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Single-cell analysis of chemotherapy-resistant microenvironment 
identifies a chemo-response biomarker for pancreatic cancer
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Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal, aggressive cancer due to 
limited response chemotherapy. The tumor microenvironment (TME) has emerged as a key player in 
the development of chemoresistance and in malignant progression. In this study, we hypothesized that 
chemotherapy response is predictable by chemotherapy-related cell types and their differentially expressed 
genes (DEGs).
Methods: DEGs of chemoresistance cell types were identified via single cell analysis and Wilcoxon test. 
A chemotherapy response signature was established using a random forest model and validated with public 
datasets. Bulk cell fraction was analyzed using BayesPrism algorithms. Log-rank test was used to analyze 
survival of PDAC patients. 
Results: We found that natural killer (NK) cells, myeloid cells, and erythroid cells were highly infiltrated in 
chemo-resistant TME. A total of 36 chemoresistance-related DEGs of chemo-resistant cells were identified 
in chemo-resistant PDAC. Functional enrichment analysis showed that chemoresistance upregulated various 
inflammation-related pathways, including TGF-β signaling. Based on these features, we constructed a 
random forest model to predict the response and survival for PDAC patients, which accurately distinguished 
high-risk and chemoresistant patients with significantly poorer prognosis in both the training and 
independent validation datasets. Cox regression analysis indicated that predicted labels were an independent 
prognostic factor in PDAC. Moreover, deconvolution of TME confirmed higher infiltration levels of M2 
macrophage and NK cells in predicted chemoresistance. When combined with chemotherapy response 
related tumor mutations, the model showed excellent ability in predicting chemotherapy response and 
survival.
Conclusions: The TME was closely associated with the chemotherapy response and prognosis of PDAC. 
Our TME-based random forest model predicted chemotherapy response with complementary knowledge to 
the response-related genetic mutations.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the 
most lethal types of cancer, with a low survival rate and 
high mortality rate (1). The treatment of PDAC typically 
involves a combination of therapies, including surgery and 
chemotherapy. However, due to late-stage diagnosis and 
metastases, many patients are not eligible for surgery. As a 
result, chemotherapy is widely used as a primary treatment 
option (2). Unfortunately, chemotherapy resistance is a 
critical problem in the treatment of PDAC, which hinders 
the cure of this disease.

Despite advances in cancer genomics, our understanding 
of the underlying mechanisms of chemotherapy resistance 
is limited. Previous research has revealed that the complex 
heterogeneity of PDAC contributes to chemotherapy 
resistance (3,4). For example, PDAC cells develop distinct 
genetic mutations that allow them to become resistant to 
chemotherapy drugs (5). Fiorini et al. proposed that TP53 
mutations can drive the chemo-resistance to gemcitabine in 
PDAC cell lines (6). Patient-derived cell lines and xenografts 
tumors containing a mutation in STAG2 (stromal antigen 2)  
showed sensitivity to DNA cross-linking agents (7). Despite 
the advanced role of genetic mutations in drug resistance, 
the mutations are in the tumor, and tumor develops 
resistance.

The development of single-cell RNA sequencing 
(scRNA-seq) has revolutionized our understanding of 
cellular heterogeneity within the tumor microenvironment 
(TME) (8). Tumor genotype has been inefficient in 
predicting response to anticancer therapy, indicating 
that chemoresistance may be driven by TME. In gastric 
cancer, a high number of tumor-associated macrophages 
before treatment correlated with prolonged survival 
in patients who received 5-fluorouracil (FU)-based 
postoperative chemotherapy (9). A study on PDAC found 
that chemotherapy inhibited immunosuppressive TME 
reprogramming by downregulating TIGIT on CD8+ T 
cells and disrupting their interactions with cancer cells (10). 
Another study in the same context identified additional 
mediators of chemotherapy-induced immunostimulation, 
such as an enrichment of inflammatory cancer-associated 
fibroblasts and an increase in CD8+ T cells (11). Similarly, in 
esophageal adenocarcinoma, chemotherapy led to a higher 
ratio of effector CD8+ T cells to regulatory CD4+ T cells in 
the TME (12). Conversely, in other cancer types like stomach 
adenocarcinoma, chemotherapy had immunosuppressive 
effects, reducing CD4+ and CD8+ T cells, increasing 
endothelial cells and fibroblasts, and activating proangiogenic 
pathways in cancer cells (13). Despite the important role of 
TME cells in chemoresistance, there is still a lack of unbiased 
single-cell analysis to comprehensively reveal cell types which 
are involved in chemoresistance.

