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A B S T R A C T   

The Epstein-Barr virus is a well-known cell cycle modulator. To establish successful infection in the host, EBV 
alters the cell cycle at multiple steps via antigens such as EBNAs, LMPs, and certain other EBV-encoded tran-
scripts. Interestingly, several recent studies have indicated the possibility of EBV’s neurotrophic potential. 
However, the effects and outcomes of EBV infection in the CNS are under-explored. Additionally, more and more 
epidemiological evidence implicates the cell-cycle dysregulation in neurodegeneration. Numerous hypotheses 
which describe the triggers that force post-mitotic neurons to re-enter the cell cycle are prevalent. Apart from the 
known genetic and epigenetic factors responsible, several reports have shown the association of microbial in-
fections with neurodegenerative pathology. Although, studies implicating the herpesvirus family members in 
neurodegeneration exist, the involvement of Epstein-Barr virus (EBV), in particular, is under-evaluated. Inter-
estingly, a few clinical studies have reported patients of AD or PD to be seropositive for EBV. Based on the 
findings mentioned above, in this review, we propose that EBV infection in neurons could drive it towards 
neurodegeneration through dysregulation of cell-cycle events and induction of apoptosis.   

1. Introduction 

Human Herpesvirus-4 (HHV-4) is also called Epstein-Barr virus 
(EBV) after its discoverers Anthony Epstein, Yvonne Barr, and Burt 
Achong (Epstein et al., 1964). It is a double-stranded DNA virus, and 
upon infection, it can either integrate into the host cell genome or exist 
in an episomal form (Reisinger et al., 2006). As a group-I carcinogen, it is 
associated with various lymphatic or epithelial malignancies such as 
Hodgkin’s and Non-Hodgkin’s (Burkitt’s) lymphoma or nasopharyngeal 
carcinoma. It is linked to non-neoplastic diseases like infectious mono-
nucleosis (IM) and lymphoproliferative disorders (Niedobitek et al., 
2001). EBV is also reported to aggravate gastric cancer (Sonkar et al., 
2020). A study reported that EBV infection could get laterally trans-
ferred from its natural host cells of B-cell lineage to the cells of epithelial 
origin (Shannon-Lowe et al., 2006). Interestingly, recent reports from 
various groups have suggested EBV’s involvement in neurological 
manifestations such as multiple sclerosis and other neurodegenerative 
disorders, including Alzheimer’s and Parkinson’s disease (Biström et al., 
2021; Carbone et al., 2014; Bu et al., 2015). Not much to surprise, some 
recent reports have also highlighted the importance of molecular 

crosstalk between oncogenesis and neurodegeneration (Houck et al., 
2019). Notably, most molecules shared among these phenomena are 
related to cell-cycle regulation (Seo and Park, 2020). Multiple studies 
have provided convincing evidence that cell-cycle dysregulation plays a 
critical role in the progression of neurodegenerative disorders (Yang and 
Gao, 2020; D. J. Bonda et al., 2010; Wang et al., 2009). Furthermore, 
EBV is well established to be capable of altering the host cell cycle. 
Various EBV antigens such as EBV nuclear antigen-1 (E1), E2, E3A, E3B, 
and E3C, EBV encoded small RNAs (EBERs), Bam-HI A rightward tran-
scripts (BARTs), EBNA leader protein (E-LP) which is also known as E5, 
latent membrane proteins (LMP) − 1, 2A, and 2B are involved in 
manipulating the host cell cycle (Yin et al., 2019) For example, the 
interaction of EBV latent genes with cellular oncogenes could promote 
G1/S transition and halt apoptosis, leading to neoplastic transformation 
of the infected cells (Yin et al., 2019). 

However, the neurovirulent and neuroinvasive capability of the virus 
is still debated; the genetic material of EBV and antiviral antibodies 
against the virus has been found in CSF samples of patients suffering 
from NDs (Carbone et al., 2014; Gate et al., 2020). A recent review 
beautifully shed light on the involvement of EBV in various NDs 
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including AD, PD, MS, etc (Zhang et al., 2022). An earlier study done by 
Jha et al. has also established the neurotropic potential of EBV in pri-
mary neurons, Ntera2, and Sh-Sy5y cell lines (Jha et al., 2015). Addi-
tionally, our recent study has shown that EBV can infect and modulate 
glial cells (Tiwari et al., 2020; Jakhmola and Jha, 2021) in the brain, 
corroborating a previous finding by Menet et al., (1999). Also, we have 
observed that EBV can infect and alter the endothelial cells of the 
blood-brain barrier (Indari et al., 2021). These clues indicate the pos-
sibility of EBV being capable of establishing successful infection in 
neural cells: i.e., glial cells, and neurons. As stated earlier, EBV infection 
could cause deregulation of the cell cycle in the host cell. Therefore, in 
this review, we have tried to summarize the role of EBV infection in 
manipulating the host cell cycle and how dysregulation of these events 
in neurons could be involved in neurodegenerative disorders. 

2. Understanding the role of EBV in the cell cycle and its 
regulation 

The eukaryotic cell cycle is a highly regulated and coordinated 
process by which a cell gives rise to two daughter cells. A cell synthesizes 
various cellular components during this process, duplicates its genetic 
material, and eventually divides. A typical cell cycle consists of the 
interphase and the mitotic (M) phases. The interphase prepares for the 
upcoming division process. It can be further classified under three 
stages: gap-1 (G1), synthesis (S), and gap-2 (G2) phase [Fig. 1]. The gap 
phases function as a time interval allowing the cell to review its sur-
roundings and prepare itself for upcoming cell cycle events. Although, 
under unfavorable conditions for division, a cell can enter a non- 
replicative state known as G0, which occurs between the M-phase and 
the start of the next interphase. A cell in the G0 phase neither divides nor 
prepares to divide. This G0 state can be reversible (quiescent) or non- 
reversible (terminally differentiated). Certain cells of the body that are 
terminally differentiated, like neurons (Anda et al., 2016), and cardiac 
cells (Broughton and Sussman, 2019), remain in this inactive G0 stage 
under physiological conditions. 

The regulation of this well-tuned process is orchestrated mainly with 
the help of certain intracellular molecules, namely: cyclins (Cyc), cyclin- 
dependent kinases (CDKs), and CDK inhibitors (CKIs). The Cyclin/CDK 

heterodimer drives a cell through various checkpoints by acting at 
specific points in the cycle, phosphorylating downstream proteins and 
modulating their activity (Satyanarayana and Kaldis, 2009) [Fig. 1]. 

Throughout the cell cycle, the activity of Cyclin/CDK complexes is 
controlled by timely production of the two proteins, phosphorylation/ 
dephosphorylation of CDKs, controlled degradation of Cyclins, and 
binding of CKI proteins to specific complexes (Tarn and Lai, 2011; 
Suryadinata et al., 2010). The stage-specific expressions of cyclin/CDK 
complexes and respective CKIs are shown in [Table 1] 

As an oncogenic virus, EBV has been reported to alter the host cell 
cycle at multiple steps. It can modulate protein-protein interactions, 
redistribute proteins, or encode homologs of cellular proteins (Fan et al., 
2018). Previous studies have reported direct interaction between several 
EBV proteins and the host cell cycle proteins. The specific proteins of 
EBV acting at various stages of the cell cycle are discussed in the 
following section: 

2.1. The G1 phase 

A cell begins the division process with the initiation of the G1-phase, 
which calls for an external stimulus in the form of growth factors. 

Fig. 1. Phases of the cell cycle. The cell cycle is mainly divided into the Interphase and Mitotic phase. Various heterodimers of cyclins and CDK complexes 
positively regulate the cell-cycle progression. On the other hand, the CKIs (CDK inhibitors) obstruct the cell-cycle progression if needed. 

Table 1 
The majorly involved Cyclins and Cyclin-dependent kinases (CDKs) at different 
cell cycle phases and respective checkpoints.  

