2 30015 5679145441 75360 0.861 30097 5703973233 75525 0.865 

2) Biochemistry #3 4.E− 11 3.E− 21 5.E− 11 3. 
E− 15 

2.E− 10 5.E− 20 2.E− 10 5. 
E− 14 

#4 0.490 0.346 0.588 0.172 0.488 0.344 0.587 0.171 
3) Agrochemical #5 15175 1008680530 31760 0.648 15294 1047776812 32369 0.673 

#6 0.152 0.048 0.220 0.0086 0.155 0.049 0.222 0.0088 
4) Geochemical #7 1.338 3.454 1.859 0.524 1.358 3.418 1.849 0.518 

#8 7.E− 03 9.E− 05 0.009 0.006 7.E− 03 9.E− 05 0.009 0.006 
#9 164.948 35267 187.794 0.642 165.585 35411 188.178 0.645 

5) Biological #10 0.571 0.598 0.773 0.568 0.570 0.595 0.771 0.565 
#11 0.343 0.203 0.451 1.224 0.339 0.206 0.454 1.241 

6) Toxicity Compound #12 0.945 1.625 1.275 0.553 0.950 1.637 1.279 0.557 
#13 0.601 0.633 0.795 0.409 0.597 0.627 0.792 0.406 

7) Pollutants #14 17.422 577.400 24.029 0.067 17.519 584.838 24.183 0.068 
#15 1.346 3.495 1.869 0.966 1.364 3.525 1.878 0.975 
#16 58.464 5084.358 71.305 0.959 60.492 5186.914 72.020 0.978 

8) Physicochemical Properties #17 1.596 5.521 2.350 0.153 1.616 5.583 2.363 0.155 
9) Gases Experiment #18 3.446 22.269 4.719 0.387 3.512 22.804 4.775 0.397 
10) Chemical compounds of Food 

Additives and Ingredients 
#19 0.510 0.463 0.680 0.696 0.509 0.459 0.678 0.691  
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estimating the model’s parameters using such a method may not result in a generalizable model. 
On the other hand, a novel class of modeling methodology based on the concept of reliability, known as Etemadi1 models, has 

recently been introduced for causal forecasting, classification, and time series prediction. In other words, the Etemadi modeling 
approach is a general methodology that can be implemented on all supervised and unsupervised machine learning methods [42]. These 
proposed models were constructed using a reliability-based parameter estimation process in a such manner that the models’ reliability 
is maximized instead of its accuracy. The underlying notion of the reliability-based modeling procedure is minimizing the performance 
variation of models implemented on validation data in order to yield a generalizable model [43,44]. The effectiveness and superiority 
of generalizability of reliability-based strategy against accuracy-based one, especially in high-risk and highly sensitive domains like as 
medicine were demonstrated [45]. Additionally, the reliability-based approach averagely outperformed the accuracy-based method in 
finance, energy, environment, management, transportation, and engineering scopes [46]. 

Furthermore, some studies directed their attention to assessing the reliability of complex systems. In their research, Li et al. [47] 
integrated the multivariate ensemble model with the hierarchical linkage technique to enhance the precision and efficiency of eval-
uating system reliability for aeroengine cooling blades. Their study highlighted the superiority of the proposed model over boosting 
trees, multivariate ensembles, and ANNs. In a different research, Li et al. [48] created a physics-informed distributed modeling 
approach using Extreme Gradient Boosting (XGBoost) for aeroengine rotor systems that have various failure modes and numerous 
vulnerable locations. Their model demonstrated superior performance compared to SVR, XGBoost, and Multi-Layer Perceptron (MLP). 
Zhang et al. [49] introduced an active extremum Kriging-based multi-level linkage approach that employs active learning techniques to 
identify the most suitable training samples. They also incorporated a multi-level linkage strategy to consider failure correlations, all 
aimed at constructing a reliability framework for intricate, dynamic multi-component systems, including aeroengine mechanism 
systems. Li et al. [50] devised a stratified strategy based on deep learning regression to address the challenges associated with 
correlated relationships and high nonlinearity in the damage assessment of probabilistic combined cycle fatigue. They confirmed the 
efficacy of their approach through testing on a typical turbine bladed disk, accounting for various uncertainties, including material 
variations, model uncertainties, and load fluctuations. In another investigation, Roy and Chakraborty [51] conducted a review of the 
applications of support vector algorithms in structural reliability analysis, considering factors such as computational expenses, the 
order of failure probability, and dimensionality. In the study by Mazhar et al. [52], various machine learning-based charge 

Table 3 
The achieved improvement by the Etemadi reliable-based model compared to the accuracy-based version.  

Category Data Set Improvement (%) 

MAE MSE ARV RMSE 

1) Pharmacology #1 0.230 0.403 0.403 0.202 
#2 0.272 0.435 0.435 0.218 

Average  0.251 0.419 0.419 0.210 
2) Biochemistry #3 78.712 94.166 94.166 75.852 

#4 − 0.285 − 0.604 − 0.604 − 0.302 
Average  39.214 46.781 46.781 37.775 
3) Agrochemical #5 0.774 3.731 3.731 1.883 

#6 1.937 2.250 2.250 1.131 
Average  1.356 2.991 2.991 1.507 
4) Geochemical #7 1.433 − 1.073 − 1.073 − 0.535 

#8 − 0.680 0.040 0.040 0.058 
#9 0.384 0.407 0.407 0.204 

Average  0.379 ¡0.209 ¡0.209 ¡0.091 
5) Biological #10 − 0.301 − 0.516 − 0.516 − 0.258 

#11 − 1.248 1.376 1.376 0.690 
Average  ¡0.775 0.430 0.430 0.216 
6) Toxicity Compound #12 0.493 0.733 0.733 0.367 

#13 − 0.643 − 0.856 − 0.856 − 0.427 
Average  ¡0.075 ¡0.062 ¡0.062 ¡0.030 
7) Pollutants #14 0.551 1.272 1.272 0.638 

#15 1.313 0.866 0.866 0.434 
#16 3.352 1.977 1.977 0.994 

Average  1.739 1.372 1.372 0.689 
8)Physicochemical Properties #17 1.242 1.108 1.108 0.555 
Average  1.242 1.108 1.108 0.555 
9) Gases Experiment #18 1.882 2.347 2.347 1.180 
Average  1.882 2.347 2.347 1.180 
10) Chemical compounds of Food Additives and Ingredients #19 − 0.173 − 0.792 − 0.792 − 0.395 
Average  ¡0.173 ¡0.792 ¡0.792 ¡0.395 
Average  4.697 (0.02)* 5.646 (0.02)* 5.646 (0.02)* 4.342 (0.03)*  

1 Etemadi in the Persian is equivalent to the reliability. 
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management systems were examined, and the findings revealed that Long Short-Term Memory (LSTM) outperformed other models in 
enhancing the reliability and sustainability of the transportation system. 

