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Repetitive transcranial magnetic stimulation for lower 
extremity motor function in patients with stroke: 
a systematic review and network meta-analysis

Yun-Juan Xie1, 2, Yi Chen1, 2, Hui-Xin Tan1, 2, Qi-Fan Guo1, 2, Benson Wui-Man Lau3, 
Qiang Gao1, 2, *

Abstract  
Transcranial magnetic stimulation, a type of noninvasive brain stimulation, has become 
an ancillary therapy for motor function rehabilitation. Most previous studies have focused 
on the effects of repetitive transcranial magnetic stimulation (rTMS) on motor function in 
stroke patients. There have been relatively few studies on the effects of different modalities 
of rTMS on lower extremity motor function and corticospinal excitability in patients with 
stroke. The MEDLINE, Embase, Cochrane Library, ISI Science Citation Index, Physiotherapy 
Evidence Database, China National Knowledge Infrastructure Library, and ClinicalTrials.gov 
databases were searched. Parallel or crossover randomized controlled trials that addressed 
the effectiveness of rTMS in patients with stroke, published from inception to November 
28, 2019, were included. Standard pairwise meta-analysis was conducted using R version 
3.6.1 with the “meta” package. Bayesian network analysis using the Markov chain Monte 
Carlo algorithm was conducted to investigate the effectiveness of different rTMS protocol 
interventions. Network meta-analysis results of 18 randomized controlled trials regarding 
lower extremity motor function recovery revealed that low-frequency rTMS had better 
efficacy in promoting lower extremity motor function recovery than sham stimulation. 
Network meta-analysis results of five randomized controlled trials demonstrated that high-
frequency rTMS led to higher amplitudes of motor evoked potentials than low-frequency 
rTMS or sham stimulation. These findings suggest that rTMS can improve motor function in 
patients with stroke, and that low-frequency rTMS mainly affects motor function, whereas 
high-frequency rTMS increases the amplitudes of motor evoked potentials. More high-
quality randomized controlled trials are needed to validate this conclusion. The work was 
registered in PROSPERO (registration No. CRD42020147055) on April 28, 2020. 
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Introduction 
Stroke is the dominant cause of disability among adults 
worldwide (Lavados et al., 2007; Zhou et al., 2019), often 
causing motor impairment. Motor impairment is related to 
a higher risk of falling because of gait impairments (Kim et 
al., 2014a), as well as limitations in activities of daily life and 
poor quality of life (Robinson et al., 2011). Clinical therapists 
therefore normally focus on improving walking ability and 
lower extremity motor function in patients with stroke 
(Winstein et al., 2016; Hankey, 2017). As a result of abnormally 
increased transcallosal inhibition from the contralateral to 
ipsilateral hemisphere, an imbalance in interhemispheric 
inhibition often occurs after stroke (Calautti et al., 2001; 
Zappasodi et al., 2019). This imbalance is associated with 
the degree of motor impairment and the limitation of 
sensorimotor recovery (Murase et al., 2004; Peters et al., 
2018). 

Based on the concept of disrupting interhemispheric balance 

after stroke, transcranial magnetic stimulation (TMS), a type 
of noninvasive brain stimulation, has become an essential 
ancillary therapy for motor function rehabilitation, modulating 
cortical excitability and inducing neural plasticity (Nowak et 
al., 2009). TMS can either increase or decrease excitability of 
the stimulated cerebral cortex site, and of remote regions via 
functional anatomical connections (Kobayashi and Pascual-
Leone, 2003; Gu et al., 2013; Yang et al., 2020). Theoretically, 
repetitive TMS (rTMS) can induce different changes in cortical 
excitability that vary with the stimulated frequency. High-
frequency rTMS (HF-rTMS) increases brain activity, whereas 
low-frequency rTMS (LF-rTMS) induces the opposite effect 
(Benussi et al., 2019). Lately, novel forms of rTMS therapies 
have emerged, such as deep TMS (dTMS), which uses a 
different coil type (Hesed coil) that can purportedly stimulate 
deeper cortical and subcortical regions (Chieffo et al., 2013), 
and theta-burst stimulation (TBS), including continuous TBS 
and intermittent TBS (iTBS) (Harrington and Hammond-Tooke, 
2015; Strzalkowski et al., 2019). 
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Previous meta-analyses have examined the efficacy of rTMS 
compared with sham therapy, and have demonstrated that 
rTMS can improve motor function, balance, and walking speed 
compared with the sham group (Li et al., 2018; Ghayour-
Najafabadi et al., 2019; Tung et al., 2019). However, these 
meta-analyses did not compare the effectiveness of different 
modalities of rTMS (e.g., HF-rTMS, LF-rTMS, and iTBS) on 
lower extremity motor function. Furthermore, pairwise 
meta-analyses provide limited insights into overall treatment 
hierarchies because treatment effects are only estimated 
from relevant treatment comparisons. In contrast to standard 
pairwise meta-analyses, network meta-analysis (NMA) allows 
the comparison of different modalities of rTMS, although it 
does not allow direct comparisons of head-to-head trials (Mills 
et al., 2013). Thus, NMA provides a more complete insight into 
the efficacy of rTMS interventions, and should be considered 
as the highest level of evidence in treatment guidelines (Leucht 
et al., 2016). The objective of this systematic review and NMA 
was to compare the efficacy of different rTMS interventions 
for lower extremity motor function in patients with stroke, 
and to obtain clinical significance levels of these interventions 
from the perspective of motor function improvement. 
Furthermore, this review aimed to explore the effectiveness 
of rTMS on cortical excitability. 
 
Data and Methods   
We established the protocol of this systematic review, 
registered in PROSPERO (registration No. CRD42020147055) 
on April 28, 2020, in line with guidance from the Preferred 
Reporting Items for Systematic Review and Meta-analysis 
Protocols (PRISMA-P) statement (Additional file 1) (Moher 
et al., 2015; Shamseer et al., 2015). This review was also in 
accordance with the PRISMA statement (Liberati et al., 2009) 
and its extension for NMA (Hutton et al., 2015), and with the 
Cochrane Collaboration recommendations (Higgins and Green, 
2011).

Eligibility criteria
The inclusion criteria were stroke patients with lower 
extremity dysfunction who were diagnosed according to the 
stroke diagnostic criteria formulated by The Fourth National 
Cerebrovascular Disease Conference in 1995 (Chinese Society 
of Neuroscience and Chinese Neurosurgical Society, 1996), 
and parallel or crossover randomized controlled trials (RCTs) 
that explored the effectiveness of rTMS on lower extremity 
recovery in stroke patients. Quasi-randomized trials or studies 
including adolescents (under 18 years of age) with stroke, 
bilateral stroke patients, or subtentorial stroke patients were 
excluded. Outcome measures included lower extremity motor 
function and cortical excitability. The primary outcome was 
motor recovery of the lower extremity, measured by the Fugl-
Meyer assessment (FMA). Secondary outcomes included 
balance function, speed, motor evoked potential (MEP), and 
the Barthel Index (BI). Balance function was measured using 
the Berg Balance Scale (BBS) along with the Timed Up and 
Go Test (TUG). Post-treatment values of motor function and 
similar measurements were pooled. 

Data sources and searches
The following online electronic databases were searched 
for eligible studies from inception to November 28, 2019: 
MEDLINE, Embase, Cochrane Library, ISI Science Citation 
Index, Physiotherapy Evidence Database (PEDro), and China 
National Knowledge Infrastructure Library (CNKI). Keywords 
included transcranial magnetic stimulation or TMS, stroke, 
cerebrovascular accident, and the combination of these 
words. We also searched for studies in progress, unpublished 
research, and research reported in the gray literature and 
ClinicalTrials.gov. The full search strategy is illustrated in 
Additional file 2. We re-ran the searches just before the final 
analysis, and further studies were retrieved for inclusion. 