Cell cycle stage Active 
Cyclins 

Active 
CDKs 

Active CKI Checkpoint 

G1- phase 
(early) 

Cyclin 
D1/2/3 

CDK-4 Ink family (p15, 
p16, p18, and p19)  

G1- phase (late) Cyclin 
D1/2/3 

CDK-6 G1 checkpoint 

G1/S- phase 
transition 

Cyclin E CDK-2 pRb  

S- phase Cyclin A CDK-2 Cip/Kip family 
(p21, p27, and 
p57)  

G2/M- phase 
transition 

Cyclin A CDK-1 G2 checkpoint 

M- phase Cyclin B CDK-1 Mitotic 
checkpoint  
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Continuous growth factor supply is required until the cell passes through 
the restriction point in G1 (Pardee, 1974); after this, the process becomes 
growth factor-independent, and the cell is now committed to complete 
DNA replication and division. Unsurprisingly, this step becomes the first 
target for virus-mediated cell-cycle manipulation. Multiple studies 
involving EBV have shown that the virus infection could promote the 
expression of neurotropic growth factors such as brain-derived neuro-
tropic factor (BDNF) and glial cell-derived neurotropic factor (GDNF) 
(Ng et al., 2012; Jakhmola and Jha, 2021) in the infected cells. Clinical 
reports evaluating EBV meningoencephalitis/meningitis have corrobo-
rated the claim, as an increase in neurotropic factors was observed in the 
patient’s CSF samples (Chiaretti et al., 2014; Kozko et al., 2018). 

Once a cell enters the G1-phase, it grows to its usual size and syn-
thesizes mRNA and protein that will be used in the forthcoming stages of 
the cell cycle. As depicted in Table 1, progression through the G1-phase 
is under the regulation of CDK-4 and D type Cyclins (Cyclin D1/2/3). 
Various viruses, including EBV, modulate the expression and activity of 
cyclin/CDK complexes to gain control of the cellular machinery (Tava-
kolian et al., 2020). These intracellular pathogens have evolved 
impressive strategies to modulate the kinase activity of the Cyclin/CDK 
complex by interacting with the individual subunits of the heterodimer 
or altering the activity of CKIs. For instance, the EBV nuclear antigen-3C 
(E3C) interacts with the D-type cyclins D1 and D2 (Saha et al., 2011; Pei 
et al., 2018). E3C can form stable complexes with G1 phase cyclins- D1 
and D2/CDK-6 heterodimer [Fig. 2a] (Saha et al., 2011; Pei et al., 2018). 
By upregulating the expression of D-type cyclin, EBV can deregulate the 
activities of the G1 phase. 

Further, the latent membrane protein 1 (LMP-1) of EBV can also 
influence the activity of the Cyclin D/CDK-4 complex by interacting with 
and altering the activity of CKI, p16INK14a. This interaction facilitates the 
progression of the cell cycle through the G1 phase by releasing the Cyclin 
D/CDK-4 complexes from p16INK14a-mediated inhibition of its kinase 
activity [Fig. 2b(i)] (Yang et al., 2000; Ohtani et al., 2003; Dawson 
et al., 2012). LMP-1 is reported to reduce the expression levels of 
p16INK14a by blocking the transcriptional activity of various factors 
regulating its expressions, such as Ets2, bmi-1, JunB, 14–3-3σ, and 
SNF5. 

2.2. The G1/S phase transition 

Moving ahead in the cell cycle, the G1/S phase transition is governed 
by the activity of the Cyclin E/ CDK-2 complex. Few studies have re-
ported that EBV alters the kinase activity of the Cyclin E/ CDK-2 com-
plex through the interaction of E3C with cyclin E [Fig. 2a]. However, the 
downstream effect of the association between E3C and cyclin E is not yet 
described (Knight et al., 2004). Several studies proclaimed that EBV 
employs LMP-1 to modulate the kinase activity of various cyclin/CDK 
complexes at the G1/S phase transition. LMP-1 is reported to enhance 
cyclins’ promoter activity in the late G1 and G1/S transition phase via 
the EGFR and STAT3 signaling pathways. Under the influence of LMP-1, 
the EGFR directly binds to cyclins- D1 and E, thereby accelerating the 
G1/S phase transition (Tao et al., 2005; Xu et al., 2013) [Fig. 2a]. 

A checkpoint guards the G1/S phase transition often referred to as “a 
point of no return.” After passing this restriction point, the process be-
comes growth factor independent, and the cell is now committed to 
complete DNA replication and division. A member of the pocket protein 
family, pRb is one of the critical regulators of the G1/S transition 
checkpoint (Y. J. Wang, et al., 2001). pRb acts as a guardian and lets the 
cell pass through the restriction point only under suitable growth con-
ditions and if there is no DNA damage or metabolic disturbances. The 
regulation of pRb activity is mainly controlled by its timely phosphor-
ylation (inactivation) and dephosphorylation (activation) at T373 and 
S608 by the G1 phase Cyclin/ CDK complex (Cyclin D and CDK-4/6 
complex) (Dowdy et al., 1993; Beijersbergen et al., 1995). This leads 
to its dissociation from a complex with transcription factor E2F (Bartek 
et al., 1996), and the subsequent release of E2F activates downstream 

genes required for the progression of the cell cycle. 
Previous reports have listed interactions of pRb with various nuclear 

antigens of EBV (Szekely et al., 1993; Saha and Robertson, 2013). One 
such study suggested the role of E3C in influencing cell cycle regulation 
via controlling the pRb activity (J. S. Knight et al., 2005). The study 
conducted by Knight et al. indicates that E3C mediates the phosphory-
lation of pRb by controlling the kinase activity of Cyclin D1/ CDK-4 
complex [Fig. 2b(i)]. It was also revealed that besides regulating the 
phosphorylation status of pRb, E3C mediates its ubiquitination. The 
study further elaborated that E3C recruits the SCFSkp2-E3 ubiquitin 
ligase complex to affect the stability of pRb in EBV-transformed cells. 
The conserved domain region of E3C from amino acids 140–149, which 
was responsible for regulating the SCFSkp2 complex, is also crucial for 
regulating pRb. It explicitly shows that E3C usurps SCFSkp2 in 
EBV-transformed cells to target and regulate the levels of pRb [Fig. 2b 
(i)] (Maruo et al., 2006). Additionally, E3C is also reported to influence 
the regulation of pRb activity via aurora kinase B (AURKB) (Jha et al., 
2013). The study done by Jha et al. demonstrates that the direct inter-
action of E3C with AURKB stabilizes the protein. This interaction re-
duces ubiquitination of AURKB, thus maintaining its phosphorylating 
activity towards pRb leading to cell proliferation [Fig. 2b(i)]. The 
following hyper-phosphorylated state of pRb would ultimately accel-
erate the G1/S transition and cause the cell cycle to proceed unchecked. 

Additionally, a study in virus-infected Akata cells has reported an 
interaction between EBV-immediate early lytic gene product BRLF-1 
and the pRb (Zacny et al., 1998). BRLF-1 is speculated to interact with 
two regions of pRb, from amino acids 39–89 and 249–309. The inter-
action possibly occurs first at one site, followed by secondary interaction 
at the other. Although the BRLF1 does not directly interact with E2F 
bound to pRb, its binding region on pRb was observed to lie outside the 
pocket region. A correlation between the BRLF-1 binding and E2F 
displacement from the pRb was still observed. This indicates a potential 
role of BRLF-1 in regulating the cell cycle beyond relief of pRb-mediated 
E2F repression and thus cell cycle proliferation. 