Based on the current literature review, it is evident that no forecasting models in chemometrics integrate the reliability concept into 
the modeling process. However, considering the dynamic and highly sensitive nature of chemistry experiments and processes, the use 
of a reliable model capable of controlling performance variation is an effective approach to attain stable and generalizable forecasts. To 
address this research gap, in this study, the Etemadi reliability-based modeling strategy is implemented for chemometrics purposes. In 
addition, the performance of the reliability-based modeling strategy is evaluated and compared with its accuracy-based counterpart. 
The main goal of this study is to assess the effectiveness of the reliability factor on the model’s generalizability in chemometrics 
domains. On the other hand, the level of modeling complexity has a significant impact on the generalizability of models, and this 
impact varies depending on the model’s linearity, non-linearity, statistical or intelligent nature, shallowness or depth, and single or 
hybrid structure. To minimize the effect of complexity on generalizability, this paper focuses on using a linear regression model to 
implement the reliability-based modeling strategy. Linear regression is the most popular and commonly used model in chemometrics. 
Moreover, this paper examines the influence of both reliability and accuracy factors on the quality of decision-making in diverse 
applications of chemometrics. To do so, we consider 19 benchmark datasets across various fields including Pharmacology, 
Biochemistry, Agrochemical, Geochemical, Biological, Toxicity Compound, Pollutants, Physicochemical Properties, Gases Experiment, 
and Chemical compounds of Food Additives and Ingredients. We assess the generalizability of the reliability-based modeling strategy 
in comparison with the accuracy-based modeling strategy. In summary, the novelty of this paper can be outlined as follows.  

1) Proposing a new optimal formulation for the reliability-based parameter estimation process.  
2) Applying Etemadi’s reliability-based modeling strategy in various chemometrics applications. 
3) Evaluating the performance of the reliability-based model, comparing it with the accuracy-based model, and specifying the in-

fluence degree of each reliability and accuracy factor on the generalizability of the models. 

The rest of the paper is structured as follows: Section 2 poses the problem statement, followed by the presentation of the reliability- 
based parameter estimation process in Section 3. Section 4 offers a description of the chemistry benchmark datasets considered in the 
study. Section 5 evaluates and compares the performance of the reliability-based modeling strategy against the accuracy-based one. 
The discussion, conclusions, and future research potentials are expressed in Sections 6 and 7. 

2. Problem statement 

In the field of chemometrics, researchers often use a range of statistical and machine-learning models for descriptive and predictive 
purposes in chemistry, which is inherently an experimental science. In descriptive applications, chemical systems are modeled to learn 
the basic relationships and structure of the experiments and processes. In predictive applications, chemical systems are modeled to 
forecast new properties or behaviors of interest. There is currently a significant amount of interest among scholars in the development 
of novel modeling approaches in the field of chemometrics, which is an application-driven science. Modeling approaches in chemo-
metrics for predictive purposes are developed with the goal of maximizing the generalizability of the model. In other words, the 
principal objective of statistical and intelligent modeling methods is to achieve high accuracy in unavailable and test data using a 
generalizable model. To this end, researchers typically focus on two main categories of modeling approaches: those that aim to 
maximize the accuracy of training data and those that prioritize maximizing the reliability of the model. These two approaches involve 
distinct strategies for designing parameter estimation processes and cost functions in the learning procedures of statistical and 
intelligent models. Accuracy-based models are established by maximizing performance metrics on the training data. In contrast, the 
reliability-based approach is developed by minimizing changes in performance metrics on validation data. 

The dominant number of the parameter estimation processes are designed based on maximizing the accuracy in the training data. 
The Ordinary Least Square (OLS), being the most popular and widely used technique for parameter estimation, is established based on 
the aforementioned concept and falls into the category of accuracy-based methods. In the OLS method, the parameters of the model are 
estimated in a way that minimizes the sum of squared differences between the actual and predicted values of the target variable. The 
ultimate goal of this process is to create a model that can be generalized to test data that is inaccessible during the training phase. In 
other words, the fundamental assumption of such a procedure is that maximizing accuracy in the training data leads to the maximum 
generalizability of the model in the test set. While this is a logical and practical strategy, it is not the only one that guarantees high 
generalizability. On the other hand, previous research has indicated that, in addition to accuracy, reliability is another critical 
influential factor in the model’s generalizability. Reliability is defined as confidence in the model’s accuracy, ensuring that the desired 
results can be reproduced [42]. From another standpoint, in situations where the risks are high and there is a high degree of variability, 
achieving stable and reliable results is of utmost importance [43,44]. Consequently, to address the changeable nature and high 
sensitivity of chemistry experiments and processes, this paper applies the concept of reliability to statistical modeling processes. A new 
formulation of the reliability-based parameter estimation procedure for chemometrics issues is proposed, aiming to provide stable and 
generalizable forecasts. 

3. Reliability-based parameter estimation process 

Among chemometrics models, the linear regression model is prevalent and extensively used as a linear statistical method for 
discovering the relationship between a set of descriptive attributes and a target variable. Specifically, forecasting and analysis are two 
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principal purposes for utilizing this type of model in chemometrics issues. Typically, the implementation procedure of the regression 
model comprises three steps as follows: 1) Feature Selection: Initially selecting the relevant explanatory variables that describe the 
target variable. 2) Designing Structure: Specifying the parameter estimation process to determine the coefficients of independent 
variables in the model. 3) Forecasting or Analyzing: Ultimately, the regression model can be employed to survey and evaluate the 
impact rate of each descriptive attribute on the target variable or forecast the desired value of the dependent variable based on 
specified values of independent variables. 