Data collection and analysis
Study selection
Two reviewers (YJX and YC) independently screened the titles 
and abstracts of the included studies using the search strategy, 
to identify studies that potentially met the predefined 
inclusion criteria. The full text versions of these potential 
studies were then retrieved and evaluated independently by 
two reviewers (YJX and YC). Any disagreements were settled 
by discussion or by reaching a consensus with a third reviewer. 

Data extraction and management
Based on predefined criteria, relevant information from 
the eligible studies was extracted independently by two 
reviewers (YJX and YC) using electronic data collection forms. 
Discrepancies were resolved by consensus with a third 
reviewer (QFG). The main components of the identified 
studies (sample size, population characteristics, and study 
design), rTMS modalities, and outcome measures were 
extracted. We contacted the authors for any unpublished data 
that was necessary for the data analysis. 

Risk of bias assessment
The PEDro scale was applied to appraise the methodological 
quality of the included studies (de Morton, 2009). The final 
score on the PEDro scale is the number of positive answers 
to 11 questions. An excellent-quality study was defined by 
a score of 9 to 10, a good-quality study by a score of 6 to 
8, a normal-quality study by a score of 4 to 5, and a poor-
quality study by a score of less than 4 (Maher et al., 2003). 
We excluded poor-quality studies (scores lower than 4). Two 
independent reviewers conducted the quality assessment, 
and any divergences between the reviewers were resolved by 
discussion or agreement with a third reviewer. 

Quality of evidence
The global quality of our results was evaluated using an 
approach to extend the Grades of Recommendation, 
Assessment, Development, and Evaluation (GRADE) system 
(Atkins et al., 2004) to NMAs. In this way, we were able to 
integrate quality ratings for direct comparisons to evaluate the 
certainty of the evidence (confidence in evidence/quality of 
evidence) from an NMA (Brignardello-Petersen et al., 2018). 
According to the GRADE rating standards, which contain 
five categories—limitations in study design, inconsistency, 
indirectness, imprecision, and publication bias (Atkins et 
al., 2004)—the quality of evidence can be graded as high, 
moderate, low, or very low (Puhan et al., 2014). The evidence 
profiles were generated using GRADEpro GDT (https://gdt.
gradepro.org/app/) (Brignardello-Petersen et al., 2019). 

Measures of treatment effect
When diverse measures were used to appraise identical 
outcomes, the data were presented as standardized mean 
differences (SMDs) for continuous outcomes. Effect measures 
for continuous outcomes of included studies were calculated 
by the means and standard deviations of post-intervention 
values. The findings of every possible therapy derived from 
the NMA were presented as summary relative effect sizes. 
The ranking probabilities for all possible levels of therapy per 
intervention were also estimated (Salanti et al., 2011). 

Dealing with missing data
Corresponding authors were contacted for more information 
about missing data. If there was no reply, two reviewers (YJX 
and YC) attempted to measure the data using the available 
coefficients. These missing data may potentially influence the 
results of the review; this was determined using a sensitivity 
analysis.

Assessment of clinical assumptions
The variability of participants, continuation of outcome 
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measures, and intervention protocols and curative effects 
can result in multiple heterogeneities in the included studies, 
such as clinical, methodological, and statistical heterogeneity. 
Clinical and methodological heterogeneity within each 
pairwise comparison was evaluated by qualitatively comparing 
the study and population characteristics across the eligible 
studies. 
The term “transitivity” means that there are no differences 
between two experiments regarding the distribution of 
effect modifiers (Salanti, 2012). The elementary presumption 
underlying NMAs is the assumption of transitivity, which 
needs to be carefully evaluated. The believability of transitivity 
can be appraised by originally assessing the resemblance 
of the competitive interventions in different design studies, 
and then comparing the distribution of the possible effect 
modifiers in different direct comparisons (Jansen and Naci, 
2013). Quantitative synthesis may not be conducted when 
various comparisons exist in intransitivity, with considerable 
variation on effect modifiers (Rouse et al., 2017). 

Statistical analysis
Methods for direct treatment comparisons
Standard pairwise meta-analysis was conducted using a 
random-effects model to calculate the direct relative effects of 
the competitive interventions in R version 3.6.1 (https://www.
r-project.org/) (Salanti et al., 2011; Shim et al., 2019) using 
the “meta” package. Effect sizes were represented as SMD to 
determine whether the mean effect size was significant. For 
all statistical analyses, P < 0.05 implies that the effect size is 
significant. SMDs with 95% confidence intervals (CIs) were 
used to indicate the mean effect. A mean effect size of 0 was 
taken to indicate no effect (unchanged), while 0.2, 0.5, and 0.8 
indicated small, medium, and large effects, respectively. For 
each subsequent treatment comparison, direct and indirect 
evidence was integrated into a single summary estimate to 
synthesize the evidence from the network of trials.

Methods for indirect and mixed comparisons
Bayesian network analysis using the Markov chain Monte 
Carlo algorithm was conducted to investigate the effectiveness 
of different rTMS protocol interventions (Madden et al., 2016). 
This requires convergence of the Markov chain Monte Carlo 
chain to its stationary distribution (Toft et al., 2007; Warren et 
al., 2017). The burn-in period was defined as 5000 simulations 
for each chain, and posterior summaries are based on 200 000 
subsequent simulations. Convergence of chains was verified 
visually by observing trace plots and inspecting diagnostic 
statistics, as well as potential scale reduction factors obtained 
from Brooks–Gelman–Rubin plots (Brooks and Gelman, 1998; 
van Valkenhoef et al., 2012). When potential scale reduction 
factors are closer to 1, the simulated observations are closer 
to the target distribution. The deviance information criterion 
was then selected to determine the model fitness. A model 
with a lower deviance information criterion is considered a 
better fit and is the preferred choice (Dias et al., 2013). The 
results from NMA were indicated as SMD with 95% credible 
intervals (CrIs) (Roever and Biondi-Zoccai, 2016), which were 
presented as a league table (Mavridis et al., 2015). The square 
matrix contained all of the data about relative efficacy and 
their ambiguities for all probable interventions. Statistical 
analysis was performed using GeMTC (version 0.14.3) and R 
(version 3.6.1) software (Salanti et al., 2011; Shim et al., 2019) 
using the “gemtc” and “rjags” package (Neupane et al., 2014).

Assessment of statistical heterogeneity and inconsistency
The I2 statistics were used to assess statistical heterogeneity in 
standard pairwise meta-analysis. Effect sizes were calculated 
using the fixed-effects model when various independent 
studies maintained homogeneity (P > 0.05 or I2 < 50%) (Fleiss, 
1993). Notwithstanding, when there was heterogeneity 
between eligible studies (P < 0.05 or I2 > 50%), we conducted 

a sensitivity analysis or stratified analysis to analyze the 
source of heterogeneity. The random-effects model was used 
for the analysis when the included studies remained non-
homogeneous after the heterogeneity analysis (Borenstein 
et al., 2010). The heterogeneity variance parameter (τ2) 
was used to assess the statistical heterogeneity of the NMA 
models (Turner et al., 2012). Presuming the comparability of 
direct and indirect evidence in NMAs may engender incorrect 
conclusions when there is prevailing statistically significant 
inconsistency (White et al., 2012). The node-splitting method 
was used to locally check inconsistency between direct and 
indirect evidence (Bucher et al., 1997; Dias et al., 2010). If 
inconsistency was identified, the potential effect modifiers 
of included studies within inconsistent loops came under 
scrutiny by fitting network meta-regression models and/or 
conducting sensitivity analyses to exclude studies that may 
possess sources of inconsistency (Higgins et al., 2012; Rouse 
et al., 2017).