In this study, we hypothesized that the dynamic alteration 
of cancer TME is a crucial factor in chemoresistance. 
Therefore,  we performed single-cel l  analysis  for 
chemotherapy-treated PDAC. Through comparing 
differences at cellular and molecular levels, transcriptomic 
features of chemoresistant TME cells could be a promising 
signature for predicting chemotherapy response and 
survival of patients. We present this article in accordance 
with the REMARK reporting checklist (available at https://
jgo.amegroups.com/article/view/10.21037/jgo-24-93/rc).

Methods

PDAC patient cohorts and subject details

This study is a retrospective study including patients 
diagnosed with PDAC from January 1, 2010, to December 
31, 2018. The transcriptome data were downloaded from 
publicly available databases, including The Cancer Genome 
Atlas (TCGA), International Cancer Genome Consortium 
(ICGC), and Gene Expression Omnibus (GEO) (Table 1). 
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Survival data and chemotherapy information were obtained 
from corresponding database. Samples with chemotherapy 
response data were obtained. For samples with multiple 
rounds of gemcitabine treatments, the first response 
label was used to further analysis. According to Fig. 1 and 
Supplementary Tab. 2 from the original article by Werba et al.,  
seven patients have drug response labels. This article 
conducted a single-cell analysis on this group of samples. The 
complete response (CR) and partial response (PR) labels were 
regarded as chemo-sensitivity, while stable disease (SD) and 
progressive disease (PD) labels were chemoresistance (10).

To ensure the independence of TME-signatures, 
stratification was employed based on the mutation or copy 
number variance of known driver genes (CDKN2A, KRAS, 
TTN, TP53). This study was approved by the Ethics Review 
Committee of the Second Affiliated Hospital of Harbin 
Medical University. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Preprocessing of gene expression profile

mRNA from samples were quantified using RNA-sequencing 
or microarray. For microarray platform, the probe-level 
expression values were transformed into gene-level according 
to matched platform annotation. Multiple probe mapping 
to the same gene values were averaged to represent the gene 
expression. Probes were removed if multiple genes were 
mapped to the same probe.

Single cell analysis

We used the NormalizeData function to normalize raw 

counts and the FindVariableFeatures function to select 
highly variable genes in the R package ’seurat4’ (V4.3.0) to 
address the batch effect and tissue specificity of scRNA-
seq data. Principal component analysis (PCA) was 
performed for dimensionality reduction based on the highly 
variable genes. We used established cell markers from 
previous studies to probe for cell types. For cell types with 
differential fraction, we performed cell-cell communication 
analysis using the R package ‘cellchat’.

Functional enrichment analysis

Functional enrichment analysis of differentially expressed 
genes (DEGs) was performed using the R package 
‘clusterProfiler’ (version 4.0.5). Subsequently, the enrichment 
scores of the macrophage phenotype for each cell were 
calculated using single sample gene set enrichment analysis 
(ssGSEA). Genes that involved in two macrophage 
phenotypes were downloaded from He et al. (14).

