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INTRODUCTION

Diverse microbes (archaea, bacteria, fungi and protists) 
cohabiting with plants are collectively known as the plant 
microbiota (Bulgarelli et al.,  2013; Compant et al.,  2019). 
The plant microbiota, its inhabitants, habitats, genomes 
and surrounding environmental conditions are termed 
collectively the plant microbiome (Berg et al.,  2020; 
Marchesi & Ravel,  2015), which is presently considered 
an extended plant trait with functional capabilities that 
contribute to plant host nutrition, development and im-
munity (Lemanceau et al.,  2017; Teixeira et al.,  2019; 
Vandenkoornhuyse et al.,  2015). The highly diverse 

plant-associated microbial communities are shaped by 
biotic and abiotic constraints varying on time, and space 
(Hassani et al.,  2018; Xiong et al.,  2021). Plants gradually 
enrich microbes in specific plant compartments creating 
microbial habitats that typically start from the bulk soil and 
can move into above-ground internal plant tissues. Thus, 
the composition of the plant microbiome is compartment 
specific and is divided into rhizosphere (soil surrounding 
the plant roots; Zhang et al., 2017), the endosphere (interior 
of the above and below plant organs; Compant et al., 2021), 
and the phyllosphere (above-ground portion of the plant; 
Koskella,  2020). The deeper these soil bacteria, fungi and 
other micro-organisms move into these different plant 
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Abstract
While horticulture tools and methods have been extensively developed to improve 
the management of crops, systems to harness the rhizosphere microbiome to ben-
efit plant crops are still in development. Plants and microbes have been coevolving 
for several millennia, conferring fitness advantages that expand the plant’s own ge-
netic potential. These beneficial associations allow the plants to cope with abiotic 
stresses such as nutrient deficiency across a wide range of soils and growing condi-
tions. Plants achieve these benefits by selectively recruiting microbes using root exu-
dates, positively impacting their nutrition, health and overall productivity. Advanced 
knowledge of the interplay between root exudates and microbiome alteration in re-
sponse to plant nutrient status, and the underlying mechanisms there of, will allow 
the development of technologies to increase crop yield. This review summarizes cur-
rent knowledge and perspectives on plant–microbial interactions for resource acqui-
sition and discusses promising advances for manipulating rhizosphere microbiomes 
and root exudation.
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compartments, the more they are filtered out or selectively 
recruited by the plant's signaling molecules and immune 
system (Xiong et al., 2021). The rhizosphere is dominated by 
prokaryotic phyla including Proteobacteria, Actinobacteria, 
Bacteroidetes, Firmicutes and Acidobacteria. In terms of the 
fungal phyla, the rhizosphere is dominated by Ascomycota 
and Basidisomycota, which are also the most common 
taxonomical phyla in soils (Mohanram & Kumar,  2019). 
Deciphering plant and microbial interaction is a multi-
disciplinary research endeavor that integrates different 
branches of biology including ecology, microbial, plant and 
molecular biology applying informatics, statistics and mod-
elling as well as biotechnology (Berg et al., 2020). Efforts to 
link specific microbial processes to specific microbial taxa 
have been accelerated with genomic data (i.e. marker gene, 
genomic and metagenomic) by grouping taxa according to 
similarity in strategies and functional attributes (Carrión 
et al.,  2019; Song et al.,  2020). These methodological and 
conceptual advances have accelerated our understanding 
of the plant microbiome (Fierer, 2017). By describing and 
understanding the plant-associated microbial communities 
and their functional features, we can manipulate the plant 
rhizosphere microbiome to enhance plant health and pro-
ductivity (Xun et al., 2021).

PLANT–MICROBIAL 
INTERACTIONS IN THE 
RHIZOSPHERE

Healthy and asymptomatic plants maintain a complex re-
lationships with their rhizosphere microbiota that support 
plant performance (Hassani et al., 2018). Plants locally in-
fluence the composition and activity of their rhizosphere 
microbiome by altering soil pH, soil structure, oxygen 
availability and by providing an energy source of carbon-
rich exudates (Dennis et al., 2010; Jacoby et al., 2021). Plant 
root exudates are chemically diverse primary and second-
ary metabolites, many of which exert bioactive effects on 
micro-organisms affecting their composition and function 
(Pascale et al.,  2020). Plant root exudation, which repre-
sents up to one-third of photosynthesized carbon, plays 
a major role in determining the outcome of individual-
 and community-level chemical interactions (Pausch & 
Kuzyakov, 2018; O'Banion et al., 2020). Plants use their root 
exudates as a primary form of communication with their bi-
otic surroundings, facilitating a number of responses such 
as nutrient absorption, resource competition, same species 
signaling, attraction of micro-organisms, along with many 
other interactions (Rizaludin et al., 2021; Sasse et al., 2018). 
A brief list of major exudate-derived organic compounds 
include sugars, amino acids, organic acids, phenolic 
compounds and secondary metabolites which comprise 