Additional analyses and small study effects
If the necessary data were available, we conducted a 
subgroup analysis for different outcome measures. Funnel 
plots and the Egger’s test were used for estimating publication 
bias. Within the outcomes of motor function and cortical 
excitability, we performed a sensitivity analysis to determine 
whether our results changed. Studies with lower quality, no 
blind evaluation, or a dropout rate of more than 10% were 
excluded. 

Results
Study selection
Of 4432 identified references, 4217 articles were excluded 
after systematically screening the titles and abstracts and 
removing duplicates. The full texts of 215 articles were 
retrieved for further exploration. Of these, 189 articles were 
omitted for several reasons, as described in Figure 1. Finally, 
26 studies (Chang et al., 2010; Wang et al., 2012, 2016, 2019; 
Kakuda et al., 2013; Cha et al., 2014; Chieffo et al., 2014; 
Elkholy et al., 2014; Ji et al., 2014; Kim et al., 2014b; Cha and 
Kim, 2015; Ji and Kim, 2015; Lin et al., 2015, 2019; Choi et al., 
2016; Du et al., 2016; Rastgoo et al., 2016; Cha and Kim, 2017; 
Forogh et al., 2017; Guan et al., 2017; Meng and Song, 2017; 
Chen, 2018; Huang et al., 2018; Zhao et al., 2018; Koch et al., 
2019; Liu et al., 2019) were included (24 two-arm and 2 three-
arm trials) in the quantitative synthesis, providing information 
on 30 comparisons among five different rTMS interventions 
(Figure 1).

Study characteristics and assessment of clinical assumptions
Of the 26 enrolled studies, 22 (Chang et al., 2010; Wang et al., 
2012; Cha et al., 2014; Elkholy et al., 2014; Ji et al., 2014; Kim 
et al., 2014b; Cha and Kim, 2015; Ji and Kim, 2015; Lin et al., 
2015, 2019; Du et al., 2016; Wang et al., 2016; Cha and Kim, 
2017; Forogh et al., 2017; Guan et al., 2017; Meng and Song, 
2017; Chen, 2018; Huang et al., 2018; Zhao et al., 2018; Koch 
et al., 2019; Liu et al., 2019; Wang et al., 2019) were RCTs, 
while the remaining studies were crossover trials (Kakuda 
et al., 2013; Chieffo et al., 2014; Choi et al., 2016; Rastgoo 
et al., 2016). Overall, 943 participants (aged 57.17 ± 11.95 
years; 610 [65%] men) were randomized to treatment. The 
baseline characteristics were equivalent between competing 
treatments. Among 18 studies (Chang et al., 2010; Wang 
et al., 2012, 2016, 2019; Chieffo et al., 2014; Elkholy et al., 
2014; Lin et al., 2015, 2019; Du et al., 2016; Rastgoo et al., 
2016; Forogh et al., 2017; Guan et al., 2017; Meng and Song, 
2017; Chen, 2018; Huang et al., 2018; Zhao et al., 2018; Koch 
et al., 2019; Liu et al., 2019) that reported the FMA as the 
primary outcome measure, the group comparing LF-rTMS 
versus sham was the most accepted comparison (Figure 2). 
Additionally, 11 studies (Wang et al., 2012, 2019; Kakuda et 
al., 2013; Chieffo et al., 2014; Elkholy et al., 2014; Ji et al., 
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2014; Kim et al., 2014b; Cha and Kim, 2015, 2017; Ji and 
Kim, 2015; Lin et al., 2019) used speed as a measure of lower 
extremity function, while 12 studies (Cha et al., 2014; Elkholy 
et al., 2014; Kim et al., 2014b; Choi et al., 2016; Rastgoo et 
al., 2016; Wang et al., 2016; Forogh et al., 2017; Chen, 2018; 
Huang et al., 2018; Zhao et al., 2018; Koch et al., 2019; Lin et 
al., 2019) also reported balance function. Cortical excitability 
(MEP amplitude) was assessed in six studies (Wang et al., 
2012, 2019; Cha et al., 2014; Du et al., 2016; Cha and Kim, 
2017; Huang et al., 2018). The principal characteristics of the 
included studies are listed in Tables 1 and 2. There were no 
significant discrepancies concerning baseline characteristics 
or total intervention sessions among the direct comparisons. 
This finding indicates a strong possibility that the underlying 
assumption of transitivity is correct in this review.

Quality assessment
The quality levels of all involved studies were appraised as 
good to excellent according to the PEDro results (Additional 
Table 1). All included studies specified eligibility criteria, and 
a majority of the studies were determined to be at low risk of 
bias for random allocation, blinding of outcome assessment, 
and incomplete outcome data, although they had a high risk 
of bias for concealed allocation. Of all included studies, 50% 
presented blinding of participants and outcome assessments, 
88% reported adequate random sequence generation, and 
77% performed intention-to-treat analysis, showing a low risk 
of bias. Only 30% presented blinding of therapists, and 27% 
presented allocation concealment.

According to the GRADE system, the FMA was assessed 
as being high-quality evidence, while speed outcome was 
classified as moderate-quality evidence. In contrast, MEP 
amplitude and BI outcomes were classified as low-quality 
evidence (Additional Table 2).

Relative effects and relative rankings of interventions 
Details regarding convergence and priors are given in 
Additional Figure 1.

FMA
The NMA for lower extremity motor recovery included 18 

Figure 1 ｜ Flow diagram of the study selection.

BA

Figure 2 ｜ Network diagrams of treatments in patients with stroke.
(A) Network diagram for the Fugl-Meyer assessment. (B) Network diagram 
for speed. The nodes were linked by a line when the treatments were 
directly comparable. The width of each line is proportional to the number 
of randomized controlled trials, and the size of each node is proportional 
to the number of patients (sample size). dTMS: Deep transcranial magnetic 
stimulation; HF: high-frequency repetitive transcranial magnetic stimulation; 
iTBS: intermittent theta-burst stimulation; LF: low-frequency repetitive 
transcranial magnetic stimulation. 

RCTs. According to the direct evidence, only LF-rTMS was 
significantly more effective than sham simulation with respect 
to motor function (SMD, 0.34; 95% CI, 0.11 to 0.58) (Additional 
Table 3). In contrast, dTMS, HF-rTMS, and iTBS appeared to 
have no better efficacy than sham stimulation (SMD, 0.01 [95% 
CI, –0.91 to 0.94]; SMD, 0.16 [95% CI, –0.29 to 0.61]; and 
SMD, 0.40 [95% CI, –0.67 to 1.47]; respectively).

On the basis of the NMA results, there were no significant 
differences between interventions on motor function. After 
carefully scanning the quality of the included studies, we 
conducted a sensitivity analysis by excluding one study (Forogh 
et al., 2017) whose baseline characteristics were significantly 
different between the experimental and control groups. 
Results from the NMA then indicated that LF-rTMS (SMD, 2.28; 
95% CrI, 0.92 to 3.62) was more effective than sham, which 
was consistent with the direct evidence. In contrast, HF-rTMS 
(SMD, 0.85; 95% CrI, –0.98 to 2.80), iTBS (SMD, 2.53; 95% 
CrI, –1.46 to 6.68), and dTMS (SMD, 0.55; 95% CrI, –6.48 to 
7.04) were not more effective than sham (Table 3), similar to 
the results from the direct evidence. Additionally, no active 
interventions appeared to exert a better effect than any other 
intervention group.