Furthermore, EBV is also known to target pRb via the binding of EBV 
nuclear antigen 5 (E5/EBNA-LP) during B-cell transformation (Szekely 
et al., 1993). E5 localizes with and binds to pRb without possessing an 
LXCXE motif. However, the pRb binding region of E5 was found to be on 
the N-terminal of the protein as a 66-amino acid long peptide, which is 
also the site for p53 binding. Therefore, the binding of E5 to pRb is 
competitively affected by p53. An in-vitro study revealed that the 
binding of p53 in a dose-dependent fashion could inhibit the formation 
of the E5-pRb complex, indicating that p53 competes with pRb for E5 
binding. At the same time, the vice-versa cannot be feasible. Addition-
ally, a study reported that E5 affects the pRb/p53 cascade by binding to 
its negative regulator, Mdm2 [Fig. 2b(ii)]. This binding of E5 with 
Mdm2 prevents Mdm2-mediated polyubiquitination of p53 and further 
degradation [Fig. 2b(ii)]. The formation of the E5- Mdm2-p53 trimo-
lecular complex causes the cell to bypass G1 arrest and proceed toward 
the S-phase of the cell cycle (Kashuba et al., 2011). The nuclear antigen 
E3C of EBV also directly interacts with p53 and attenuates the 
p53-mediated transcription of downstream genes and apoptosis. The 
interacting domain of p53 on E3C is mapped near the N-terminal at 
130–190 amino acid residues (Yi et al., 2009). 

An EBV protein Rta is known to transcriptionally upregulate the 
expression of 14-3-3σ, which negatively regulates the cell cycle pro-
gression [Fig. 2b(ii)] (Dar et al., 2014; Gupta et al., 2020). Though 
14-3-3σ is under the control of p53, EBV-Rta could induce its expression 
in a p53-independent manner. Induction of 14-3-3σ would cause the 
sequestration of CDK-1 and 2 in the cytoplasm. Coupled with the 
diminished activity of cyclin E/CDK-2, as mentioned in the earlier sec-
tion, this is reported to finally lead the cell cycle to arrest at the G1/S 
transition state in EBV infected cells [Fig. 2b(ii)] (Huang et al., 2012). 
Furthermore, EBV-Rta induces p21WAF1/CIP1 (CDKN1A) expression. By 
up-regulating the p21WAF1/CIP1 expression levels, EBV diminishes the 
activity of the Cyclin E/CDK-2 complex (Huang et al., 2012). The 
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Fig. 2. Epstein-Barr virus utilizes different mechanisms to manipulate the cell cycle. Modulating protein-protein interactions of the host cell cycle 
proteins is one of the most favored strategies. 
a) EBV can interact with positive cell cycle regulators to promote cell cycle progression. EBV antigen, E3C, interacts with various cyclins such as Cyc D1, E, and A to 
accelerate the cell cycle progression at respective steps. Further, another antigen, E3B, is also reported to interact with Cyc A and result in the expedition of S-phase 
transition. Another EBV antigen, LMP1, reportedly stimulates the expression of EGFR, that in turn acts as a mitogenic signal to promote G1/S transition. 
b) Alternatively, EBV can interact with negative cell cycle regulators to either hinder their activity and release cells from the arrest stage or halt cell cycle progression. 
(i). EBV antigen E1 interacts with HAUSP to obstruct the degradation of Mdm2, thereby allowing blockage of p53 from acting as a stimulator of p21. Another EBV 
antigen, E3A, also sequesters p21. Together, these molecules inhibit the cell cycle via p53 and p21; and aid in progression through G1 to the S phase. Further, 
progression through the G1 phase is reported to be expedited by E3C via interaction with various Cyclin/CDK complexes. E3C also regulates the pRb cascade by 
governing its degradation through the SCF complex or by interacting with and thereby stabilizing AURKB to promote pRb phosphorylation. The E3C is also reported 
to promote the degradation of p27 via the SCF complex, thereby releasing the Cyclin A/CDK-2 complex from inhibition, leading to the advancement of the cell cycle 
through the S phase. (ii). EBV antigen, Rta, is reported to upregulate the expression of p21 and thus facilitate inhibition of the Cyclin E/CDK-2 complex. Rta may also 
mediate sequestration of CDK1 and CDK2 by upregulating 14-3-3 σ, thereby obstructing G1/S transition. Further, another EBV antigen, E5, is also known to modulate 
the cell cycle at the G2 phase by inhibiting Mdm2-mediated poly-ubiquitination of p53, thus facilitating p53-mediated p21 activation resulting in blocking the activity 
of the respective cyclin/CDK complexes. 
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reduced kinase activity of the cyclin E/CDK-2 complex, along with 
certain other conditions, results in cell cycle arrest at the G1/S transition 
phase and aids in viral reactivation. The binding of LMP-1 to p16INK14a 

relieves the growth arrest at the G1 phase, thus initiating G1/S transition 
by targeting the downstream mediators of the pRb-p16INK14a pathway. 

Another effective strategy of viruses to hack the cellular machinery is 
protein redistribution. In order to control of the cell cycle, EBV mainly 
disturbs the localization and distribution of cyclins, p53 and survivin 
protein. During the G1/S phase transition of the cell cycle, Cyclin D1 is 
primarily localized in the nuclear region [Fig. 3a] (Baldin et al., 1993). 
However, it is transported to the cytoplasm for 
ubiquitin-proteasome-mediated degradation upon GSK3β-mediated 
phosphorylation at T286 (Diehl et al., 1998). Remarkably, in a study by 
Saha et al., E3C was shown to play a dual role in blocking the 
poly-ubiquitination and GSK-3β mediated phosphorylation of 
Cyclin-D1, leading to its increased nuclear localization [Fig. 3a] (Pei 

et al., 2018). 
Another cellular protein whose localization is affected by EBV 

infection is p53. A study done by Gou et al. demonstrated that LMP-1 
induces the nuclear localization of p53 and survivin [Fig. 3b] (Guo 
et al., 2012). It is reported to upregulate the expression and phosphor-
ylation of these two proteins. Survivin also possesses a p53-binding 
element in its promoter region. Besides, it facilitates the cell cycle to 
progress from G1 to S-phase by interacting with CDK-4 in the nucleus. 
Although p53 is predominantly reported as a tumor suppressor protein 
increasing evidence suggests its overexpression and accumulation be 
linked with nasopharyngeal carcinoma (NPC) (Saha et al., 2009; Bane-
rjee et al., 2013; Pei et al., 2016). Under physiological and DNA damage 
conditions, the expression of LMP-1 is found to be associated with p53 
expression in EBV transformed cells. p53 is essentially required to 
stimulate the expression of LMP-1 in response to DNA damage. Ectopic 
p53 stimulates endogenous LMP-1 expression, subsequently blocking 

Fig. 3. EBV modulates the cellular protein distribution. EBV antigens could also redistribute the cellular proteins to facilitate the survival of the virus 
inside the host cell. (a) Cyclin D1- E3C mediates the nuclear localization of cyclin D1 by blocking GSK-3β. (b) Survivin and p53- E3C aids in nuclear localization of 
survivin and p53. (c) MRPS18-2- E3C also enhances the nuclear localization of MRPS18-2 to facilitate the E2F-dependent gene transcription. 
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DNA damage-mediated apoptosis. Interferon regulatory factor 5 (IRF-5), 
a direct target of p53, is implicated in this process. In response to DNA 
damage-induced p53, IRF-5 increases the expression of LMP-1 by 
binding to and activating an LMP-1 promoter-reporter construct (Wang 
et al., 2017). Notably, IRF-5 is a well-known tumor suppressor gene that 
heightens apoptotic signaling in response to DNA damage. However, 
LMP-1 is predominantly considered a viral oncogene that blocks 
apoptosis. Therefore, it was evident that LMP-1 blocks apoptosis via 
modulating IRF-5 in EBV-infected cells to maintain latency (Hu and 
Barnes, 2009). 