Generally, a k-variable linear regression model involving the dependent variable Y and k − 1 independent or explanatory variables 
X2,X3, ...,Xk can be written as follows: 

Yt = β1 + β2X2t + β3X3t + ...+ βkXkt + ut t = 1, 2, 3, ...,N + n + N′ (1)  

where, β1 is the intercept, β2 to βk are the partial slope coefficients, u is the stochastic disturbance term, and N + n + N′ is the total 
sample size. 

The reliability-based modeling approach differs from the accuracy-based strategy by emphasizing the importance of reliability in 
maximizing a model’s generalizability and minimizing uncertainty. As a result, in this type of modeling approach, the emphasis is on 
maximizing the model’s reliability rather than its accuracy. The underlying idea of the reliability-based modeling procedure is esti-
mating the parameters of the model in a way that the performance changes of the implemented models across different data points are 
minimized. Based on this, in the Etemadi modeling approach, the uncertainty in the parameter estimation process is considered and 
quantified, aiming to minimize the model’s uncertainty. In other words, the concept of reliability plays a crucial role in designing the 
parameter estimation procedure to minimize the variance of the performance criterion. 

The reliability-based modeling process begins by splitting the dataset into three parts: training, validation, and testing, which 
respectively contain N, n, and Nʹ data points. After that, the validation set is subdivided into n parts. In the first stage, the initial 
validation data point is added to the training set, and the mean square of differences between the actual and predicted values for this 
data point is calculated. This process is repeated for the second and subsequent validation data points until all validation data have 
been included in the training set. Consequently, the final mean square error is calculated based on the training data and all validation 
data. To achieve the most reliable regression line according to the reliability-based modeling strategy, the mean square errors at each 
stage based on the validation data points should be roughly equal to each other. 

MSEj ≅ MSEj′ ∀j, j′ j ∕= j′ (2)  

This can be summarized as follows: 

nMSE1 ≅MSE1 + MSE2 + MSE3 + … + MSEn (3) 

By substituting the actual and predicted values into Eq. (3), Eq. (4) can be represented in the following manner: 

n
N

∑N

t=1

(

Yt −
∑k

i=1
β̂1iXit

)2

≅
∑n

j=1

∑N+j

t=1

1
N + j

(

Yt −
∑k

i=1
β̂jiXit

)2

(4) 

The reliability-based regression can be constructed, by minimizing the differences between each pair of mean square errors across 
all validation data points. The mathematical formulation of this concept is shown in Eq. (5). 

Min f
(

β̂ji
)
=

n
N

∑N

t=1

(

Yt −
∑k

i=1
β̂1iXit

)2

−
∑n

j=0

∑N+j

t=1

1
N + j

(

Yt −
∑k

i=1
β̂jiXit

)2

(5) 

As a consequence, to obtain a reliable regression model with the lowest uncertainty, the unknown parameters of all regression lines 
must be substituted with reliability-based parameters, as shown in Eq. (6). 

β̂ji = β̂ei j = 1, 2, ..., n i = 1, 2, ..., k (6)  

Where, β̂ei is the ith parameter of the reliability-based regression. Accordingly, by partially differentiating Eq. (7) with respect to β̂e1,

β̂e2, β̂e3, ..., β̂ek according to Eq. (8) and setting the result to zero, k simultaneous equations with k unknown coefficients are yielded, as 
shown in Eq. (9). 

Min f (β̂ei) =
n
N

∑N

t=1

(

Yt −
∑k

i=1
β̂eiXit

)2

−
∑n

j=0

∑N+j

t=1

1
N + j

(

Yt −
∑k

i=1
β̂eiXit

)2

(7)    
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Therefore, we have that 

β̂e2

(
n − 1

N
∑N

t=1
X2t −

∑n

j=1

∑N+j

t=1

1
N+ j

X2t

)

+ ........................+ β̂ek

(
n − 1

N
∑N

t=1
Xkt −

∑n

j=1

∑N+j

t=1

1
N+ j

Xkt

)

=
n − 1

N
∑N

t=1
Yt −

∑n

j=1

∑N+j

t=1

1
N+ j

Yt

β̂e1

(
n − 1

N
∑N

t=1
X2tX1t −

∑n

j=1

∑N+j

t=1

1
N+ j

X2tX1t

)

+ ...+ β̂ek

(
n − 1

N
∑N

t=1
X2tXkt −

∑n

j=1

∑N+j

t=1

1
N+ j

X2tXkt

)

=
n − 1

N
∑N

t=1
X2tYt −

∑n

j=1

∑N+j

t=1

1
N+ j

X2tYt

.

.

.

β̂e1

(
n − 1

N
∑N

t=1
XktX1t −

∑n

j=1

∑N+j

t=1

1
N+ j

XktX1t

)

+ ................+ β̂ek

(
n − 1

N
∑N

t=1
X2

kt −
∑n

j=1

∑N+j

t=1

1
N+ j

X2
kt

)

=
n − 1

N
∑N

t=1
XktYt −

∑n

j=1

∑N+j

t=1

1
N+ j

XktYt

(9)  

in matrix form, it can be represented as follows: 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 A(X2t) − B(X2t) ... A(Xkt) − B(Xkt)

A(X2tX1t) − B(X2tX1t) A
(
X2

2t

)
− B

(
X2

2t

)
... A(X2tXkt) − B(X2tXkt)

... ... ... ...

A(XktX1t) − B(XktX1t) A(XktX2t) − B(XktX2t) ... A
(
X2

kt

)
− B

(
X2

kt

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

β̂e1
β̂e2
...

β̂ek

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

A(Yt) − B(Yt)

A(X2tYt) − B(X2tYt)

...