Speed
For the secondary outcome of speed, 11 RCTs (307 
participants) were included. The outcomes from the pairwise 
meta-analysis suggested a significant difference between HF-
rTMS and sham stimulation (SMD, 0.70; 95% CI, 0.37 to 1.03). 
However, dTMS, LF-rTMS, and iTBS were not significantly more 
effective than sham stimulation (SMD, 0.15 [95% CI, –0.77 to 
1.08]; SMD, 0.91 [95% CI, –0.01 to 1.83]; and SMD, –0.36 [95% 
CI, –1.24 to 0.53]; respectively) (Additional Table 4). The NMA 
for speed indicated that there were no significant differences 
between the different interventions (Additional Table 5).

Balance
For the investigation of balance, 13 RCTs were included. 
Direct evidence indicated that LF-rTMS was significantly more 
effective than both HF-rTMS (SMD, 1.23; 95% CI, 0.34 to 2.12) 
and sham (SMD, 0.28; 95% CI, 0.03 to 0.52) (Additional Table 
6). Furthermore, the NMA suggested that HF-rTMS was more 
effective than LF-rTMS in the inconsistency model (SMD, 8.54; 
95% CrI, 0.72 to 17.40). There was no significant difference 
in the improvement of balance between HF-rTMS, LF-rTMS, 
or iTBS compared with sham (SMD, 3.31 [95% CrI, –3.41 to 
10.43]; SMD, 2.07 [95% CrI, –0.75 to 4.22]; and SMD, 5.59 [95% 
CrI, –0.58 to 10.06]; respectively) (Additional Table 7).

The results of the node-splitting analysis suggested an 
inconsistency in the NMA relative to balance (Additional Table 
8). The direct and indirect evidence between HF-rTMS versus 
LF-rTMS, HF-rTMS versus sham, and LF-rTMS versus sham 
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Table 1 ｜ Characteristics of participants in the included studies

Study Study design
Sample size 
(E/C) Age (yr) Gender (M/F) Onset time

Hemiparesis 
(R/L)

Stroke type (infarction/
hemorrhage)

Cha et al. (2014) RCT 12/12 53.08±7.65 11/13 2.92±1.31/3.58±0.90 mon 10/14 9/15
Cha and Kim (2015) RCT 15/15 60.72±12.36 13/27 14.45±3.14/14.13±1.55 mon 12/18 10/20
Cha and Kim (2017) RCT 10/10 54.8±14.56 10/10 3.90±1.59/4.20±1.22 mon 11/9 7/13
Chang et al. (2010) RCT 10/18 56.61±12.21 11/17 12.9±5.2/14.4±5.9 d 13/15 NR
Chen (2018) RCT 70/70 53.25±11.92 105/35 31.6±17.9/27.6±19.3 mon 72/68 97/41
Chieffo et al. (2014) Crossover 10 62.2±9.70 NR 212±6.91 d 6/4 5/5
Choi et al. (2016) Crossover 30 67.9±4.59 3/27 49.6±28.3/44.0±29.9 mon 15/15 30/0
Du et al. (2016) RCT 23/23/23 55.72±11.6 45/24 7(4–16)/6(5–12)/8(3–24) d# NR 69/0
Elkholy et al. (2014) RCT 30/15 44.59±3.93 23/22 2.53±0.52/2.53±0.52 mon 0/45 NR
Forogh et al. (2017) RCT 13/13 53–79* 10/16 NR 8/18 NR
Guan et al. (2017) RCT 21/21 58.55±10.93 12/30 3.8±3.4/4.8±4.1 d 19/23 42/0
Huang et al. (2018) RCT 18/20 61.67±9.76 23/15 31.3±25.5/25.9±18.1 d 17/21 25/13
Ji et al. (2014) RCT 15/14 46.68±10.01 12/17 6.26±2.65/6.35±2.97 mon 14/15 15/14
Ji and Kim (2015) RCT 20/19 56±9.58 23/16 1.9±0.72/1.68±0.58 mon 20/19 12/27
Kakuda et al. (2013) Crossover 18 52.1±11.9 5/13 52.8±30.7 mon 12/6 5/13
Kim et al. (2014b) RCT 10/22 66.59±9.08 17/15 16.2±13.0/15.1±5.1 d NR 32/0
Koch et al. (2019) RCT 17/17 64±11.3 21/13 13.06±16.94 mon 20/14 34/0
Lin et al. (2015) RCT 16/16 60.3±11.26 11/21 40.6±29.1/33.5±23.8 d 15/17 10/22
Lin et al. (2019) RCT 10/10 60.95±8.7 3/17 359±171/384±270 d 9/11 4/16
Liu et al. (2019) RCT 18/18/18 59.33±6.52 37/17 NR NR 54/0
Meng and Song (2017) RCT 10/10 65±9.35 3/17 NR NR 20/0
Rastgoo et al. (2016) Crossover 20 52.15±11.51 4/16 30.2±18.3/27.4±20.1 mon 7/13 5/15
Wang et al. (2012) RCT 12/12 63.9±11.44 9/15 1.84±1.16/2.00±1.23 yr 10/14 NR
Wang et al. (2016) RCT 15/15 64.6±14.32 16/14 2.05±1.35/1.98±1.12 yr NR NR
Wang et al. (2019) RCT 8/6 54.01±12.6 11/3 31.8±24.0/25.3±15.7 mon 8/6 6/8
Zhao et al. (2018) RCT 36/39 55.14±12.06 47/28 4.0±2.0/4.3±3.1 mon 36/39 38/37

Data are expressed as the mean ± SD for age and onset time, while other data are expressed as numbers. *Age range. #Mean (range). C: Control group; E: 
experimental group; F: female; M: male; NR: not reported; RCT: randomized controlled trial.

were not in agreement (inconsistency factor, 1.24 [95% CrI, 
0.14 to 5.07]; 1.31 [95% CrI, 0.11 to 4.87]; and 1.43 [95% CrI, 
0.24 to 5.30]; respectively). We therefore closely examined 
the potential effect modifiers of the included studies, and 
conducted a subgroup analysis by separating the BBS and TUG 
results. This analysis revealed no significant associations with 
balance of HF-rTMS, LF-rTMS, or iTBS relative to sham, for 
either BBS or TUG. 

MEP amplitude
The NMA for the MEP of corticospinal excitability contained 
five RCTs. The NMA model of the competing interventions 
for MEP amplitude suggested that HF-rTMS was significantly 
more effective than LF-rTMS (SMD, 0.27; 95% CrI, 0.04 to 
0.58) and sham (SMD, 0.19; 95% CrI, 0.00 to 0.47) (Additional 
Table 5). The direct relative effects indicated that HF-rTMS 
performed better than LF-rTMS (SMD, 0.77; 95% CI, 0.15 to 
1.38) (Additional Table 9), which is in accordance with the 
results of the NMA.

BI
Direct evidence suggested that HF-rTMS and LF-rTMS were 
more effective than sham for improving BI (SMD, 0.83 [95% 
CI, 0.09 to 1.56] and SMD, 0.63 [95% CI, 0.28 to 0.97], 
respectively). In contrast, iTBS was not significantly different 
compared with sham (SMD, 1.55; 95% CI, –1.36 to 4.46) 
(Additional Table 10).

The NMA for activities of daily life contained eight RCTs, and 
the results indicated that iTBS was significantly more effective 
than sham (SMD, 16.77; 95% CrI, 5.47 to 25.33). There was no 
evidence to suggest that other active treatments were more 
powerful than sham stimulation (Additional Table 7). 