Apart from the proteins mentioned above, another cellular protein 
implicated in the cell cycle, MRPS18-2 (mitochondrial ribosomal protein 
S18-2), is also dislocated to the nucleus by E3C [Fig. 3c] (Kashuba 
et al., 2011). MRPS18-2 binds explicitly to both the hypo- and hyper-
phosphorylated forms of Rb protein. This binding occurs through a site 
in the small pocket of pRb, which is also involved in its interaction with 
E2F1. MRPS18-2 and E2F1 competitively interact with pRb, further 
elevating the free E2F1 level. The levels of nuclear MRPS18-2 protein 
are also affected by E3C. The EBV protein E3C binds to and raises the 
level of MRPS18-2, which may help in the progression of EBV-infected B 
cells into the S phase. These strategies would competitively inhibit pRb 
binding to E2F1 and lift the block to S-phase entry. 

2.3. The S phase 

The passage of a cell into the S phase initiates the synthesis of DNA, 
which generates two replicas of the genetic material. The progression of 
this cell cycle stage is under the governance of the Cyclin A/CDK-2 
complex. The EBV nuclear antigen E3C is well known to interact with 
Cyclin/CDK complexes active at various cell cycle stages, including the 
one in the S-phase. As described in the previous section, E3C forms a 
stable complex with Cyclin A and promotes the Cyclin/CDK complex’s 
kinase activity. Additionally, a study conducted by Knight and Rob-
ertson in 2004 demonstrated weak interactions between E3B and Cyclin 
A, owing to the conserved region in E3B that is similar to the Cyclin A 
binding site of E3C. However, the precise role of this binding is still 
unclear [Fig. 2a] (Knight et al., 2004). 

The binding of E3C to Cyclin A decreases the association of p21WAF1/ 

CIP1 with the Cyclin A/ CDK-2 complex, thus rescuing it from p21WAF1/ 

CIP1-mediated inhibition, thereby aiding in cell cycle progression 
through the S phase (Knight and Robertson, 2004). Furthermore, the 
inhibitory activity of p21WAF1/CIP1 against the S phase Cyclin/CDK 
complex has been modulated by E3A of EBV (Tursiella et al., 2014). It 
contributes to apoptotic resistance in EBV-infected Burkitt’s lymphoma 
cell lines through fine-tuning the expression of p21WAF1/CIP1. The 
E3A-mediated repression of p21WAF1/CIP1 prevents the cell from suc-
cumbing to p53 and pRb-mediated cell cycle arrest and ensures 
continuous proliferation of the cell through the S phase [Fig. 2b(i)] 
(Tursiella et al., 2014). 

Furthermore, an in-vitro study revealed that the N-terminal amino 
acids (130–159) of E3C are responsible for binding with Cyclin A and 
restricting the p27KIP1-mediated inhibition of Cyclin A/CDK-2 kinase 
activity (Tursiella et al., 2014). At the same time, C-terminal domain 
amino acids (957–990) might be playing a role in stabilizing the ele-
ments of this complex [Fig. 2a] (Knight and Robertson, 2004; Saha 
et al., 2011). E3C might serve as a bridge between SCFSkp2 and p27KIP1, 
resulting in the degradation of p27KIP1, thereby relieving its inhibitory 
effect on the Cyclin A/CDK-2 complex (Jason S. Knight et al., 2005; 
Knight Jason et al., 2005). Thus, the enhanced activity of the Cyclin 
A/CDK-2 complex would cause the release of the cell from arrest at the S 
phase [Fig. 2b(i)] (Tursiella et al., 2014). 

2.4. The G2 phase and G2/M phase transition 

After the completion of DNA duplication in the S phase comes the G2- 
phase, in which the cell growth continues along with protein synthesis as 

the cell prepares for M-phase. The regulation of progress through the G2 
phase is controlled by Cyclin B and CDK-1 (cdc2). A study done by 
Mauser et al. has demonstrated that EBV can induce G2/M block in HeLa 
cell lines and normal human fibroblasts by reducing the levels of Cyclin 
B1/CDK-1 [Fig. 2a] (Mauser et al., 2002). The EBV lytic protein Zta, 
also known as BZLF-1 (BamHI Z fragment leftward open reading frame 
1), was demonstrated to decrease the transcript and protein expression 
levels of Cyclin B1, thus inducing cell cycle arrest at the G2/M phase 
transition. 

Before moving on to the M-phase, the cell must go through check-
points at the G2/M phase transition to ensure error-free and successful 
completion of DNA replication (Hartwell and Weinert, 1989). If DNA 
damage is identified, the cell undergoes growth arrest instead of repair 
without proceeding to the M-phase. Interestingly, E3C of EBV is 
demonstrated to disrupt this restriction by binding and inactivating the 
Chk2 (checkpoint kinase 2), the effector molecule of the ATM/ATR 
signaling pathway that regulates the G2/M checkpoint. The binding of 
E3C to Chk2 induces phosphorylation of Cdc25c (cellular phosphatase) 
at Ser216, which leads to its sequestration in the cytoplasm by 14-3-3σ 
thus permitting activation of Cyclin B/CDK-1 complex and bypassing of 
the G2/M checkpoint [Fig. 2b(ii)] (Choudhuri et al., 2007). 

Such contradictory reports suggest that blocking the cell cycle pro-
gression at certain stages would be advantageous under some circum-
stances, while promoting the progression would be more beneficial in 
some others. As described in the previous sections, a careful balance 
between the two processes is essential for establishing EBV infection, 
which is fine-tuned by various EBV proteins. 

3. Evidence and implications of EBV-mediated cell cycle 
dysregulation in neurodegenerative disorders 

The association between neurodegenerative pathology and different 
members of the Herpesviridae family has been consistently reported over 
the past two decades (Costa Sa et al. 2019a; Phuna and Madhavan, 2022 
Mar 14). Although the role of EBV has been understated and frequently 
debated in this context (Carbone et al., 2014), the evidence does confirm 
the connection. The post-mortem human brain tissue and cerebrospinal 
fluid (CSF) samples of patients suffering from neurodegenerative dis-
orders like multiple sclerosis (MS), Alzheimer’s disease (AD), Parkin-
son’s disease (PD), etc. have shown seropositivity for EBV and the 
presence of antibodies against EBV (Kleines et al., 2011). Interestingly, 
demographic studies done on elderly population that progressed to 
cognitive impairment from a healthy state showed elevated levels of 
anti-EBV antibodies (Shim et al., 2016). As described earlier, EBV is 
highly efficient in manipulating the cell cycle; and various pathophysi-
ological conditions of the central nervous system (CNS), including 
chronic neurodegenerative disorders and acute damage, have been 
linked with abnormal cell cycle activation and progression (Wang et al., 
2009; Woulfe et al., 2016). Therefore, in this review, we have focused on 
NDDs implicating virus-mediated cell cycle dysregulation as a possible 
mode of pathogenesis. 

Unlike other cell types, neurons, once terminally differentiated, are 
supposed to have lost their proliferation capability. Most of the CNS 
neurons enter this post-mitotic quiescent state while going through 
embryonic development and remain in the “prolonged G0 phase” in the 
adult nervous system (Frade and Ovejero-Benito, 2015a). These cells are 
unable to re-enter the cell cycle. However, surprisingly, various struc-
tures in a typical adult human brain express several genes that encode 
regulators of G1/S transition (Kruman et al., 2004; Koeller et al., 2008; 
Lopes et al., 2009). These genes include cyclin D1, CDK-4, Rb proteins, 
E2Fs, and CKIs [Fig. 4]. In fact, most of these gene transcripts are 
translated to proteins in normal adult neurons. Traditionally, the pres-
ence of core cell cycle regulators in adult neurons is attributed to their 
functions in neuronal migration, maturation, and synaptic plasticity 
(Herrup and Yang, 2007). Nevertheless, these proteins could potentially 
force the cell to re-enter the cell cycle upon induction by various factors 
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under certain conditions. Certain mitogenic stimuli including viral in-
fections could induce the aberrant re-entry of neurons into the cell cycle, 
ultimately leading to cell death. Though, the association of cell cycle 
reentry with synaptic failure and neuronal death is well established by 
various studies, the functional connection between the two phenomena 
remains elusive (David J. Bonda et al., 2010; Barrio-Alonso et al., 
2018a). When subjected to acute stress conditions such as lack of neu-
rotrophic factors, DNA damage, oxidative stress, excitotoxicity, and 
sudden mitogenic stimuli, these cells would reactivate the cell cycle by 
aberrant expression of cell cycle proteins (Hernández-Ortega et al., 
2011). Under such circumstances, neurons re-enter the cell cycle 
essentially to facilitate the recovery from damage caused by the insult. 
However, the regenerative capacity is limited to specialized neuronal 
progenitor cells located in the subventricular (SVZ) and subgranular 
zone of the dentate gyrus in the hippocampal region of the mammalian 
brain [Fig. 4a]. 