A(XktYt) − B(XktYt)

⎤

⎥
⎥
⎦ (10)  

For i, i′ = 1,2, ...,k, we have that: 
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n − 1
N

∑N

t=1
Xit = A(Xit),

n − 1
N

∑N

t=1
XitXi′t = A(XitXi′t),

n − 1
N

∑N

t=1
X2

it = A
(
X2

it

)

∑n

j=1

∑N+j

t=1

1
N + j

Xit = B(Xit),
∑n

j=1

∑N+j

t=1

1
N + j

XitXi′t = B(XitXi′t),
∑n

j=1

∑N+j

t=1

1
N + j

X2
it = B

(
X2

it

)

n − 1
N

∑N

t=1
Yt = A(Yt),

n − 1
N

∑N

t=1
XitYt = A(XitYt),

∑n

j=1

∑N+j

t=1

1
N + j

Yt = B(Yt),
∑n

j=1

∑N+j

t=1

1
N + j

XitYt = B(XitYt),

in this manner, the reliability-based cost function is mathematically formulated for regression as a linear statistical model. By solving 
Eq. (10), the unknown coefficients of each explanatory variable in the reliability-based regression can be determined. For example, in a 
2-variable regression model, the reliability-based parameters can be obtained as follows: 

β̂e1 =

(A(X2tYt) − B(X2tYt)) −

(
A(Yt)− B(Yt)

(A(X2t)− B(X2t))

)
(
A
(
X2

2t

)
− B

(
X2

2t

))

(A(X2tX1t) − B(X2tX1t))
(11)  

β̂e2 =
A(Yt) − B(Yt)

(A(X2t) − B(X2t))
(12)  

in the final analysis, this paper highlights both the advantages and disadvantages of the Etemadi regression model when contrasted 
with classical regression models. While the chemometrics literature has introduced various forms of regression for causal modeling in 
diverse fields, it is notable that despite the apparent distinctions among these methods, they all rely on accuracy-based parameter 
estimation and learning techniques. Therefore, (1) The primary advantage of the Etemadi regression model over classical regression 
lies in its formulation of the reliability concept in the design of the parameter estimation process and training framework for statistical 
modeling, resulting in the creation of more accurate and generalizable models. (2) The Etemadi regression model adopts a risk-based 
modeling strategy that, in contrast to classical regression models, seeks to maximize the model’s reliability or, equivalently, minimize 
the model’s uncertainty. This approach leads to the development of a more accurate and efficient model that exhibits strong gener-
alizability, particularly for inaccessible/test data in high-risk and sensitive real-world situations. (3) The Etemadi regression model 
considers and quantifies uncertainty in the parameter estimation process, resulting in the minimization of the model’s uncertainty. In 
contrast, the classical regression model disregards uncertainty and operates as a deterministic model. (4) The Etemadi regression 
model is built upon the principle of minimizing the variance of the performance criterion across various data points, leading to a higher 
reliability level of accuracy in inaccessible or test data. This is distinct from the classical regression model, which focuses on mini-
mizing errors within the available historical or training data. On the other hand, the formulation complexity of the Etemadi regression 
model, which is built on the reliability-based parameter estimation process, is higher than that of classical regression models. However, 
the coefficients of the Etemadi regression model are optimally determined. 

4. Data description 

The purpose of this paper is to conduct a thorough evaluation of the performance of a modeling approach based on reliability as 
opposed to one based on accuracy. To accomplish this, the study utilizes 19 benchmark datasets acquired from the UCI [53] and Kaggle 
databases, covering various chemistry fields including Pharmacology, Biochemistry, Agrochemical, Geochemical, Biological, Toxicity 
Compound, Pollutants, Physicochemical Properties, Gases Experiment, and Chemical compounds of Food Additives and Ingredients. 
These datasets vary in sample size, ranging from 92 to 295,679, and contain between 4 and 81 explanatory variables of different types, 
including real and integer, as detailed in Table (1). 

5. Empirical result 

This research paper employs a random sampling method, where 85% of the data is randomly selected for training and validation, 
with 10% of that subset held out for validation, and the remaining 15% reserved for testing. To ensure the randomness of the selection 
does not impact the results, the estimation process is repeated 100 times. Both the proposed Etemadi regression and the classic 
regression are modeled using Phyton and MATLAB software. Table (2) and Table (3) present the results for the Mean Absolute Error 
(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Average Relative Variance (ARV) of both the reliability- 
based MLR and classic MLR models. The tables also include the percentage improvement of the proposed model over the classic 
version for all 19 benchmark datasets. Additionally, the formulas for these evaluation metrics are provided in Eq. (13) to Eq. (16). 

MAE=
1
N′

∑N+n+N′

t=N+n+1
|yt − ŷt| (13) 
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MSE=
1
N′

∑N+n+N′

t=N+n+1
(yt − ŷt)

2 (14)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N′

∑N+n+N′

t=N+n+1
(yt − ŷt)

2

√
√
√
√ (15)  

ARV =
∑N+n+N′

t=N+n+1
(yt − ŷt)

2
/

∑N+n+N′

t=N+n+1
(yt − yt)

2 (16)  

This section presents an analysis and comparison of the outcomes of the Etemadi and conventional models. The comparison is based 
on the number and percentage of cases in which one model outperforms the other, as well as the improvement in generalization ability. 
The Etemadi model demonstrates superior performance in 12 cases (63.16%), excelling in all MAE, MSE, RMSE, and ARV metrics. In 
15 cases (78.95%), it shows higher performance based on at least one of the evaluation measurements. However, the proposed 
reliability-based MLR exhibits lower generalizability compared to the conventional accuracy-based model in 4 cases (21.05%). 
Therefore, these results emphasize the significance and efficacy of incorporating the reliability factor, in addition to accuracy, to 
enhance the generalizability of linear regression in chemometrics applications. 

Upon further analysis, as depicted in Fig. (1), these findings demonstrate that the reliability-based modeling approach exhibited 
greater generalizability on average compared to the accuracy-based strategy in terms of MAE, MSE, ARV, and RMSE by 4.697%, 
5.646%, 5.646%, and 4.342%, respectively. The superior generalizability of the proposed MLR model, compared to the conventional 
version in the chemistry benchmark dataset, underscores the importance and effectiveness of considering the reliability factor in the 
parameter estimation process to handle uncertainty. Additionally, the statistical significance of the improvement obtained through the 
reliability-based modeling approach across various chemometrics applications was tested in contrast to the accuracy-based modeling 
approach. A statistical T-test confirms that the accuracy improvement obtained by the reliability-based method is significant in all of 
these metrics at the 2%, 2%, 2%, and 3% levels, respectively. This implies that the probability of the Etemadi MLR method’s 
generalizability superiority over the classic method is at least 97%. These findings indicate that both accuracy and reliability play 
crucial roles in generalization ability, but reliability holds greater importance than accuracy in dealing with uncertain scenarios in 
chemometric applications. Hence, it is advisable to prefer the Etemadi MLR method over the classic method in unfamiliar situations or 
when selecting a modeling strategy blindly. 