Assessment of statistical heterogeneity and inconsistency
According to the results of the node-splitting method for 

statistical inconsistency, the direct evidence and indirect 
evidence were not significantly consistent for balance, 
but they were consistent for motor function, speed, MEP 
amplitude, and activities of daily life.

Small study effects
No publication bias was observed among the included studies 
for the FMA using the Egger’s test (P = 0.159) (Additional 
Figure 2A). The comparison-adjusted funnel plots appeared 
symmetrical for both speed (P = 0.248) and balance (P = 0.132), 
suggesting that small studies had similar effects compared 
with large studies regarding speed and balance functions 
(Additional Figure 2B and C).

Discussion
To the best of our knowledge, this is the first NMA to explore 
the effects of TMS on lower extremity motor function, and it 
is currently the most comprehensive review. This systematic 
review and NMA of TMS for patients with stroke included 
data from 26 RCTs, including 943 participants who were 
randomized to one of four rTMS interventions (deep, high-
frequency, low-frequency, and intermittent theta-burst rTMS) 
or sham stimulation. Only LF-rTMS was superior to sham 
stimulation for motor function improvement, as measured 
by the FMA. Although direct evidence suggested that HF-
rTMS was more effective than sham stimulation for speed, 
this result was not replicated in the NMA. In addition, HF-
rTMS appeared to be more effective than LF-rTMS for MEP 
amplitudes. 

The quality of the evidence used for the primary outcome 
was typically categorized as high quality. Nonetheless, the 
summary treatment effect estimates were imprecise for 
most comparisons. Furthermore, there was large uncertainty 
regarding novel treatments or those with little or no sham-
controlled trials. Therefore, there was no conclusive evidence 
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of the superiority of any particular intervention. 

LF-rTMS was superior to sham stimulation with respect to 
motor function. Evidence-based guidelines on the therapeutic 
use of rTMS also recommend LF-rTMS, applied to the 
contralesional motor cortex, in the chronic phase of stroke 
recovery (Lefaucheur et al., 2014). This intervention can 
theoretically reduce contralesional cortical excitability and 
thus increase ipsilesional activity under the mechanism of 
long-term depression. Ueda et al. (2019) reported that intra-
voxel directional coherence was greatly increased in some 
white matter structures bordering on lesioned regions after 
intervention, suggesting that white matter participates in the 
motor recovery of stroke patients after LF-rTMS interventions 
(Takeuchi et al., 2008; Bolognini and Ro, 2010). 

Prev io us  standard i zed  meta-ana lyses  have  drawn 
contradictory conclusions regarding balance function and the 
lower extremity subscale of the FMA in patients with stroke. 
Tung et al. (2019) revealed the benefit of rTMS on walking 

speed but not on balance function, which was consistent with 
previous results (Li et al., 2018). Moreover, Tung et al. (2019) 
demonstrated improvement in the lower extremity subscale 
of the FMA after rTMS intervention. In contrast, Ghayour-
Najafabadi et al. (2019) reported that rTMS improved balance 
function but did not have a positive effect on the lower 
extremity subscale of the FMA. In addition, none of these 
meta-analyses provided an overall treatment hierarchy of the 
different modalities of rTMS. The findings of the present NMA 
in terms of our primary outcome—motor function measured 
by the FMA—are in line with a previous systematic review and 
meta-analysis examining the effects of rTMS on walking and 
balance function after stroke (Li et al., 2018). Furthermore, we 
found that LF-rTMS was superior to other rTMS interventions. 
However, the findings regarding speed in the present NMA do 
not support those of previous standard meta-analyses, which 
might stem from an insufficient number of studies exploring 
the effects of novel forms of TMS. 

Table 2 ｜ Characteristics of rTMS variables in included studies

Study Coil type rTMS site
rTMS 
frequency (Hz) Intensity (%) No. of pulses

Treatment 
duration Outcome measures

Cha et al. (2014) F8 Ipsi-hotspot/
contra-hotspot

10/1 90 RMT/90 RMT 2000×20/1200×20 4 wk BBS, MEP

Cha and Kim (2015) F8 Vertex 10 90 RMT 2000×20 4 wk Speed
Cha and Kim (2017) F8 Ipsi-M1 10 90 RMT 1000×40 8 wk Speed, MEP
Chang et al. (2010) F8 Ipsi-M1 10 90 RMT 1000×10 10 d FMA, BI
Chen (2018) F8 Contra-M1-LL 1 90 RMT 1000×5 5 d FMA, TUG
Chieffo et al. (2014) H Vertex 20 90 RMT 1500×11 3 wk FMA, speed
Choi et al. (2016) F8 Trunk motor 

spot
10 90 RMT 1000×10 2 wk BBS

Du et al. (2016) F8 Ipsi/contra 3/1 80–90 RMT/110–120 
RMT

1200×5/1200×5 5 d FMA, BI

Elkholy et al. (2014) NR Ipsi 1 2 G NR×18 6 wk TUG, FMA, speed
Forogh et al. (2017) F8 Contra-M1 1 90 RMT 1200×5 5 d FMA, BBS
Guan et al. (2017) F8 Ipsi-M1 5 120 MT 2000×10 10 d FMA, BI
Huang et al. (2018) Double-cone Contra-M1 1 120 AMT 900×15 3 wk TUG, FMA, BI
Ji et al. (2014) F8 Ipsi-hotspot 10 NR 1500×18 6 wk Speed
Ji and Kim (2015) F8 Ipsi-hotspot 10 NR 2000×20 4 wk Speed
Kakuda et al. (2013) Double-cone Bi-M1-LL 10 90 RMT 2000×2 2 d Speed
Kim et al. (2014b) F8 Ipsi-cerebellar 1 100 RMT 900×5 5 d Speed, BBS
Koch et al. (2019) F8 Contra-

cerebellar
iTBS 80 AMT 1200×15 3 wk BBS, FMA, BI, speed, MEP

Lin et al. (2015) F8 Contra-M1-LL 1 130 MT 900×15 15 d BI, TUG, FMA, BI
Lin et al. (2019) F8 Bi-M1-LL iTBS 100 MT 1200×10 5 wk BBS, TUG, speed, FMA, BI
Liu et al. (2019) NR Contra-M1/

Ipsi-M1
0.5/10 80 MT/80 MT 600×15/12000×15 3 wk FMA, MEP

Meng and Song (2017) F8 Contra-M1 1 90 MT 1800×14 14 d BI, FMA
Rastgoo et al. (2016) F8 Contra-M1-LL 1 90 MT 1000×5 5 d FMA, TUG
Wang et al. (2012) F8 Contra-M1-LL 1 90 RMT 600×10 2 wk FMA, MEP, speed,
Wang et al. (2016) F8 Contra-M1 1 80 RMT 900×20 4 wk FML, BBS
Wang et al. (2019) F8 Vertex 5 90 RMT 900×9 3 wk FMA, speed, MEP
Zhao et al. (2018) F8 Contra-M1 1 80–120 RMT 1000×20 20 d FMA, BBS

AMT: Active motor threshold; BBS: Berg Balance Scale; BI: Barthel Index; bi: bilateral; contra: contralateral; F8: figure of 8; FMA: Fugl-Meyer assessment; H: H-coil; 
ipsi: ipsilateral; iTBS: intermittent theta-burst stimulation; M1: primary motor cortex; M1-LL: primary motor cortex of lower limb; MEP: motor evoked potential; 
MT: motor threshold; NR: not reported; RMT: resting motor threshold; rTMS: repetitive transcranial magnetic stimulation; TUG: Timed Up and Go Test.