Nonetheless, if post-mitotic neurons are forced to re-enter the cell 
cycle, they die even before any sign of DNA synthesis appears (Herrup 
and Busser, 1995; Herrup, 2004; Marlier et al., 2020 May 31) [Fig. 4b]. 
This process, traditionally referred to as “abortive cell cycle re-entry,” is 
characterized by the increased activity of cyclin D-CDK4/6 and dereg-
ulation of E2F transcription factors, ultimately followed by cell death 
(Marlier et al., 2020 May 31). In this regard, E2F1 may act as a trigger of 
neuronal apoptosis. It has been reported to activate two pro-apoptotic 
signaling pathways in cerebellar granule cells and cortical neurons, 
namely, p53-independent activation of Bax/caspase-3 and the induction 
of the CDK1/FOXO1/Bad pathway (Schmidt-Kastner et al., 2000; Zhang 
et al., 2020). In addition, p130/E2F4, a repressive complex that main-
tains neurons’ post-mitotic state, is also deregulated. This dysregulation 
results in the induction of neuronal apoptosis through the upregulation 
of B-myb and C-myb (Liu and Greene, 2001). Overall, these observations 
indicate that different environmental conditions trigger various 
signaling pathways that can elicit cell cycle reactivation and cell death 
in specific neuronal phenotypes. 

Aberrant induction of the cell cycle in glial cells causes them to 
activate and proliferate, leading to glial scar formation and the pro-
duction of inflammatory factors. This microenvironment plays a crucial 

role in developing neurodegenerative pathology (Woulfe et al., 2016; 
Caggiu et al., 2019). However, the forced re-entry of terminally differ-
entiated neurons into the cell cycle leads them to death instead of pro-
liferation (Hernández-Ortega et al., 2011; Frade and Ovejero-Benito, 
2015a). Although in specific pathologies, various types of machinery 
are involved in distinct ways of neuronal demise. The abnormal cell 
cycle re-entry (CCR) of neurons leading to death may be a common 
pathway among different neurodegenerative conditions [Fig. 5]. Acute 
injury to CNS, such as stroke or trauma, is often accompanied by 
neuronal apoptosis and is usually associated with blockade of G1/S 
transition (Wu et al., 2011). Whereas, in chronic circumstances such as 
neurodegenerative diseases like multiple sclerosis (MS), amyotrophic 
lateral sclerosis (ALS), Alzheimer’s disease (AD), and Parkinson’s dis-
ease (PD), however, some of the neurons show S-phase markers (Bonda 
et al., 2009). In such neurons, successful completion of DNA synthesis is 
depicted by S-phase proteins such as phosphorylated Mcm2, and aneu-
ploidy supports the notion (D. J. Bonda et al., 2010). 

3.1. EBV-induced CCR in Alzheimer’s disease 

AD is characterized by progressive and irreparable damage inflicted 
on the neurons, leading to cognitive impairment. According to WHO 
reports, it is the predominant cause of senile dementia globally, 
contributing 60–70% of the total cases (Carbone et al., 2014). Between 
2020 and 2040, incidents of dementia associated with AD are speculated 
to increase by more than 300% in South-East Asian countries, including 
India (Rizzi et al., 2014; Ferri et al., 2005). Though a few key elements in 
the disease pathology are well-acknowledged, explicit molecular 
mechanisms leading to the disease pathogenesis are yet to be under-
stood. While not the sole cause of neurodegeneration, amyloid-β (Aβ) 
plaques, and neurofibrillary tangles are hallmarks of AD and critical in 
the disease development [Fig. 5] (Braak et al., 1998; LaFerla and Oddo, 
2005). Damage induced by oxidative stress is another crucial facet of 
neurodegeneration related to AD (Zhang et al., 2014; Kamat et al., 2016; 
Kang et al., 2017). Additionally, viral infections could be a risk factor for 
AD susceptibility (Carbone et al., 2014). 

Over the past few years, an increasing number of reports have been 

Fig. 4. Neuronal cell-cycle. Mitogenic signals received by neural progenitor cells in the subventricular zone (SVZ) and dentate gyrus (DG) give new cells. However, 
mitogenic stimulation could result in ectopic re-entry of the cells into the cell cycle, ultimately leading to neurodegeneration in the rest of the brain. 
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implicating aberrant cell cycle re-entry of neurons in AD pathogenesis 
(Bonda David et al., 2010). Interestingly, aberrant cell cycle markers in 
AD neurons are present way before obvious disease indicators; there-
fore, mitotic dysfunction is indicated as a predisposition to disease onset 
and early development (Lombardi and Lasagni, 2016). Markers of 
ectopic cell cycle activation in AD-affected neurons include altered 
expression of cell cycle-mediating mitotic proteins like Ras (Wright and 
Harding, 2010) and G-proteins (Thathiah and De Strooper, 2011), 
expression of S-phase proteins, aneuploidy, etc., are found to be 
concordant with disease development. Recently published studies pro-
vide more evidence of the importance of cell cycle dysregulation in AD 
pathogenesis. Firstly, compared to healthy controls, the Ras protein and 
its downstream mediators such as Raf, MAPK, and MEK1/2 have been 
activated in AD neurons (Wright and Harding, 2010; Thathiah and De 
Strooper, 2011; Tan et al., 2012). The Ras pathway is exclusively 
implicated in the phase transition from G0 to the G1 stage of the cell 
cycle via its interaction with Cyclin D1. Interestingly, activation of the 
Ras-MAPK-dependent pathway by LMP-1 of EBV is essential for malig-
nant transformation in B-cells (Roberts and Cooper, 1998). EBV could 
probably influence the Ras-MAPK pathway in neurons and initiate the 
development of neurodegenerative pathology via modulating the cell 
cycle. 

Additionally, compared to the age-matched controls AD neurons 
display elevated levels of other cell-cycle markers, indicating an exit of 
neurons from the quiescence stage (G0) and re-entry into the cell cycle 
(Yang et al., 2003; Bonda et al., 2009; Tan et al., 2012). In particular, the 
cytoplasm of diseased neurons express Cyclin D, CDK-4, and Ki67, and 
elevation of the Cyclin D/CDK-4 complex in the cells corroborates the 
fact that these cells have indeed crossed the G1 phase and are no longer 
in G0 [Fig. 4] (McShea et al., 1997; Nagy et al., 1997; Ueberham, 2003; 
Heine et al., 2004; Ueberham and Arendt, 2005; Aulia and Tang, 2006; 
Currais et al., 2009a; van Leeuwen and Hoozemans, 2015). As described 
in previous sections, EBV has long been known to influence various 
cyclin/CDK complexes. There are high chances that EBV might modu-
late the activity of the Cyclin D/CDK-4 complex during the initiation of 

the cell cycle at the G1 phase and force them towards abortive cell-cycle 
reentry. 