The study aimed to determine the data characteristics that influence the superiority of reliability- or accuracy-based modeling 

Fig. 1. The achieved improvement by reliability-based modeling strategy than accuracy-based one based on each domain of study and averagely all 
of them. 
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strategies. To achieve this, the statistical significance of various factors, including sample size, number of attributes, data type, and 
application fields, on the generalizability of the reliability-based MLR is examined using the results of 19 case studies. The findings 
show that only data type significantly influenced the superiority of the Etemadi MLR method, with a significance level of 0. However, 
other factors, such as sample size, number of attributes, and application fields, do not have a statistically significant impact on su-
periority, improvement percentage, or ranking of improvement percentage. Therefore, the effect of data characteristics on the pro-
posed method’s superiority over the classic one cannot be inferred. Further investigation with additional variables and data is 
necessary to identify the effective explanatory variables. 

Additionally, to offer a more comprehensive evaluation of the proposed reliability-based MLR, its effectiveness is compared to 
accuracy-based versions using four metrics: MAE, MSE, RMSE, and ARV. This comparison is conducted across ten different fields of 
chemistry benchmarks, which include Pharmacology, Biochemistry, Agrochemical, Geochemical, Biological, Toxicity Compound, 
Pollutants, Physicochemical Properties, Gases Experiment, and Chemical Compounds of Food Additives and Ingredients. Results 
presented in Fig. (1) illustrate that the proposed method can, on average, enhance the generalizability of the classic model in Phar-
macology, Biochemistry, Agrochemical, Geochemical, Pollutants, Physicochemical Properties, and Gases Experiment fields by 
0.251%, 39.214%, 1.356%, 0.379%, 1.739%, 1.242%, and 1.882%, respectively, based on the MAE metric. Furthermore, the proposed 
reliability-based MLR model consistently outperforms the conventional MLR model in multiple domains, including Pharmacology, 
Biochemistry, Agrochemical, Biological, Pollutants, Physicochemical Properties, and Gases Experiment. The improvements are 
observed in terms of MSE and ARV evaluation measurements, with percentages of 0.419%, 46.781%, 2.991%, 0.430%, 1.372%, 
1.108%, and 2.347%, respectively. Additionally, according to the RMSE metric, the improvements are 0.210%, 37.775%, 1.507%, 
0.216%, 0.689%, 0.555%, and 1.180%, respectively. However, in the domains of Toxicity Compounds and Chemical Compounds of 
Food Additives and Ingredients, the proposed model’s performance in terms of MAE, MSE, ARV, and RMSE metrics is, on average, 
lower than the accuracy-based MLR. Additionally, the accuracy-based modeling strategy is, on average, superior to the reliability- 
based one in the Biological domain based on MAE and in the Geochemical domain based on MSE, ARV, and RMSE metrics. Thus, 
the empirical outcomes suggest that the Etemadi MLR outperforms the classic MLR in over half of the application domains. 

In this analysis, it can be observed that the proposed model shows varying levels of improvement based on the MAE metric across 
different domains. The category of Biochemistry includes the case with the highest improvement of 78.712%, while Pharmacology 
shows the lowest improvement at 0.230%. Further investigation reveals that the top five improvements achieved by the proposed 
model over the classic version are in cases that belong to the fields of Biochemistry, Pollutants, Agrochemical, Gases Experiment, and 
Geochemical, with MAE improvements of 78.712%, 3.352%, 1.937%, 1.882%, and 1.433%, respectively. To provide a more 
comprehensive evaluation, the performance of the proposed MLR is also compared to the MSE and ARV of the classic model. Based on 
the five highest improvements, the proposed model enhances the generalizability of the classic model by 94.166%, 3.731%, 2.347%, 

Fig. 2. Pattern of the target variable (Y) of some case studies that the reliability-based modeling strategy is superior to the accuracy-based one.  
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2.250%, and 1.977% for the cases that fall into the categories of Biochemistry, Agrochemical, Gases Experiment, Agrochemical, and 
Pollutants, respectively. In general, the proposed MLR model achieves its highest and lowest improvements in cases related to the 
Biochemistry and Geochemical domains, with improvements of 94.166% and 0.04%, respectively. Similarly, when using the RMSE 
metric, the highest and lowest improvements are observed in cases dedicated to the Biochemistry and Geochemical domains, with 
improvements of 75.852% and 0.058%, respectively. Looking more closely, the five domains of cases with the highest improvements 
over the classic version were Biochemistry, Agrochemical, Gases Experiment, Agrochemical, and Pollutants, with improvements of 
75.852%, 1.883%, 1.180%, 1.131%, and 0.994%, respectively. While it may be expected that the proposed MLR approach is generally 
superior to the classic MLR in various fields of chemometric applications, it highlights the importance of the proposed parameter 
estimation process in minimizing uncertainty in the machine learning procedure. 

Looking from a different angle, Fig. (2) displays charts of the target variable (Y) from several case studies, demonstrating the 
superiority of the reliability-based modeling strategy over the accuracy-based one. The charts reveal that the Y-variable data exhibit 
highly complex patterns characterized by irregular fluctuations and periods, resulting in significant uncertainty. As anticipated, in 
chemometric applications that involve highly sensitive and variable chemical processes and experiments, result uncertainty is notably 
increased. The Etemadi modeling strategy, which incorporates the reliability concept in parameter estimation and learning proced-
ures, has emerged as the leading approach to minimizing result uncertainty in the modeling paradigm. Consequently, it is generally 
expected that reliability-based modeling strategies will achieve better results on average than accuracy-based approaches. 

6. Discussion 

The primary focus of this section is to provide a summary of significant research efforts. Subsequently, it offers an analysis and 
discussion of the research findings.  

1) This paper presents pioneering research that introduces the Etemadi reliability-based modeling methodology for the first time in 
the field of chemometrics. The study investigates ten significant chemistry application domains, encompassing various fields such 
as Pharmacology, Biochemistry, Agrochemical, Geochemical, Biological, Toxicity Compound, Pollutants, Physicochemical Prop-
erties, Gases Experiment, and Chemical Compounds of Food Additives and Ingredients.  