Table 3 ｜ Relative effects estimated from the network meta-analysis and from a sensitivity analysis comparing every pair of the five interventions with 
respect to the Fugl-Meyer assessment

HF 1.02 (–1.72, 3.64) –0.44 (–2.87, 1.96) –0.39 (–5.88, 4.84) 2.32 (–3.05, 7.74)
–1.48 (–3.52, 0.79) LF –1.46 (–3.27, 0.28) –1.45 (–6.38, 3.71) 1.30 (–3.73, 6.53)
0.85 (–0.98, 2.80) 2.28 (0.92, 3.62) Sham –0.00 (–4.70, 4.86) 2.79 (–1.95, 7.65)
0.34 (–6.47, 7.65) 1.81 (–4.93, 8.94) –0.55 (–7.04, 6.48) dTMS 2.70 (–3.92, 9.71)
–1.63 (–6.17, 2.75) –0.19 (–4.66, 4.04) –2.53 (–6.68, 1.46) –2.23 (–10.04, 5.89) iTBS

Upper triangle: network meta-analysis; lower triangle: sensitivity analysis. dTMS: Deep transcranial magnetic stimulation; HF: high-frequency repetitive 
transcranial magnetic stimulation; iTBS: intermittent theta-burst stimulation; LF: low-frequency repetitive transcranial magnetic stimulation.
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Direct evidence demonstrated the superiority of HF-rTMS 
versus LF-rTMS for MEP amplitude, and network evidence 
revealed that HF-rTMS was also preferable to sham. The 
magnitude of MEP amplitude is considered to be a measure 
of corticospinal excitability, which denotes the strength or 
physiological integrity of the corticospinal pathway (Rothwell 
et al., 1999). Typically, the MEP amplitude of stroke patients 
lacking voluntary motor control is smaller than that of healthy 
individuals. Nevertheless, the MEP is an inherently variable 
measure, and can be affected by the subtle position of the 
coil or by multiple converging inhibitory and excitatory inputs 
(Maeda et al., 2000; Carroll et al., 2001). Larger high-quality 
RCTs are therefore needed to further explore the effectiveness 
of HF-rTMS. In future studies, the disruption of experimental 
operations should be minimized by maintaining a consistency 
of the participants’ characteristics and a stable position of the 
coil.

In the present study, there was statistical inconsistency in the 
network for balance function, which suggests an inappropriate 
combination of different measurements (BBS and TUG). 
Moreover, there were inadequate numbers of studies to 
explore the efficacy of TMS on balance, and more RCTs are 
needed to confirm its effectiveness. In the future, researchers 
should unify the outcome measurements used for balance. 
We did not investigate the ranking probability of these 
outcomes here because only a few trials reported these data.

TBS, a novel form of TMS that lasts approximately 5 minutes 
only, is potentially useful because of its short session duration 
and induction of neuroplasticity. However, few studies have 
investigated the efficacy of TBS. Cerebellar iTBS might be a 
potential treatment to improve balance and gait functions 
in patients with stroke because the cerebellum is involved in 
motor control (Popa et al., 2010; Manto et al., 2012) through 
the disynaptic cerebello-thalamocortical pathway (Bostan et 
al., 2013). The results of our NMA suggested that iTBS may be 
beneficial for improving the activities of daily life; this finding 
merits further clinical investigation. 

Finally, dTMS was not more effective than sham stimulation, 
according to our statistical approach. dTMS is delivered using 
the Hesed coil, which can effectively stimulate deep brain 
regions without bringing about greater stimulation of the 
superficial cortical regions (Roth et al., 2002; Zangen et al., 
2005). Various experiments have explored the efficacy of dTMS 
in recent years (Kranz et al., 2010; Harel et al., 2011; Levkovitz 
et al., 2011). Nonetheless, the exact coil configuration and 
placement may vary with different applications, and there is 
scarce evidence to demonstrate its effectiveness in patients 
with stroke. More high-quality RCTs investigating the efficacy 
of dTMS are needed in the near future.

Our study had several limitations. Most studies presented 
an unclear risk of bias on allocation concealment, which is a 
renowned methodological drawback in rTMS interventions. 
Properly assigning concealment, preventing contamination 
bias, and reporting all results would have improved the 
included studies. Furthermore, some nodes were not well 
connected, which may lead to the inaccurate estimation of 
relative effects, especially when comparing different active 
interventions. Nevertheless, iTBS and dTMS lacked sufficient 
evidence to support their effects in stroke patients, and more 
controlled studies should be conducted to confirm their 
effectiveness. 

The available data suggested that there are differences in 
clinical effects between the different rTMS modalities, but this 
was unable to be confirmed. Our findings suggest that LF-rTMS 
can improve motor function and that HF-rTMS can increase 
MEP amplitude. Moreover, this finding implies that LF-rTMS 
is superior to other interventions for stroke rehabilitation. 
Novel forms of rTMS interventions (dTMS and iTBS) were 

not more effective than sham stimulation. However, there is 
little available evidence for rTMS interventions other than LF-
rTMS and HF-rTMS. Hence, new high-quality RCTs for novel 
rTMS interventions are needed to establish their efficacy 
with higher reliability. In the future, we encourage clinical 
therapists to include LF-rTMS as a supplementary therapy for 
stroke rehabilitation in clinical practice. 
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Additional Figure 1 Trace plot and density plot.
The potential scale reduction factor (PSRF) were 1.00, 1.32 and 1.01 separately for Fugl-Meyer assessment, speed and balance. The
PSRF is less than 1.2 can be acceptable, which means simulated observations are close to the target distribution. Heterogeneity
standard deviation (�2) has been estimated using the methods of moments and is reported only for comparisons for which is estimable
and larger than 0. dTMS: Deep transcranial magnetic stimulation; HF: high-frequency repetitive transcranial magnetic stimulation;
iTBS: intermittent theta-burst stimulation; LF: low-frequency repetitive transcranial magnetic stimulation; sd: standard deviation
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Additional Figure 2 Comparison-adjusted funnel plot of Fugl-Meyer assessment (A), speed (B), and balance (C).
Heterogeneity standard deviation (�2) has been estimated using the methods of moments and is reported only for comparisons for
which is estimable and larger than 0.

A B

C
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Additional Table 1 Risk of bias assessment according to Physiotherapy Evidence Database scale
Study Eligibility

criteria
specified
(0/1)

Random
allocation
(0/1)

Concealed
allocation
(0/1)

Comparable
at baseline
(0/1)

Blinded
subjects
(0/1)

Blinded
therapists
(0/1)

Blinded
assessors
(0/1)

Adequate
follow-up
(0/1)

Intention-totreat
analysis (0/1)

Between
group
comparisons
(0/1)

Point
estimates
and
variability
(0/1)

Summary

Cha et
al.
(2014)

1 1 1 1 0 0 0 1 1 1 1 8

Cha and
Kim
(2015)

1 1 0 1 0 0 0 1 1 1 1 7

Cha and
Kim
(2017)

1 1 1 1 0 1 1 1 1 1 1 10

Chang et
al.
(2010)

1 1 0 1 1 0 1 1 1 1 1 9

Chen
(2018)

1 1 0 1 1 0 0 1 0 1 1 7

Chieffo
et al.
(2014)

1 1 0 1 0 0 0 1 0 1 1 6

Choi et
al.
(2016)

1 1 0 1 0 0 0 1 1 1 1 7

Du et al.
(2016)

1 1 1 1 1 1 1 1 1 1 1 11

Elkholy
et al.
(2014)

1 0 0 1 0 0 0 1 1 1 1 6
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Forogh
et al.
(2017)