Moreover, even transition through S-phase is indicated by successful 
DNA replication in AD neurons, along with the expression of S-phase 
proteins such as phosphorylated pRb and Mcm2 (Thakur et al., 2008; 
Bonda et al., 2009). The presence of aneuploidy corroborates this pos-
sibility (Arendt, 2012; Barrio-Alonso et al., 2018b). The premature 
chromosome separation (PCS), a phenomenon associated with success-
ful DNA replication and an aberrant mitotic phenotype, provides 
persuasive proof for CCR in AD neurons (Spremo-Potparević et al., 
2008). Studies particularly illustrate PCS happening in the G2 of the cell 
cycle immediately after DNA duplication (Zhu et al., 1999). It is note-
worthy that EBV, as an oncogenic virus, has been known to induce 
chromosomal rearrangements and instability (Lacoste et al., 2010). The 
viral protein BNRF1 induces centrosome amplification (Shumilov et al., 
2017), while the BGLF4 kinase of the virus induces premature chro-
mosome condensation through activation of condensin and topoisom-
erase II (Lee et al., 2007). The above-mentioned studies indicate the 
possibility of EBV-mediated chromosomal modulation in neurons, as a 
probable step towards developing neurodegenerative pathology. 

Further, oxidative stress in neurons, a significant contributor to AD 
pathogenesis, has been consistently associated with cell cycle aberration 
markers (Zhu et al., 2001; Klein and Ackerman, 2003). Although it is one 
of the key players in disease onset and development, the precise source 
of this oxidative stress and its role in AD pathophysiology have been 
ambiguous (Smith et al., 2000; Scheff et al., 2016; Uddin and Kabir, 
2019). For instance, in immunohistochemically stained neurons, 
oxidative stress markers like 8-hydroxyguanosine appear decades before 
the general signs of AD (Abe et al., 2002). Interestingly, Aβ in its soluble, 
non-aggregated form is an effective antioxidant and a high-valence 
metal chelator. Initially, it may exist as a respondent mechanism to 
relieve oxidative stress (Lee et al., 2006; Cheignon et al., 2018). How-
ever, oxidization renders Aβ insoluble, forming aggregates and incurring 
the cellular burden. It is noteworthy that members of the Herpesviridae 
family, like EBV, can stimulate Aβ fibrillation, a protective measure 

Fig. 5. Schematic diagram of cell-cycle deregulation-mediated neurodegeneration. The interdependent cascade of cellular signaling activated by various 
factors such as environmental, genetic, or external mitogenic stimuli; results in cell-cycle re-entry of post-mitotic neurons. However, mitotic catastrophe and an 
overstimulated immune system lead the cell towards neurodegeneration instead of cell cycle completion. 
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against brain infection (Eimer et al., 2018). 
Recent studies have revealed a direct and indirect causal link be-

tween oxidative stress and cell cycle aberrations (Bresgen et al., 2003; 
Limoli and Giedzinski, 2003; Taniai et al., 2014). Specifically, a ‘two-hit 
hypothesis’ has been suggested to implicate oxidative stress and cell 
cycle malfunctioning conjointly, resulting in AD neurodegeneration 
(Zhu et al., 2007; Bonda et al., 2009). The disease pathogenesis, pro-
voked by either of the two elements, advances as a combined process. 
Oxidative stress, as one factor, destructs neurons to evoke other factors 
involved in cell cycle dysfunction eventually or vice-versa. For instance, 
in sporadic AD (or late-onset), which is more prevalent, a steady-state of 
oxidative imbalance has been observed that predisposes the affected 
neurons to develop cell cycle malfunctions as a ‘second hit.’ Although 
neurons can counter the effect of acute oxidative stress, chronic 
large-scale accumulation of reactive oxygen species will require the cell 
to adapt and attain a state of oxidative imbalance. While the cell might 
survive with these adaptations for decades, eventual secondary abnor-
malities in the cell cycle ultimately result in its death. These two ’hits’ 
finally launch the cell on a deteriorative course of oxidative stress, 
inflammation, Aβ aggregation, and mitotic dysfunction, followed by cell 
death, giving rise to the conditions responsible for disease pathology 
(Zhu et al., 2007). Based on the above-mentioned studies, it would not 
be farfetched to claim the association of EBV or HHV infection-mediated 
oxidative stress as a possible contributor to neurodegeneration in AD. 

Besides, some crucial genes implicated in AD pathogenesis may be 
involved in abnormal CCR of neurons and subsequent neuro-
degeneration. In particular, three genes, the Aβ precursor protein (AβPP) 
gene, Presenilin 1 and 2 (PS-1/2) gene homologs, are linked with early- 
onset AD and have been reported to play a vital role in the cell cycle and 
its regulation (Porquet et al., 2015). AβPP, an integral transmembrane 
protein, undergoes proteolytic cleavage to produce Aβ peptide. The 
PS-1/2 genes are responsible for the proteolytic cleavage of AβPP and 
are hence involved in the regulation of the cell cycle as well as AD 
pathogenesis (De Strooper et al. 1998, 1999). In-vitro, both the protein 
and the resultant peptide have been shown to possess mitogenic activity 
(Greenberg et al., 1994). 

Apart from their earlier mentioned interaction with AβPP, these 
homologous genes (PS-1/2) have also been associated with centrosomal 
assembly in the dividing cell, thus linking mitogenic alterations with 
neurodegeneration (Judge et al., 2011). For instance, deficiency of 
PS-1/2 in HeLa cells caused their accelerated transition from G1 to S 
phase, while their overexpression resulted in G1 phase arrest of the cell 
cycle (Janicki, 2000). Several studies with transgenic mice with AβPP, 
PS-1, and PS-2 mutations have also demonstrated that neurons exhibit 
CCR several months before amyloid deposition and full AD pathogenesis 
(D. J. Bonda et al., 2010). Also, the report suggests that these events 
occur in an anatomical pattern resembling the progression sequence of 
neuronal damage susceptibility observed in AD. Interestingly, though 
these mice show significant CCR as early as 6 months of age, their 
cognition and cellular functioning are maintained at a near-normal level 
for extended periods (Zhu et al., 2007). These mutant mice showed a 
phenotype of ‘mitotic steady-state,’ which ultimately evoked further 
abuse in the form of a ‘second hit’ of oxidative stress. Since the impor-
tance of PS- 1/2 is well established in the onset of familial AD cases, the 
possibility of its role as a link between cell cycle aberration and neu-
rodegeneration cannot be overlooked. Additionally, AβPP-binding pro-
tein 1 (AβPP-BP1), which binds to the carboxy-terminal domain of the 
AβPP, is a multifunctional adapter protein that is also implicated in the 
regulation of mitotic transition from S to M-phase (Chen et al., 2000). 
Therefore, a neuron overexpressing AβPP-BP1 would be pushed in 
S-phase, exhibiting DNA replication and expressing the corresponding 
cell cycle markers Cyclin B/cdc2, ultimately propelling the cell towards 
apoptosis. As these phenotypes are apparent in AD neurodegeneration, 
AβPP-BP1 could be partially responsible for CCR. 

Further, multiple factors could be responsible for inducing vulner-
able neurons into improper re-entry into the cell cycle. According to the 

reports, mitogenic signaling induced by viral infections plays a pivotal 
role. Interestingly, EBV seropositivity has been demonstrated consis-
tently over the decades in patients suffering from AD. However, the role 
of EBV in the disease remained debatable and underexplored. Several 
recent studies have provided convincing proof implicating EBV in the 
etiology of AD. A study done by Gate et al. showed that adaptive im-
mune changes mediated by EBV were involved in AD pathogenesis 
(Kang and Liu, 2020). They reported the presence of CD8+ T effector 
memory CD45RA+ (TEMRA) cells specific for EBV as a part of adaptive 
immunity in AD patients. 