2) The study examined the contribution of each reliability and accuracy factor to achieving a high level of generalization, particularly 
in the field of chemometrics. To ensure the study’s accuracy, several evaluation metrics, including MAE, MSE, RMSE, and ARV, 
were taken into account, ensuring that the outcomes of this study are not affected by the type of measurement. 

3) The varying levels of generalizability among models, resulting from differences in their structure, complexity, and learning pro-
cesses, present a challenge, regardless of the modeling strategy used. To overcome this issue, a solution was proposed: the utili-
zation of multiple linear regression, a widely-used chemometrics model belonging to the category of simple linear statistical models 
that employ a direct optimal learning procedure. The reliability-based modeling strategy was specifically implemented for multiple 
linear regression to enhance its efficacy.  

4) This paper aimed to assess and compare the generalizability of the two most prominent methodologies utilized in the modeling 
paradigm that employs reliability or accuracy concepts when designing parameter estimation processes. To achieve this, the study 
eliminated the impact of factors such as data characteristics and model complexity on the generalizability of these two strategies. 
This was accomplished by considering several benchmark datasets and applying the MLR model.  

5) The outcome of the proposed reliability-based chemometric regression was compared to that of the accuracy-based regression 
model, with no consideration given to other types of machine learning models. This decision was made because the generalizability 
of accuracy-based models, which do not belong to the class of statistical linear models, is influenced not only by the modeling 
approach but also by complexity, structure, and learning algorithms. Hence, comparing the performances of Etemadi regression to 
other categories of models, such as non-linear, fuzzy, or intelligent models, would not align with the purpose of this study. 
Nevertheless, the reliability-based modeling strategy can be applied to a range of other models, including non-linear, fuzzy, 
intelligent, and shallow/deep models, and their generalization ability can be compared with their accuracy-based counterparts.  

6) The empirical evidence supports the effectiveness of reliability in enhancing generalizability. Additionally, it was statistically 
proven that reliability has a greater impact on improving the generalizability of chemometric models than accuracy, with a sig-
nificance level of at least 3%. Consequently, adopting a modeling approach based on reliability can improve generalizability by an 
average of 5.1% compared to an accuracy-based approach, according to various metrics such as MAE, MSE, RMSE, and ARV.  

7) From another standpoint, the study conducted an analysis of the effectiveness of a reliability-based strategy versus an accuracy- 
based approach across ten different chemometric fields. The results revealed that the proposed Etemadi MLR outperformed the 
classic MLR in eight domains, namely Pharmacology, Biochemistry, Agrochemical, Geochemical, Biological, Pollutants, Physico-
chemical Properties, and Gases Experiment. However, in only two domains, namely Toxicity Compound and Chemical Compounds 
of Food Additives and Ingredients, the Etemadi MLR averagely exhibited slightly lower performance than the classic MLR, with 
differences of 0.1% and 0.5%, respectively. 

7. Conclusion 

This paper introduces a novel formulation of the reliability concept into the parameter estimation process of chemometric models, 
aiming to design models that are both more accurate and more generalizable. The proposed model, employing a reliability-based 
learning process for training and parameter estimation, has demonstrated its success in achieving accurate and generalizable 
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results. The study confirms the effectiveness and superior performance of the reliability-based model when compared to the accuracy- 
based model across a range of chemistry benchmark datasets. The key findings can be summarized as follows.  

(1) Incorporating the concept of reliability into the design framework of chemometric models to address the challenges posed by 
the variable and highly sensitive nature of chemistry experiments and processes is a promising approach that significantly 
contributes to achieving high generalizability. 

(2) The proposed reliability-based model was evaluated using several assessment metrics and a variety of chemometrics applica-
tions with diverse characteristics, including Pharmacology, Biochemistry, Agrochemical, Geochemical, Biological, Toxicity 
Compound, Pollutants, Physicochemical Properties, Gases Experiment, and Chemical Compounds of Food Additives and In-
gredients. Based on empirical results, the reliability-based model exhibited an average performance improvement of 5.1% in 
terms of generalization ability compared to the accuracy-based model.  

(3) The statistically significant superiority of the proposed model emphasizes the pivotal role of the reliability factor within the 
learning algorithm of causal models, contributing to their generalizability. In this context, incorporating reliability-based 
learning and parameter estimation processes into causal models stands out as a remarkable approach for addressing high- 
risk and sensitive scenarios, as well as for modeling uncertainty. This approach has resulted in the superior performance of 
the proposed model when compared to the accuracy-based model.  

(4) The proposed reliability-based method represents a logical, viable, and efficient approach that can be implemented in all 
categories of statistical and intelligent chemometric models, making it a promising area for future research. Furthermore, future 
studies can investigate the influence of data features and characteristics on the superior generalizability of the proposed method 
compared to traditional models. 
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[4] H. Haghnazar, K.H. Johannesson, R. González-Pinzón, M. Pourakbar, E. Aghayani, A. Rajabi, A.A. Hashemi, Groundwater geochemistry, quality, and pollution 
of the largest lake basin in the Middle East: comparison of PMF and PCA-MLR receptor models and application of the source-oriented HHRA approach, 
Chemosphere 288 (2022) 132489, https://doi.org/10.1016/j.chemosphere.2021.132489. 

[5] A. Das, N. Bar, S.K. Das, Pb (II) adsorption from aqueous solution by nutshells, green adsorbent: adsorption studies, regeneration studies, scale-up design, its 
effect on biological indicator and MLR modeling, J. Colloid Interface Sci. 580 (2020) 245–255, https://doi.org/10.1016/j.jcis.2020.07.017. 

[6] A.A. Toropov, M.R. Di Nicola, A.P. Toropova, A. Roncaglioni, E. Carnesecchi, N.I. Kramer, A.J. Williams, M.E. Ortiz-Santaliestra, E. Benfenati, J.L.C. Dorne, 
A regression-based QSAR-model to predict acute toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica): calibration, validation, 

S. Etemadi and M. Khashei                                                                                                                                                                                          

https://doi.org/10.1016/j.chemolab.2022.104493
https://doi.org/10.1016/j.bej.2022.108774
https://doi.org/10.1016/j.still.2022.105502
https://doi.org/10.1016/j.chemosphere.2021.132489
https://doi.org/10.1016/j.jcis.2020.07.017


Heliyon 10 (2024) e26399

13

and future developments to support risk assessment of chemicals in amphibians, Sci. Total Environ. 830 (2022) 154795, https://doi.org/10.1016/j. 
scitotenv.2022.154795. 