1 1 0 0 1 0 0 1 1 1 1 7

Guan et
al.
(2017)

1 1 1 1 1 1 1 1 1 1 1 11

Huang et
al.
(2018)

1 1 0 1 1 0 1 1 0 1 1 8

Ji et al.
(2014)

1 1 0 1 0 0 0 1 1 1 1 7

Ji and
Kim
(2015)

1 1 0 1 0 0 0 1 1 1 1 7

Kakuda
et al.
(2013)

1 1 0 1 0 1 1 1 1 1 1 9

Kim et
al.
(2014b)

1 1 0 1 1 1 1 1 1 1 1 10

Koch et
al.
(2019)

1 1 0 1 1 0 1 1 0 1 1 8

Lin et al.
(2015)

1 0 0 1 1 1 0 1 0 1 1 7

Lin et al.
(2019)

1 1 1 1 1 1 1 1 1 1 1 11

Liu et al.
(2019)

1 1 0 1 0 0 0 1 1 1 1 7

Meng
and Song
(2017)

1 1 0 1 1 0 0 1 1 1 1 8
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Rastgoo
et al.
(2016)

1 1 0 1 0 1 1 1 1 1 1 9

Wang et
al.
(2012)

1 1 1 1 1 0 1 1 0 1 1 9

Wang et
al.
(2016)

1 0 0 1 0 0 0 1 1 1 1 6

Wang et
al.
(2019)

1 1 1 1 1 0 1 1 1 1 1 10

Zhao et
al.
(2018)

1 1 0 1 0 0 0 1 1 1 1 7

0 indicates the criterion was not satisfied; 1 the criterion was satisfied.
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Additional Table 2 Levels of evidence according to Grades of Recommendation, Assessment, Development, and Evaluation scale1
Certainty assessment No. of patients Effect Certainty Importance
№ of
studies

Study design Risk of
bias

Inconsistency Indirectness Imprecision Other
considerations

TMS Sham Relative
(95%
CI)

Absolute
(95% CI)

Motor function (follow up: range 1 weeks to 3 months; assessed with: Fugl-Meyer assessment)
18 Randomised

trials
Seriousa Not serious Not serious Not serious All plausible

residual
confounding
would reduce
the demonstrated
effect

431 411 - SMD 0.27
SD higher
(0.09 higher
to 0.45
higher)

⨁⨁⨁⨁
HIGH

CRITICAL

Speed (follow up: range 1 months to 3 months; assessed with: walking speed)
11 Randomised

trials
Seriousa Not serious Not serious Not serious None 169 138 - SMD 0.63

SD higher
(0.3 higher to
0.96 higher)

⨁⨁⨁◯
MODERATE

IMPORTANT

Balance (assessed with: Berg Balance scale and Timed up and go test)
12 Randomised

trials
Seriousa Seriousb Not serious Not serious None 360 338 - SMD 0.39

SD higher
(0.11 higher
to 0.67
higher)

⨁⨁◯◯
LOW

IMPORTANT

Motor evoked potential amplitude (assessed with: motor evoked potential)
6 Randomised

trials
Seriousa Seriousc Not serious Not serious None 83 83 - SMD 0.32

SD higher
(0.02 lower
to 0.67
higher)

⨁⨁◯◯
LOW

IMPORTANT

Barthel Index (assessed with: Barthel Index)
8 Randomised Seriousa Seriousd Not serious Not serious None 133 127 - SMD 0.87 ⨁⨁◯◯ IMPORTANT
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trials SD higher
(0.39 higher
to 1.36
higher)

LOW

a. In general, the studies had poor methodological rigor, with few blinded studies. b. I-squared is equal to 61%. c. I-squared is equal to 66%. d. I-squared is equal to 74%. CI: Confidence interval; SMD:2
standardised mean difference; SD: standard deviation.3

4
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Additional Table 3 Pairwise meta-analysis results of Fugl-Meyer assessment.
Study SMD (95%CI)
dTMS vs. Sham

Chieffo et al. (2014) 0.01 (-0.91, 0.94)
HF vs. LF

Du et al. (2016) -0.03 (-0.60, 0.55)
Liu et al. (2019) 0.06 (-0.59, 0.71)
Summary 0.01 (-0.42, 0.45)

HF vs. Sham τ2=0.13, I2=49%
Chang et al. (2010) -0.05 (-0.82, 0.72)
Du et al. (2016) 0.34 (-0.25, 0.92)
Guan et al. (2017) -0.48 (-1.09, 0.14)
Liu et al. (2019) 0.77 (0.09, 1.45)
Wang et al. (2019) 0.32 (-0.75, 1.38)
Summary 0.16 (-0.29, 0.61)

iTBS vs. Sham τ2=0.43, I2=72%
Koch et al. (2019) 0.91 (0.20, 1.62)
Lin et al. (2019) -0.18 (-1.06, 0.70)
Summary 0.40 (-0.67, 1.47)

LF vs. Sham τ2=0.07, I2=46%
Chen (2018) 0.50 (0.26, 0.74)
Du et al. (2016) 0.34 (-0.25, 0.92)
Elkholy et al. (2014) 1.07 (0.41, 1.74)
Forogh et al. (2017) -0.99 (-1.82, -0.17)
Huang et al. (2018) -0.14 (-0.77, 0.50)
Lin et al. (2015) 0.13 (-0.56, 0.83)
Lin et al. (2019) 0.71 (0.03, 1.38)
Meng and Song (2017) 0.61 (-0.29, 1.51)
Rastgoo et al. (2016) 0.38 (-0.25, 1.00)
Wang et al. (2012) 0.16 (-0.64, 0.96)
Wang et al. (2016) 0.44 (-0.28, 1.17)
Zhao et al. (2018) 0.42 (-0.04, 0.88)
Summary 0.34 (0.11, 0.58)

Heterogeneity standard deviation (�2) has been estimated using the methods of moments and is reported only for comparisons for
which is estimable and larger than 0. CI: Confidence interval; dTMS: deep transcranial magnetic stimulation; HF: high-frequency
repetitive transcranial magnetic stimulation; iTBS: intermittent theta-burst stimulation; LF: low-frequency repetitive transcranial
magnetic stimulation; SMD: standardized mean difference.
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Additional Table 4 Pairwise meta-analysis results of speed.

Heterogeneity standard deviation ( �2) has been estimated using the methods of moments and is reported only for comparisons for
which is estimable and larger than 0. CI: Confidence interval; dTMS: deep transcranial magnetic stimulation; HF: high-frequency
repetitive transcranial magnetic stimulation; iTBS: intermittent theta-burst stimulation; LF: low-frequency repetitive transcranial
magnetic stimulation; SMD: standardized mean difference.