Regardless of the cause, the outcomes of cell cycle dysfunction 
evident in AD are the same. The aberrant re-entry of already differen-
tiated adult neurons into the cell cycle results in cellular malfunction 
and premature cell death, ultimately leading to neurodegeneration (Lee 
et al., 2009). As the cell cycle involves complex interactions of a wide 
variety of Cyclins and CDKs, which are crucial for cell proliferation and 
survival, any modulation of their expression, function, or control is 
likely to affect the cell negatively. Evidence suggests that the inability of 
neurons to complete the M-phase after the initial mitotic induction ul-
timately leads the cell to its death (Lombardi and Lasagni, 2016). 
Although many studies have reported neurons to complete or at least 
enter into the S-phase (indicated by DNA replication, chromosome 
maintenance protein expression, and binucleation events), some cells to 
be in the G2 phase, and an entrance to M-phase, no study depicted 
completion of M-phase in the neurons (Currais et al., 2009b; Hardwick 
and Philpott, 2014; Frade and Ovejero-Benito, 2015b; Sharma et al., 
2017; Walton et al., 2019). These neurons appear to experience a 
“mitotic catastrophe,” a phenomenon indicating the inability of the cell 
to complete the cell cycle due to failure in its regulation. Unfortunately, 
as these neurons have already passed the mitotic point of no return (i.e., 
G1-phase/S-phase), they ultimately succumb to death instead of 
proliferating. 

Therefore, modulations in the cell cycle and its control system may 
play a crucial role in developing neurodegenerative pathology. 
Although the definite mechanisms resulting in such mitotic dysfunctions 
are not entirely understood, various factors seem to play, including 
oxidative damage, viral infections, etc. A complex and reciprocal rela-
tionship between these factors and CCR seems likely in AD. Altogether, 
these facts indicate that the neurodegenerative pathology in AD might 
result from cell-cycle modulation mediated by EBV. 

3.2. EBV induced CCR in Parkinson’s disease 

PD is categorized as a progressive neurodegenerative disorder 
occurring either sporadically or due to hereditary mutations in genes 
such as parkin, a-synuclein, and ubiquitin C-terminal hydrolase L1 gene 
(Braak et al., 1998). The pathophysiology of PD is marked by the pres-
ence of proteinaceous aggregates known as Lewy bodies (LBs) and 
pigmentation in dopaminergic neurons of substantia nigra pars com-
pacta (SNpc) [Fig. 4] (Antony et al., 2013). However, the mechanism of 
pathogenesis leading to neuronal death in PD is still unclear. Previous 
studies have advocated the role of environmental factors, such as viral 
infections, that conspire with a permissive genetic background to 
initiate the neurodegenerative pathology of PD (Jang et al., 2009; Wang 
et al., 2020). However, the precise identity of these viral infections re-
mains elusive, and the definite mechanism underlying this association 
remains unclear to date. For instance, in many cases, a direct viral 
infection of nigral neurons has been demonstrated or implicated in 
disease pathology, whereas in others, virally induced autoimmune 
mechanisms are held responsible (Olsen et al., 2019; Pajares et al., 
2020). 

Specifically, the molecular mimicry exhibited by a repeat region in 
latent membrane protein 1 (LMP-1) encoded by EBV and the C-terminal 
region of alpha-synuclein corroborates the statement (Caggiu et al., 
2019). In genetically predisposed individuals, oligomerization of 
alpha-synuclein forming aggregates is believed to occur due to its 
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cross-reactivity with EBV LMP-1 antibodies. These antibodies target a 
critical repeat region of alpha-synuclein. However, it is believed that 
EBV infection is essential but not sufficient alone for the development of 
PD within the average human lifespan. Considerable studies indicate 
that environmental factors collaborate with the susceptible genetic 
background to initiate the PD pathology. Together, both factors 
contribute to disease onset and progression and critical modulation of its 
temporal profile. In the face of EBV-induced α-syn autoimmunity, the 
host genetics may govern the immune response (e.g., HLA-DR, LRRK2) 
against EBV proteins and α-syn aggregation kinetics. The host genes 
SNCA, PARKIN, DJ-1, and PINK-1, along with factors like oxidative 
stress respectively, dictate the aggregation propensity, oligomer or 
aggregate clearance ability of the cell, and its capacity to deal with the 
consequences of aggregated α-syn, etc. (Caggiu et al., 2019). 

Interestingly, cell-cycle dysregulation has also been linked to the 
development of PD pathophysiology. Several studies with post-mortem 
tissues of PD patients have reported the presence of p35 and CDK-5 in 
LBs in the locus coeruleus, neocortex, and substantia nigra (He et al., 
2020; Allnutt et al., 2020). It suggests that CDK-5 is probably involved in 
LB formation. There is unquestionable evidence suggesting that pro-
teinaceous aggregates of α-syn are key constituents of LBs that play a 
central role in PD pathogenesis (Takeda et al., 1998; Olanow and 
Brundin, 2013). Many studies demonstrated the co-localization of EBV 
with these protein aggregates (Woulfe et al., 2016). EBV signatures in 
α-syn aggregates have led scientists to hypothesize that PD is an 
EBV-induced autoimmune phenomenon. CDK-5 is known to play a 
crucial role in the cytoarchitecture of the CNS and is thereby indirectly 
linked to cell-cycle progression. Also, many studies have corroborated 
the implication of phase-related CDKs in PD neurodegeneration. Mark-
edly, EBV has been repeatedly associated with modulation of 
Cyclin-CDK complexes, as described in previous sections. For instance, 
(the association of Cyclin E with EBV) Cyclin E, a CDK-2 activator, acts 
as a substrate of the parkin ubiquitin ligase complex, whose association 
is reported with familial forms of PD [Fig. 4] (Staropoli et al., 2003). 
Overexpression of parkin has been shown to rescue primary midbrain 
dopaminergic neurons from kainic acid (a neuro-excitotoxin)-induced 
death by reducing Cyclin E buildup in the cell. In the dopaminergic 
neurons of the substantia nigra of post-mortem PD brain tissue, ample 
cytoplasmic pRb, E2F-1, and PCNA immunostaining along with DNA 
duplication were also observed [Fig. 4] (Braak et al., 1998; Frade and 
Ovejero-Benito, 2015a). 

Apart from human brain tissue samples, in-vivo and in-vitro models 
have been developed using neurotoxins like 1-methyl-4-phenyl-1,2,3,6- 
tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) and are 
used to study the disease pathophysiology (Schober, 2004). These 
models reproduce a subset of PD features and are majorly used to study 
the disease. In one such study done by Neystat et al. on 6-OHDA-treated 
rats, activation of CDK-5 and its concomitant increase along with p35 
expression levels were detected in the nigral neurons. These nigral 
neurons were observed to be in the late morphological state of apoptosis 
(Neystat et al., 2001). Furthermore, another report suggested an in-
crease in the expression of CDK-5 after MPTP administration. 
Dominant-negative CDK-5 or inhibition of CDK-5 activity by general 
CDK inhibitors have shown beneficial effects in curtailing disease pro-
gression (Binukumar et al., 2015). The data thus far available indicate an 
imperative role of CDK-5 as a mediator in the pathogenesis of PD. 

Additionally, immunohistochemical examination of primary rat 
midbrain neuron cultures treated with MPTP also displayed unusual cell 
cycle protein expression in the G1-M phase transition. The observed 
phenotype also corroborated with the data obtained from human 
studies. The dopaminergic neurons of rat SNpc displayed markers 
signifying entry of neurons in the S and G2 phase after 6-OHDA 
administration (Schober, 2004). Strategies targeting the G1 phase, 
such as flavopiridol-mediated inhibition of CDK-4 and E2F knockout, 
have shown neuroprotective effects against PD pathology in in-vivo and 
in-vitro studies (Verdaguer et al., 2005). 

Altogether, these observations suggest that dopaminergic neurons 
post mitosis subvert the G1/S checkpoint and re-enter the cell cycle in PD 
but get arrested at the M-phase. Perhaps, the miscarried cell cycle is the 
process that leads the neurons towards apoptosis and eventual neuro-
degeneration in PD. 