[7] L. Yu, T. Zheng, R. Yuan, X. Zheng, APCS-MLR model: a convenient and fast method for quantitative identification of nitrate pollution sources in groundwater, 
J. Environ. Manag. 314 (2022) 115101, https://doi.org/10.1016/j.jenvman.2022.115101. 

[8] A. Shahi, H.V. Molamahmood, N. Faraji, M. Long, Quantitative structure-activity relationship for the oxidation of organic contaminants by peracetic acid using 
GA-MLR method, J. Environ. Manag. 310 (2022) 114747, https://doi.org/10.1016/j.jenvman.2022.114747. 

[9] L. Jin, H. Ye, Y. Shi, L. Li, R. Liu, Y. Cai, J. Li, F. Li, Z. Jin, Using PCA-APCS-MLR model and SIAR model combined with multiple isotopes to quantify the nitrate 
sources in groundwater of Zhuji, East China, Appl. Geochem. 143 (2022) 105354, https://doi.org/10.1016/j.apgeochem.2022.105354. 

[10] M. Varol, G. Karakaya, K. Alpaslan, Water quality assessment of the Karasu River (Turkey) using various indices, multivariate statistics and APCS-MLR model, 
Chemosphere 308 (2022) 136415, https://doi.org/10.1016/j.chemosphere.2022.136415. 

[11] B. Souyei, S. Meneceur, A. Khechekhouche, QSPR study on thermal energy of aliphatic Aldehydes using molecular descriptors and MLR technique, Mater. 
Today: Proc. 51 (2022) 2157–2162, https://doi.org/10.1016/j.matpr.2022.01.302. 

[12] J. Niimi, O. Tomic, T. Næs, D.W. Jeffery, S.E. Bastian, P.K. Boss, Application of sequential and orthogonalised-partial least squares (SO-PLS) regression to predict 
sensory properties of Cabernet Sauvignon wines from grape chemical composition, Food Chem. 256 (2018) 195–202, https://doi.org/10.1016/j. 
foodchem.2018.02.120. 
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derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database, Chemosphere 165 
(2016) 434–441, https://doi.org/10.1016/j.chemosphere.2016.09.041. 

[34] A. Mandal, N. Bar, S.K. Das, Phenol removal from wastewater using low-cost natural bioadsorbent neem (Azadirachta indica) leaves: adsorption study and MLR 
modeling, Sustainable Chemistry and Pharmacy 17 (2020) 100308, https://doi.org/10.1016/j.scp.2020.100308. 

[35] A.G. More, S.K. Gupta, Predictive modelling of chromium removal using multiple linear and nonlinear regression with special emphasis on operating parameters 
of bioelectrochemical reactor, J. Biosci. Bioeng. 126 (2) (2018) 205–212, https://doi.org/10.1016/j.jbiosc.2018.02.013. 

[36] K. Abrougui, K. Gabsi, B. Mercatoris, C. Khemis, R. Amami, S. Chehaibi, Prediction of organic potato yield using tillage systems and soil properties by artificial 
neural network (ANN) and multiple linear regressions (MLR), Soil Tillage Res. 190 (2019) 202–208, https://doi.org/10.1016/j.still.2019.01.011. 

[37] Z. Du, Y. Hu, N.A. Buttar, Analysis of mechanical properties for tea stem using grey relational analysis coupled with multiple linear regression, Sci. Hortic. 260 
(2020) 108886, https://doi.org/10.1016/j.scienta.2019.108886. 

[38] B.M. Robert, G.R. Brindha, B. Santhi, G. Kanimozhi, N.R. Prasad, Computational models for predicting anticancer drug efficacy: a multi linear regression 
analysis based on molecular, cellular and clinical data of oral squamous cell carcinoma cohort, Comput. Methods Progr. Biomed. 178 (2019) 105–112, https:// 
doi.org/10.1016/j.cmpb.2019.06.011. 

[39] A. Hosseinzadeh, M. Baziar, H. Alidadi, J.L. Zhou, A. Altaee, A.A. Najafpoor, S. Jafarpour, Application of artificial neural network and multiple linear regression 
in modeling nutrient recovery in vermicompost under different conditions, Bioresour. Technol. 303 (2020) 122926, https://doi.org/10.1016/j. 
biortech.2020.122926. 

[40] W. Tang, Y. Li, Y. Yu, Z. Wang, T. Xu, J. Chen, J. Lin, X. Li, Development of models predicting biodegradation rate rating with multiple linear regression and 
support vector machine algorithms, Chemosphere 253 (2020) 126666, https://doi.org/10.1016/j.chemosphere.2020.126666. 

S. Etemadi and M. Khashei                                                                                                                                                                                          

https://doi.org/10.1016/j.scitotenv.2022.154795
https://doi.org/10.1016/j.scitotenv.2022.154795
https://doi.org/10.1016/j.jenvman.2022.115101
https://doi.org/10.1016/j.jenvman.2022.114747
https://doi.org/10.1016/j.apgeochem.2022.105354
https://doi.org/10.1016/j.chemosphere.2022.136415
https://doi.org/10.1016/j.matpr.2022.01.302
https://doi.org/10.1016/j.foodchem.2018.02.120
https://doi.org/10.1016/j.foodchem.2018.02.120
https://doi.org/10.1016/j.chemolab.2021.104485
https://doi.org/10.1016/j.jenvman.2021.112674
https://doi.org/10.1016/j.ecolind.2022.109324
https://doi.org/10.1016/j.jksus.2018.05.023
https://doi.org/10.1016/j.aca.2021.338453
https://doi.org/10.1016/j.chemolab.2015.01.001
https://doi.org/10.1016/j.scitotenv.2021.148762
https://doi.org/10.1016/j.fluid.2021.113035
https://doi.org/10.1016/j.rser.2020.109890
https://doi.org/10.1016/j.vibspec.2020.103157
https://doi.org/10.1016/j.saa.2020.118116
https://doi.org/10.1016/j.engappai.2019.03.026
https://doi.org/10.1016/j.trd.2015.12.007
https://doi.org/10.1016/j.jksus.2018.08.010
https://doi.org/10.1016/j.bse.2020.104052
https://doi.org/10.1016/j.chemosphere.2017.07.131
https://doi.org/10.1016/j.jhazmat.2015.11.003
https://doi.org/10.1016/j.jhazmat.2015.11.003
https://doi.org/10.1016/j.eti.2018.06.013
https://doi.org/10.1016/j.scitotenv.2017.03.021
https://doi.org/10.1016/j.scitotenv.2017.11.344
https://doi.org/10.1016/j.chemosphere.2016.09.041
https://doi.org/10.1016/j.scp.2020.100308
https://doi.org/10.1016/j.jbiosc.2018.02.013
https://doi.org/10.1016/j.still.2019.01.011
https://doi.org/10.1016/j.scienta.2019.108886
https://doi.org/10.1016/j.cmpb.2019.06.011
https://doi.org/10.1016/j.cmpb.2019.06.011
https://doi.org/10.1016/j.biortech.2020.122926
https://doi.org/10.1016/j.biortech.2020.122926
https://doi.org/10.1016/j.chemosphere.2020.126666