Random forest model and validation

We applied the randomForest and varSelRF R packages 
to model  random forest  c lass i f icat ion to predict 
chemotherapeutic response based on cell proportion and 
DEGs. The candidate features were composited of two 
parts: the fraction of cell types from myeloid cells, natural 
killer (NK) cells, and erythroid as well as DEGs. To 
enhance the robustness and avoid overfitting, we randomly 
split the TCGA PDAC dataset into two groups: a training 
dataset including 70% of samples and a validation dataset 
including 30%. Then we performed parameter tuning to 

Table 1 Statistic of public datasets in this study

Source Dataset Sample size Link

TCGA TCGA-PAAD 146 https://portal.gdc.cancer.gov/

GEO GSE62452 65 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62452

GEO GSE57495 63 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57495

GEO GSE28735 45 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28735

GEO GSE71729 125 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71729

GEO GSE17891 19 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17891

ICGC PACA-AU 242 https://daco.icgc-argo.org/

ICGC PACA-CA 213 https://daco.icgc-argo.org/

TCGA, The Cancer Genome Atlas; PAAD, pancreatic adenocarcinoma; GEO, Gene Expression Omnibus; ICGC, International Cancer 
Genome Consortium.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62452
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57495
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28735
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71729
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17891
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train ‘ntree’ and ‘mtry’ for the random forest model. The 
two parameters were iterated from 10 to 800 and 1 to 50, 
respectively. Afterward, the model with the highest accuracy 
was returned as the optimal solution. Finally, the pROC 
package was used to plot receiver operating characteristic 
(ROC) and to calculate the area under the ROC curve 
(AUC). ROC curve is a performance measurement for the 
classification problems at various threshold settings, which 
is plotted with true-positive rates against the false-positive 
rates. The higher AUC indicates a better performance.

Cell type deconvolution with BayesPrism

The scRNA-seq data GSE205013 was used as the reference 
cell type-specific expression profile to deconvolution 
TCGA PDAC dataset. Ribosomal, sex chromosomal, and 
mitochondrial genes as well as lncRNA MALAT1, or genes 
which expressed in less than 1,000 cells were removed. Cell 
types having at least 1,000 cells remained. Furthermore, 
DEGs among cell types were chosen as marker genes for 
deconvolution. Bulk gene expression profiles at the count 
level of TCGA PDAC were download and loaded to the 
package ‘BayesPrism’. 

Statistical analysis

The t-tests and Wilcoxon tests were used to assess group 
differences. Kaplan-Meier method was employed to 
estimate overall survival (OS) and progression-free survival 
(PFS) curves, which were compared between groups using 
the log-rank test. Hazard ratios (HRs) were calculated with 
the Cox proportional hazards model. A P value of less than 
0.05 was considered statistically significant. All data analyses 
were conducted using R version 4.3.3.

Results

Increased infiltration of cells of innate immunity system in 
chemotherapy-resistant patients

In total, 274,070 cells were clustered and annotated using 
canonical lineage markers (Figure 1A,1B). Using the RECIST 
criteria, two treated patients were categorized as SD (P08 and 
P10), two partial response (P03 and P14), three PD (P06, P11, 
and P12). Interestingly, we found that myeloid cells, NK cells, 
and erythroid cells had higher fractions in chemotherapy-
resistant patients (Figure 1C). In chemotherapy-treated 
patients, NK cells were further clustered into two subsets 

(Figure 1D). The first NK subset highly expressed cytotoxic 
factors (FGFBP2, GZMH, and PRF1) and FAGR3A, 
which is characteristic of the CD56dim NK cell subset. 
The second NK subset displayed upregulation of soluble 
factors (XCL1, XCL2, GZMK, and CCL3L1) associated 
with NK cell effector functions (Figure 1E). For myeloid 
cells, we identified six distinct myeloid clusters (Figure 1F).  
Macrophages representing the majority of myeloid cells, 
clustered into SPP1+ and C1QC+ subsets. Myeloid-derived 
suppressor cells (MDSCs), conventional dendritic cells 
(cDCs), and proliferating myeloid cells were also identified 
by canonical markers including S100A8, S100A9, FCER1A, 
CD1C, STMN1, and MKI67 (Figure 1E). For myeloid subsets, 
we found a significant increase in infiltration of MDSC in 
chemo-resistant patients.