4. Outlook: how is EBV supposedly driving neurons’ cell cycle 
re-entry (CCR) and leading to degeneration? 

Various studies have linked the neurodegenerative pathology of AD, 
PD, and other disorders with Herpesviral infections (De Chiara et al., 
2012; Hogestyn et al., 2018; Costa Sa et al. 2019b). However, the precise 
mechanisms by which these viruses exert their deteriorative effect on 
the nervous system are still elusive. Although these viruses are well 
known to modulate cell cycle events [Fig. 6] for their benefit, as dis-
cussed above, and dysregulation of the cell cycle is reported to be an 
early event in neurodegeneration; no such study exists linking them to 
the two. This review has discussed some poorly understood, intensely 
debated, and underexplored avenues of virus-mediated neuro-
degeneration. Additionally, we propose a possible mechanism of 
EBV-mediated cell cycle dysregulation in causing neurodegeneration. 

Various factors that might act as a trigger are reported to initiate the 
cell cycle in terminally differentiated neurons. A trending hypothesis 
states the implication of viral infections in the etiology of neuro-
degeneration via modulating the cell cycle. First, EBV has been shown to 
associate with neurodegenerative diseases. Second, EBV, a well-known 
oncogenic virus, is reported to manipulate the cell cycle at various 
stages of protein-protein interaction, protein redistribution, or molecu-
lar mimicry, as mentioned above in detail. Interestingly, these steps are 
also crucial in developing neurodegenerative pathology. For instance, 
pRb, a protein responsible for guarding the G1 to S transition, is known 
to be modulated by EBV and is also associated with PD pathology. 
Moreover, in addition to the direct interaction of EBV with the effector 
molecules, it might be acting by creating favorable conditions for cell 
cycle progression. EBV could also instigate cell cycle progression via 
ectopic and untimely accumulation of various CDKs and other modu-
lators. These facts suggest a strong association between neuro-
degeneration and EBV-mediated cell-cycle dysregulation. Further 
studies in this direction could provide a tangible causative link between 
the two and help us establish the precise role of EBV in aggravating 
neurodegenerative pathology. 
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Fig. 6. Epstein-Barr virus antigens deregulate the cell cycle. Epstein-Barr virus (EBV) associated nuclear antigens (EBNA) – 1, 2, 3A, 3B, 3C, 5 (LP), LMPs, and 
Rta modulate the cell cycle at various stages. In brief, at the early G1 stage of the cell cycle, E3C and LMP-1 hinder the activity of p27 and p16, respectively, to block 
their inhibitory effect on the Cyclin D/CDK-4/6 complex. E3C also inhibits the cytoplasmic translocation of GSK-3b to prevent Cyclin D phosphorylation. In addition, 
E3C modulates the E2F-mediated transcription by interacting with pRb and AURKB; E3C also mediates the nuclear translocation of mitochondrial protein MRPS18-2 
to facilitate its binding with pRb and thereby regulating the level of free E2F. During the late G1 phase, the formation of the Cyclin E/CDK-2 complex is affected by 
the binding of LMP-1 and E3C. Further, the p21WAF1/CIP1 mediated inhibition of the Cyclin E/CDK-2 complex is obstructed by the binding of E3A and Rta antigens of 
EBV. Interaction of E3C with other host molecules such as p53 or Chk1/2 also affects cell cycle progression from G1 to the S phase. Along with E3, other EBV antigens 
such as E5 and E1 also modulate the Mdm-2-mediated apoptosis pathway in the late G1 phase of the cell cycle. E5 is reported to directly interact with Mdm-2, while 
E1 binds with HAUSP to promote ubiquitination of the Mdm-2 molecule, leading to its degradation and thereby modulating the host cell cycle. Progressing to the S 
phase of the cell cycle, EBV antigen E3B is reported to directly bind Cyclin A, while E3C and E3A curb the inhibitory effect of p27 and p21WAF1/CIP1 respectively 
towards Cyclin A/CDK-1/2 complex. Rta binding to 14-3-3σ enhances its expression and thereby sequesters the activity of the Cyclin A/CDK-1/2 complex. During the 
G2 phase of the cell cycle, E3A binding to p21WAF1/CIP1 obstructs its blocking activity towards the Cyclin /-CDK-1 complex. Furthermore, the binding of E3C to the 
p53-gemin complex leads to IRF-5-mediated upregulation of LMP-1 expression that causes p53-mediated apoptosis to stop. 
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Jäger, M., Schwarzmann, F., Recheis, H., Fontaine, M., et al., 1999. Epstein-barr 
virus infection of human astrocyte cell lines. J. Virol. 73 (9), 7722–7733. https://doi. 
org/10.1128/JVI.73.9.7722-7733.1999, 2022 Apr 6]. https://journals.asm. 
org/doi/10.1128/JVI.73.9.7722-7733.1999. 

Nagy, Z., Esiri, M.M., Cato, A.-M., Smith, A.D., 1997. Cell cycle markers in the 
hippocampus in Alzheimer’s disease. Acta Neuropathol. 94 (1), 6–15. https://doi. 
org/10.1007/s004010050665, 2020 Oct 12]. http://link.springer.com/10.1007/ 
s004010050665. 

Neystat, M., Rzhetskaya, M., Oo, T.F., Kholodilov, N., Yarygina, O., Wilson, A., El- 
Khodor, B.F., Burke, R.E., 2001. Expression of cyclin-dependent kinase 5 and its 
activator p35 in models of induced apoptotic death in neurons of the substantia nigra 
in vivo: cdk5 and p35 in SN neuron apoptosis in vivo. J. Neurochem. 77 (6), 
1611–1625. https://doi.org/10.1046/j.1471-4159.2001.00376.x, 2020 Oct 12. http 
://doi.wiley.com/10.1046/j.1471-4159.2001.00376.x. 

Ng, Y.-K., Wong, E.Y.L., Lau, C.P.Y., Chan, J.P.L., Wong, S.C.C., Chan, A.S.-K., Kwan, M. 
P.C., Tsao, S.-W., Tsang, C.-M., Lai, P.B.S., et al., 2012. K252a induces anoikis- 
sensitization with suppression of cellular migration in Epstein-Barr Virus (EBV)— 
associated nasopharyngeal carcinoma cells. Invest. N. Drugs 30 (1), 48–58. https:// 
doi.org/10.1007/s10637-010-9513-4, 2022 Apr 6]. http://link.springer.com/10. 
1007/s10637-010-9513-4. 

Niedobitek, G., Meru, N., Delecluse, H.J., 2001. Epstein-Barr virus infection and human 
malignancies. Int. J. Exp. Pathol. 82 (3), 149–170. https://doi.org/10.1046/j.1365- 
2613.2001.iep0082-0149-x. 

Ohtani, N., Brennan, P., Gaubatz, S., Sanij, E., Hertzog, P., Wolvetang, E., Ghysdael, J., 
Rowe, M., Hara, E., 2003. Epstein-Barr virus LMP1 blocks p16INK4a–RB pathway by 
promoting nuclear export of E2F4/5. J. Cell Biol. 162 (2), 173–183. https://doi.org/ 
10.1083/jcb.200302085, 2020 Oct 11]. https://rupress.org/jcb/article/162/2/173/ 
33557/EpsteinBarr-virus-LMP1-blocks-p16INK4aRB-pathway. 

Olanow, C.W., Brundin, P., 2013. Parkinson’s disease and alpha synuclein: is Parkinson’s 
disease a prion-like disorder?: PD, alpha synuclein, and prion disorders. Mov. Disord. 
28 (1), 31–40. https://doi.org/10.1002/mds.25373, 2020 Oct 12. http://doi.wiley. 
com/10.1002/mds.25373. 

Olsen, L.K., Cairns, A.G., Ådén, J., Moriarty, N., Cabre, S., Alamilla, V.R., Almqvist, F., 
Dowd, E., McKernan, D.P., 2019. Viral mimetic priming enhances α-synuclein- 
induced degeneration: implications for Parkinson’s disease. Brain Behav. Immun. 80, 
525–535. https://doi.org/10.1016/j.bbi.2019.04.036, 2020 Oct 12]. https://linki 
nghub.elsevier.com/retrieve/pii/S0889159118307682. 
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