Heliyon 10 (2024) e26399

14

[41] R. Rendall, A.C. Pereira, M.S. Reis, Advanced predictive methods for wine age prediction: Part I–A comparison study of single-block regression approaches based 
on variable selection, penalized regression, latent variables and tree-based ensemble methods, Talanta 171 (2017) 341–350, https://doi.org/10.1016/j. 
talanta.2016.10.062. 

[42] S. Etemadi, M. Khashei, Etemadi multiple linear regression, Measurement 186 (2021) 110080, https://doi.org/10.1016/j.measurement.2021.110080. 
[43] S. Etemadi, M. Khashei, Accuracy versus reliability-based modelling approaches for medical decision making, Comput. Biol. Med. 141 (2022) 105138, https:// 

doi.org/10.1016/j.compbiomed.2021.105138. 
[44] S. Etemadi, M. Khashei, S. Tamizi, Etemadi reliability-based multi-layer perceptrons for classification and forecasting, Inf. Sci. 651 (2023) 119716, https://doi. 

org/10.1016/j.ins.2023.119716. 
[45] M. Khashei, N. Bakhtiarvand, S. Etemadi, A novel reliability-based regression model for medical modeling and forecasting, Diabetes Metabol. Syndr.: Clin. Res. 

Rev. 15 (6) (2021) 102331, https://doi.org/10.1016/j.dsx.2021.102331. 
[46] Z. Hajirahimi, M. Khashei, S. Etemadi, A novel class of reliability-based parallel hybridization (RPH) models for time series forecasting, Chaos, Solit. Fractals 

156 (2022) 111880, https://doi.org/10.1016/j.chaos.2022.111880. 
[47] X.Q. Li, L.K. Song, Y.S. Choy, G.C. Bai, Multivariate ensembles-based hierarchical linkage strategy for system reliability evaluation of aeroengine cooling blades, 

Aero. Sci. Technol. 138 (2023) 108325, https://doi.org/10.1016/j.ast.2023.108325. 
[48] X.Q. Li, L.K. Song, G.C. Bai, D.G. Li, Physics-informed distributed modeling for CCF reliability evaluation of aeroengine rotor systems, Int. J. Fatig. 167 (2023) 

107342, https://doi.org/10.1016/j.ijfatigue.2022.107342. 
[49] H. Zhang, L.K. Song, G.C. Bai, X.Q. Li, Active extremum Kriging-based multi-level linkage reliability analysis and its application in aeroengine mechanism 

systems, Aero. Sci. Technol. 131 (2022) 107968, https://doi.org/10.1016/j.ast.2022.107968. 
[50] X.Q. Li, L.K. Song, G.C. Bai, Deep learning regression-based stratified probabilistic combined cycle fatigue damage evaluation for turbine bladed disks, Int. J. 

Fatig. 159 (2022) 106812, https://doi.org/10.1016/j.ijfatigue.2022.106812. 
[51] A. Roy, S. Chakraborty, Support Vector Machine in Structural Reliability Analysis: A Review, Reliability Engineering & System Safety, 2023 109126, https:// 

doi.org/10.1016/j.ress.2023.109126. 
[52] T. Mazhar, R.N. Asif, M.A. Malik, M.A. Nadeem, I. Haq, M. Iqbal, M. Kamran, S. Ashraf, Electric vehicle charging system in the smart Grid using different 

machine learning methods, Sustainability 15 (3) (2023) 2603, https://doi.org/10.3390/su15032603. 
[53] D. Dua, C. Graff, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2019. http://archive.ics. 

uci.edu/ml. 
[54] http://archive.ics.uci.edu/ml/datasets.php. 
[55] http://iutbox.iut.ac.ir/index.php/apps/files/Econometrics data sets. 

S. Etemadi and M. Khashei                                                                                                                                                                                          

https://doi.org/10.1016/j.talanta.2016.10.062
https://doi.org/10.1016/j.talanta.2016.10.062
https://doi.org/10.1016/j.measurement.2021.110080
https://doi.org/10.1016/j.compbiomed.2021.105138
https://doi.org/10.1016/j.compbiomed.2021.105138
https://doi.org/10.1016/j.ins.2023.119716
https://doi.org/10.1016/j.ins.2023.119716
https://doi.org/10.1016/j.dsx.2021.102331
https://doi.org/10.1016/j.chaos.2022.111880
https://doi.org/10.1016/j.ast.2023.108325
https://doi.org/10.1016/j.ijfatigue.2022.107342
https://doi.org/10.1016/j.ast.2022.107968
https://doi.org/10.1016/j.ijfatigue.2022.106812
https://doi.org/10.1016/j.ress.2023.109126
https://doi.org/10.1016/j.ress.2023.109126
https://doi.org/10.3390/su15032603
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml/datasets.php
http://iutbox.iut.ac.ir/index.php/apps/files/Econometrics

	Etemadi regression in chemometrics: Reliability-based procedures for modeling and forecasting
	1 Introduction
	2 Problem statement
	3 Reliability-based parameter estimation process
	4 Data description
	5 Empirical result
	6 Discussion
	7 Conclusion
	Funding
	Conflicts of interest/Competing interests
	Data availability
	Code and Software availability
	CRediT authorship contribution statement
	Declaration of competing interest
	References