Activated signaling pathway of cells in  
chemotherapy-resistant TME

We then characterized the molecular response of enriched 
cell types in chemotherapy-resistance microenvironment. 
In total, 1,632, 1,459, and 554 genes were identified as 
DEGs for myeloid and NK cells. TGFB1 and FGFBP2 
were significantly upregulated in chemo-resistant patients, 
indicating an expansion of FGFBP2+ NK subset (Figure 2A).  
These upregulated genes were enriched in TGF-β, IL-
6, and TNF signaling functions, while the functions of Fc 
region receptor and Toll-like receptor were downregulated 
(Figure 2B). For chemo-resistant myeloid cells, VEGF1 and 
TGFB1 genes were upregulated, while MHC class II genes 
were downregulated (Figure 2C). Similarly, downregulated 
genes were also significantly involved in the function of 
antigens presentation, indicating a dysregulated status of 
macrophages in chemo-resistant patients (Figure 2D). The 
macrophages in chemoresistance showed significantly higher 
M2-like signatures (P<0.05, Figure 2E). Furthermore, we 
found that SPP1+ macrophages showed more interactions 
between tumor cells by inducing TNF-alpha and IL6-
STAT3 signaling of tumor cells. NK cells upregulated 
IL10 and interacted tumor cells expressing IL10 receptor. 
The receptor-ligand interaction analysis indicated that 
macrophages upregulated IL6 expression and interacted 
tumor cells which express IL6RA (P<0.01, Figure 2F).

TME-signatures predicted chemotherapy response in bulk 
expression data

To predict the response of chemotherapy for patients, we 
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Figure 1 ScRNA-seq profiling of cells from chemotherapy-treated PDAC. (A) UMAP plot of all cells colored by their cell-type assignment. 
(B) Validation of cell type based on expression of cell markers. (C) Stacked bar plot shows differential fractions of cell types. (D) UMAP 
plot of myeloid cell and NK cell. (E) Myeloid cell and NK cell subtype based on expression of cell markers. (F) Stacked bar plot shows 
differential fractions of myeloid cell and NK cell subtypes. ScRNA, single-cell RNA; PDAC, pancreatic ductal adenocarcinoma; CAFs, 
cancer-associated fibroblasts; NK, natural killer; MDSC, myeloid-derived suppressor cell; cDC, conventional dendritic cell.
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Figure 2 Characterization of molecular differences between chemo-sensitive and chemo-resistant patients. Volcano shows P values and 
log2Fold change of DEGs between (A) NK and (C) myeloid cells in chemo-resistant and chemo-sensitive patients. Functional enrichment 
bar plot depicts the enrichment P values and gene differential expression as bar height and color for (B) NK and (D) myeloid cells. (E) 
Boxplot shows differences of macrophage phenotype estimated ssGSEA. (F) Dot plot shows probabilities of cell-cell interaction among NK, 
macrophage, and tumor cells. DEGs, differentially expressed genes; NK, natural killer; ssGSEA, single-sample gene set enrichment analysis; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.

conducted a random forest model to classify samples based 
on fractions and DEGs of cell subsets of myeloid, NK, 
and erythroid cells. According to the parameter training 
grid, the best parameters of ‘mtry’ and ‘ntree’ were chosen 
as 3 and 700, respectively (Figure 3A). Then we further 
performed five-fold cross-validation and Figure 3B showed 
the distribution of the mean error of cross-validation. Top 
10 candidate features with minimum errors were obtained 
as final features. In the ROC curve analysis, using the best 
parameters and 10 features, the model reached a max AUC 
of 0.94 (Figure 3C). In the TCGA test dataset, 94% CR 
and 84% PR patients were predicted as chemosensitivity, 
while 96% SD and 98% PD were chemoresistance. The 
chemo-resistant samples predicted by the forest model had 

higher fractions of erythroid cell, NK cell, and macrophage 
(P<0.05, Wilcoxon rank-sum test, Figure 3D). Various types 
of CD4+ T-cells were also consistently highly infiltrated in 
chemoresistance, including memory and follicular CD4+ 
T-cells. Moreover, chemo-resistant samples displayed 
higher expression of TNF-alpha pathway genes, including 
TNFRSF4 and TNFSF18 (P<0.05, Wilcoxon rank-sum test, 
Figure 3E).