Study SMD (95%CI)
dTMS vs. Sham

Chieffo et al. (2014) 0.15 (-0.77, 1.08)
HF vs. Sham

Cha and Kim (2017) 0.95 (0.02, 1.89)
Cha and Kim (2015) 0.75 (0.01, 1.49)
Ji et al. (2014) 0.77 (0.01, 1.53)
Ji et al. (2015) 0.75 (0.10, 1.41)
Kakuda et al. (2013) 0.28 (-0.65, 1.21)
Wang et al. (2019) 0.57 (-0.52, 1.66)
Summary 0.70 (0.37, 1.03)

iTBS vs. Sham
Lin et al. (2019) -0.36 (-1.24, 0.53)

LF vs. Sham τ2=0.51, I2=77%
Elkholy et al. (2014) 1.76 (1.03, 2.48)
Kim et al. (2014b) 0.74 (-0.09, 1.58)
Wang et al. (2012) 0.22 (-0.53, 0.97)
Summary 0.91 (-0.01, 1.83)



NEURALREGENERATION RESERACH www.nrronline.org

Additional Table 5 Relative effects estimated from the network meta-analysis with respect to speed and motor evoked potential
amplitude

HF -0.27 (-0.58, -0.04) -0.19 (-0.47, 0.00)

-0.24 (-1.04, 0.54) LF 0.07 (-0.15, 0.30)

0.00 (-0.39, 0.41) 0.25 (-0.44, 0.93) Sham

-0.66 (-3.66, 2.66) -0.42 (-3.43, 2.96) -0.66 (-3.60, 2.69) dTMS

3.42 (-3.64, 13.88) 3.63 (-3.44, 14.13) 3.41 (-3.68, 13.89) 4.19 (-3.96, 15.49) iTBS

Upper triangle: Network meta-analysis. Lower triangle: Sensitivity analysis. Heterogeneity standard deviation (�2) has been estimated
using the methods of moments and is reported only for comparisons for which is estimable and larger than 0. dTMS: Deep transcranial
magnetic stimulation; HF: high-frequency repetitive transcranial magnetic stimulation; iTBS: intermittent theta-burst stimulation; LF:
low-frequency repetitive transcranial magnetic stimulation.
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Additional Table 6 Pairwise meta-analysis results of balance
Study SMD (95%CI)
LF vs. HF

Cha et al. (2014) 1.23 (0.34, 2.12)
HF vs. Sham

Choi et al. (2016) 0.14 (-0.58, 0.86)
iTBS vs. Sham τ2=1.05, I2=85%

Koch et al. (2019) 1.73 (0.93, 2.54)
Lin et al. (2019) -0.08 (-0.95, 0.80)
Lin et al. (2019) -0.20 (-1.08, 0.68)
Summary 0.50 (-0.76, 1.76)

LF vs. Sham τ2=0.04, I2=37%
Chen (2018) 0.01 (-0.22, 0.25)
Elkholy et al. (2014) 0.93 (0.28, 1.58)
Forogh et al. (2017) 0.38 (-0.39, 1.16)
Huang et al. (2018) 0.22 (-0.42, 0.86)
Kim et al. (2014b) -0.11 (-0.86, 0.64)
Rastgoo et al. (2016) 0.04 (-0.58, 0.66)
Wang et al. (2016) 0.48 (-0.25, 1.21)
Zhao et al. (2018) 0.55 (0.09, 1.01)
Summary 0.28 (0.03, 0.52)

Heterogeneity standard deviation (�2) has been estimated using the methods of moments and is reported only for comparisons for
which is estimable and larger than 0. CI: Confidence interval; dTMS: deep transcranial magnetic stimulation; HF: high-frequency
repetitive transcranial magnetic stimulation; iTBS: intermittent theta-burst stimulation; LF: low-frequency repetitive transcranial
magnetic stimulation; SMD: standardized mean difference.
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Additional Table 7 Relative effects estimated from the network meta-analysis with respect to balance and
Barthel Index

HF 6.32 (-8.39, 23.60) -7.16 (-14.81, 0.55) 19.18 (-1.01, 38.45)

8.54 (0.72, 17.40) LF -3.55 (-12.76, 2.89) 13.22 (-2.78, 23.37)

3.31 (-3.41, 10.43) 2.07 (-0.75, 4.22) Sham 16.77 (5.47, 25.33)

5.26 (-4.26, 15.63) -3.62 (-8.62, 2.62) -5.59 (-10.06, 0.58) iTBS

Upper triangle: Network meta-analysis with respect to Barthel Index. Lower triangle: Network meta-analysis with
respect to balance. Heterogeneity standard deviation (�2) has been estimated using the methods of moments and is
reported only for comparisons for which is estimable and larger than 0. HF: High-frequency repetitive transcranial
magnetic stimulation; iTBS: intermittent theta-burst stimulation; LF: low-frequency repetitive transcranial
magnetic stimulation.
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Additional Table 8 Node-splitting approach for balance
Name Direct effect Indirect effect Overall Median P-value

HF, LF -11.12 (-19.49, -2.10) 1.57 (-5.88, 7.77) -3.47 (-10.89, 1.59) 1.24 (0.14, 5.07) 0.03

HF, Sham -1.04 (-7.50, 5.00) -14.40 (-23.10, -5.36) -5.11 (-11.88, 0.15) 1.31 (0.11, 4.87) 0.03

LF, Sham -2.22 (-4.31, 0.25) 10.78 (-0.26, 21.60) -1.62 (-4.04, 1.35) 1.43 (0.24, 5.30) 0.03

HF: High-frequency repetitive transcranial magnetic stimulation; LF: low-frequency repetitive transcranial magnetic stimulation.
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Additional Table 9 Pairwise meta-analysis results of motor evoked potential amplitude

Heterogeneity standard deviation ( �2) has been estimated using the methods of moments and is reported only for
comparisons for which is estimable and larger than 0. CI: Confidence interval; HF: high-frequency repetitive transcranial
magnetic stimulation; LF: low-frequency repetitive transcranial magnetic stimulation; SMD: standardized mean
difference.

Study SMD (95%CI)
HF vs. LF τ2=0.17, I2=59%

Cha et al. (2014) 1.45 (0.53, 2.37)
Du et al. (2016) 0.82 (0.21, 1.42)
Du et al. (2016) 0.27 (-0.31, 0.85)
Summary 0.77 (0.15, 1.38)

HF vs. Sham τ2=0.25, I2=59%
Cha and Kim (2017) 1.72 (0.66, 2.78)
Du et al. (2016) 0.85 (0.25, 1.46)
Du et al. (2016) 0.22 (-0.36, 0.80)
Wang et al. (2019) 0.00 (-1.06, 1.06)
Wang et al. (2019) -0.19 (-1.25, 0.87)
Summary 0.52 (-0.06, 1.10)

LF vs. Sham τ2=0.13, I2=52%
Du et al. (2016) 0.19 (-0.39, 0.77)
Du et al. (2016) -0.10 (-0.67, 0.48)
Huang et al. (2018) 0.56 (-0.26, 1.38)
Wang et al. (2012) -1.02 (-1.88, -0.16)
Wang et al. (2012) -0.32 (-0.96, 0.32)
Summary -0.11 (-0.55, 0.33)
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Additional Table 10 Pairwise meta-analysis results of Barthel Index
Study SMD (95%CI)
HF vs. Sham τ2=0.29, I2=70%

Chang et al. (2010) 1.56 (0.67, 2.45)
Du et al. (2016) 0.90 (0.29, 1.51)
Guan et al. (2017) 0.18 (-0.42, 0.79)
Summary 0.83 (0.09, 1.56)

iTBS vs. Sham τ2=4.17, I2=95%
Koch et al. (2019) 3.05 (2.03, 4.07)
Lin et al. (2019) 0.08 (-0.80, 0.96)
Summary 1.55 (-1.36, 4.46)

LF vs. Sham
Du et al. (2016) 0.90 (0.29, 1.51)
Huang et al. (2018) 0.31 (-0.33, 0.96)
Lin et al. (2015) 0.46 (-0.25, 1.16)
Meng and Song (2017) 0.95 (0.01, 1.88)
Summary 0.63 (0.28, 0.97)

Heterogeneity standard deviation (�2) has been estimated using the methods of moments and is reported only for
comparisons for which is estimable and larger than 0. CI: Confidence interval; HF: high-frequency repetitive
transcranial magnetic stimulation; iTBS: intermittent theta-burst stimulation; LF: low-frequency repetitive
transcranial magnetic stimulation; SMD: standardized mean difference.
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