Validation of the prognosis value of TME-signature in 
independent datasets

Patients classified by TME-signature as chemo-resistant 
showed significantly poorer OS than chemo-sensitive 
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patients in chemotherapy-treated TCGA group (P=2.5e−02, 
log-rank test, Figure 4A). Furthermore, in independent 
PDAC samples from GEO and ICGC, the Kaplan-
Meier survival curve showed poorer OS in predicted 
chemo-resistant samples classified by the TME-signature 
(GSE71729: P=7.9e−03; GSE28735: P=5.6e−02; GSE57495: 
P=1.2e−02; GSE62452: P=7.5e−02; PACA-CA: P=2.3e−03; 
GSE17891: P=2.1e−02; PACA-AU: P=2.3e−05; log-rank 
test, Figure 4B-4H). The univariate Cox hazards analysis 
showed that elevated level of the TME-signature was 
significantly associated with reduced survival in pancreatic 
cancer patients [HR =2.35, 95% confidence interval 
(CI): 1.55–2.62, P<0.001]. The multivariate Cox analysis 
confirmed that elevated levels of the TME-signature are 
associated with poorer survival outcomes, independent of 

age and stage (HR =1.45, 95% CI: 1.25–1.62, P<0.001).

TME-signature predicted chemoresistance independently 
of PDAC genetic mutations

In order to confirm the independence of the TME-signature, 
we grouped TCGA PDAC patients by somatic mutations 
and copy number alterations of top five genes with highest 
frequencies, including KRAS, TP53, CDKN2A, and TTN. 
Patients with mutated KRAS and TP53 had worse prognosis 
than the wild-type group, respectively (P<0.05, Log-rank 
test). Similarly, amplified CDKN2A and TTN deletion 
showed positive correlation with patients’ survival (P<0.05, 
Log-rank test). TP53 and KRAS were frequently mutated 
in PD and SD patients and had a co-alteration relationship 

Figure 3 The TME accurately identified PDAC samples with different microenvironment. (A) Optimization of random forest parameters 
(ntree and mtry). The optimal ntree and mtry that yielded the highest accuracy are identified with a black arrow. (B) Feature selection 
plot of number of features vs. average cross-validation error. Each line represents the mean CV error of one cross-validation experiment. 
(C) ROC curve analysis of the random forest in TCGA validation. (D) Violin plot depicts the differences of infiltration of immune cells 
between predicted chemo-resistant and chemo-sensitive patients. (E) Differentially expressed immune-related genes between predicted 
chemo-resistant and chemo-sensitive patients. *, P<0.05; ****, P<0.0001. TME, tumor micro-environment; PDAC, pancreatic ductal 
adenocarcinoma; CV, coefficient of variation; ROC, receiver operating characteristic; AUC, area under curve; TCGA, The Cancer Genome 
Atlas; NK, natural killer.
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Figure 4 The prognostic performance of TME-signature. Kaplan-Meier survival curves show the OS difference between predicted chemo-
resistant and -sensitive PDAC samples classified by TME-signature in (A) TCGA training and (B-H) independent datasets. TME, tumor 
micro-environment; TCGA, The Cancer Genome Atlas; PDAC, pancreatic ductal adenocarcinoma; OS, overall survival. 

in PDAC patients (P<0.05, hypergeometric test, Figure 5A). 
For prognosis-related genomic alterations, we found that 
predicted chemo-sensitive patients had better prognosis than 
predicted chemo-sensitive in wild-type and mutated groups, 
respectively (P<0.05, Log-rank test, Figure 5B-5E). 

Discussion

Chemoresistance is a leading cause of morbidity and 
mortality in PDAC and it continues to be a challenge in 

cancer treatment. The dynamic alteration of TME is a 
key role in chemoresistance. In this regard, we analyzed 
comprehensively TME and DEGs among treated patients 
by scRNA-seq data. We found that myeloid cells, NK 
cells, and erythroid cells were highly infiltrated in chemo-
resistant patients. Signaling pathways including TGF-β and 
IFN in myeloid and NK cells were upregulated in chemo-
resistant patients. By producing IFN-γ, macrophages and 
NK cells may induce tumor cells to express STAT3 and 
induce epithelia-mesenchymal transition, which promote 
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the chemoresistance of tumor cells. We developed a 
TME-signature for therapeutic response of chemotherapy 
predicted accurately survival and response based on 
bulk transcriptome. The TME-based signature for 
chemoresistance may have value in improving the clinical 
survival of PDAC patients.

Chemores i s t ance  and  chemotherapy- induced 
immunosuppression can result in the relapse of tumors 
and is critical for survival in cancer patients. We found 
that myeloid cells, particularly macrophages, generally 
accumulate in chemo-resistant tumors. The increased 
infiltration of myeloid cells and erythroblasts in chemo-
resistant patients is particularly interesting. Erythroblasts 
were removed at single-cell analysis in many studies, 
which may limit the discovery of potential role in cancer 
progression (10,15). However, the evaluated erythroblasts 
fraction in chemoresistance implicated their potential 
importance by our study. Furthermore, the macrophages 
had higher M2 signature, indicating a M2 phenotype which 

has been reported in tumor progression (16). 
We found that M2 macrophages downregulated the 

MHC-II function and highly expressed genes involved in 
TGF-β and IFN-related pathways. The M2 macrophages 
also showed higher IL-6 and STAT3 signaling pathways. 
It is well-known that IFNγ  typically activates the 
transcription factor STAT1, while high expression of IL-6 
activates the STAT3 signaling pathway. However, Yoyen-
Ermis et al. found that in acute myeloid leukemia, IFNγ 
can inhibit the expression of immune checkpoint genes 
such as PD-L1 through the activation of a non-classical 
STAT3 signaling pathway (17). Additionally, Qing and 
Stark observed prolonged activation of STAT3 signaling 
in embryonic fibroblasts from Stat1-Null mice compared 
to wild-type mice (18). Our results suggest the presence of 
aberrant non-classical regulatory pathways in macrophages 
within the TME.

The activated signaling pathways in the TME of chemo-
resistant patients may also be contributing to chemotherapy 

Figure 5 TME-signatures independently predict the clinical outcome of PDAC patients. (A) Heatmap shows genetic alterations, predicted 
and true chemo-response of TCGA pancreatic cancer patients. (B-E) Kaplan-Meier survival curves show the overall survival difference 
stratified by (B) CDKN2A amplification, (C) TTN deletion, (D) KRAS and (E) TP53 mutation. TME, tumor micro-environment; PDAC, 
pancreatic ductal adenocarcinoma; TCGA, The Cancer Genome Atlas; SD, stable disease; PR, partial response; CR, complete response; PD, 
progressive disease; WT, wild type; Amp, amplication; Mut, mutation.
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resistance. TGF-β, IL-6, and TNF are all cytokines that 
can promote tumor growth and metastasis. The activation 
of these pathways in the TME of chemo-resistant patients 
may be providing the tumor with the growth factors and 
signaling molecules it needs to resist chemotherapy.

In addition to the findings discussed above, the study 
also found that the TME-signature predicted chemotherapy 
response in bulk expression data and in independent 
datasets. This suggests that the TME-signature may be a 
useful tool for predicting chemotherapy response in PDAC 
patients. When patients were classified with different 
genetic alterations, the TME-signature still showed a 
good performance in survival prediction. In all wild-type 
PDAC patients, predicted chemo-sensitive patients showed 
better survival than chemo-resistant patients. These results 
confirmed the independence of our TME-signature, which 
could predict the response regardless of the genetic status 
of cancer cells. It is worth noted that patients with KRAS 
mutation still had worse survival in both predicted sensitive 
and resistant groups, which implicated a better performance 
when combining the KRAS mutation and TME-signature. 
However, further research is needed to validate the use of 
the TME-signature in clinical trials.

Conclusions

Overall, the findings of this study provide new insights into 
the role of the TME in chemotherapy resistance in PDAC. 
These findings suggest that the TME may be a promising 
target for therapeutic intervention in PDAC patients.
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