coumarins, glucosinolates, benzoxazinoids, camalexin 
and triterpenes (Jacoby et al., 2020). By providing a diverse 
carbon-rich environment, plant species harbor a distinctive 
microbial community in their rhizosphere which, in turn, 
confers several fitness advantages to the plant host, shap-
ing their assemblage and modulating their beneficial traits 
(Badri & Vivanco, 2009; Mönchgesang et al., 2016; Trivedi 
et al., 2020). In addition, root exudate-derived metabolites 
act as important mediators structuring a stress-resistant 
microbiota to alleviate plant abiotic stresses including nu-
trient deprivation, disease and drought stress (Ab Rahman 
et al., 2018; Monohon et al., 2021; Olanrewaju et al., 2017; 
Pieterse et al., 2014; Venturi & Keel, 2016; Vessey, 2003). 
Identification of stress-derived metabolome and microbiota 
constitutes a feasible strategy to deal with abiotic and biotic 
constraints, however, the beneficial effects of root-enriched 
microbial taxa driven by specialized root exudate derived 
metabolites remain understudied (Hong et al.,  2021; 
Pantigoso, Manter, & Vivanco,  2020; Pantigoso, Yuan, 
et al., 2020). In this review, we highlight current research 
on the plant rhizosphere microbiome and root exudate-
derived metabolites for nutrient acquisition.

FACTORS DRIVING ASSEMBLY OF 
RHIZOSPHERE MICROBIOME

Host plants influence the composition of their respective 
rhizosphere microbiome from proximal soils, in which 
some microbiome members are specifically recruited 
by the host, while other microbial members assemble 
opportunistically (Lennon & Jones,  2011; Stopnisek & 
Shade,  2021). Soil physicochemical properties are the 
primary determinant of root-associated bacterial com-
munity composition followed by environmental condi-
tions, host genotype and nutrient availability (Lundberg 
et al.,  2012; Ren et al.,  2020; Stopnisek & Shade,  2021; 
Yeoh et al., 2017). Temporal patterns and evolution over 
long timescales also shape the root microbiome assembly, 
which in turn influences how hosts respond to biotic and 
abiotic environmental stressors (Fitzpatrick et al., 2018). 
Several recent comprehensive reviews have addressed the 
assembly, and macroecological patterns of root microbi-
ome (Brunel et al., 2020; Cordovez et al., 2019; Fitzpatrick 
et al., 2020; Munoz-Ucros et al., 2021).

PLANT AND MICROBE 
COMMUNICATION IN THE 
RHIZOSPHERE

Rhizosphere-associated micro-organisms perceived and 
interpret signals produced by themselves, other microbes 
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and plants, and are capable of influencing their plant 
host by the release of signaling molecules. The major 
outcomes from this communication are related to induc-
tions of plant immunity, stress tolerance, overall growth, 
health, nutrition and the maintenance of associated 
rhizosphere microbiome. Examples of these signaling 
molecules are N/acyl homoserine lactones (AHLAs), dif-
fusible signal factors, diketopiperazines, phytohormone-
like molecules and volatile organic compounds (Bailly & 
Weisskopf, 2012; Kakkar et al., 2015; Oldroyd, 2013; Ortiz-
Castro et al., 2011; Xu et al., 2015). This interaction with 
the plant can happen at the single-strain or at the microbi-
ome level. Individual microbes and their communities can 
form beneficial, neutral or detrimental interactions. Plant 
and microbe communication has been investigated pre-
dominantly for soil bacteria and fungi, and more recently 
communication in nematodes and protists are being re-
vealed (Geisen et al.,  2018; Manosalva et al.,  2015). The 
main type of signaling mechanisms known to occur in 
the rhizosphere can be divided into three categories ac-
cording to the pathway of the communication and players 
involved:

1.	 Microbe-to-microbe: microbial intraspecies and in-
terspecies signaling are primarily performed by the 
synthesis and detection of autoinducers through a 
mechanism that is also known as Quorum sensing 
(QS). These autoinducers activate or deactivate the 
transcription of numerous QS-regulated genes that 
include biofilm formation, chemotaxis and virulence 
factors. This allows micro-organisms within microbial 
communities to monitor cell density and to coordinate 
collective changes in behavior (Fuqua et al.,  2001; 
Venturi & Keel,  2016). N-acyl homoserine lactones 
(AHL) autoinducer is one better-documented class 
of QS molecules acting on gram-negative bacteria, 
including well-known soil bacteria genera such as 
Pseudomonas spp., Burkholderia spp. and Serratia 
spp. Gram-positive rhizobacteria use other means of 
intra and interspecies level communication such as 
peptides (Monnet et al.,  2016). QS appears to be also 
important for interkingdom communication between 
bacteria and plant-associated fungi, however specific 
mechanisms have not yet been described (Deveau et 
al., 2018; Jarosz et al., 2011). QS communication of 
diffusible autoinducers is typically executed in short 
cell–cell distances and at high concentration of sig-
naling molecules. In contrast, Volatile Inorganic and 
Organic Compounds (VICs and VOCs) have import-
ant roles as signals intra-kingdom and inter-kingdom 
interaction at low concentration and over long dis-
tances (Farag et al.,  2017; Schulz-Bohm et al.,  2017; 
Weisskopf et al., 2021). However, there is very limited 

information about how microbial cells perceive mi-
crobial volatiles. In addition to QS inducer molecules 
and VOCs, other numerous compounds such as ox-
alic acid, trehalose, glucose or thiamine have been 
reported to act as signalling molecules (Scherlach & 
Hertweck, 2017). For instance, the mycorrhizal fungus 
Laccaria bicolor S238N releases trehalose serving as 
chemoattractant for the Mycorrhiza Helper Bacteria 
(MHB) Pseudomonas fluorescens BBc6R8. In return, 
the MHB secretes thiamine which promotes growth 
of the mycorrhizal fungus. Overall, these strategies 
can help microbes to persist in nutrient-poor envi-
ronments, access recalcitrant compounds that cannot 
be easily broken down, remove toxic metabolites or 
exchange electrons (Hassani et al.,  2018).

2.	 Plant-to-microbe: several root exudates ubiquitous in 
most plants have been identified as signals towards 
soil microbes. To recognize associated rhizosphere 
microbes plants use dedicated pattern recognition 
receptors (PRRs; Venturi & Keel,  2016). Signaling 
from plant to micro-organisms via plant-secreted 
molecules has been shown to participate in several 
plant beneficial interactions (Mathesius et al., 2003; 
Mhlongo et al., 2018). Signaling between plants and 
rhizosphere micro-organism has been mainly stud-
ied in intimate symbiotic associations, in particular 
those involving mycorrhizal fungi and rhizobial bac-
teria (Hassan & Mathesius, 2012; Kiers et al., 2011). 
For example, under nutrient-deficient conditions, 
the host plant increases synthesis of strigolactones to 
promote mycorrhizal fungal development and sym-
biosis establishment as mechanism for nutrient ac-
quisition (Aliche et al.,  2020). Similarly, flavonoids 
have been shown to stimulate bacterial root infec-
tion that results in formation of nodules allowing 
nitrogen fixation in legumes (Cooper,  2004; Hassan 
& Mathesius, 2012). Flavonoids can indirectly affect 
biological cycling of C, P and N in soils, and their syn-
thesis is also affected by soil phosphorus and nitro-
gen soil content and supply (Coronado et al.,  1995; 
Juszczuk et al., 2004). Phosphorus solubility for plant 
uptake can be increased by flavonoids which desorb 
phosphates from soil-mineral surfaces or dissolution 
of mineral-phosphate complexes (Cesco et al., 2012). 
It is well documented that several chemical groups 
exuded by the plant and present in the rhizosphere 
can serve as food sources and signaling for a variety 
of micro-organisms. For instance Hida et al.  (2020) 
showed that the plant growth promoting rhizobac-
teria Pseudomonas protegens CHA0 possesses four 
putative chemoreceptors for amino acids, enhancing 
chemotaxis towards amino acids. Many other uni-
dentified molecules are involved in stress-induced 
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belowground chemical interactions in addition to the 
well-described low molecular weight organic acids, 
phenolics, flavonoids, strigolactones, cutin and mon-
omers (Rizaludin et al., 2021; Rolfe et al., 2019).

3.	 Microbe-to-plant: Micro-organisms produce signal-
ing molecules which can be detected by plants and 
affect their development, gene expression and im-
mune and stress responses (Badri & Vivanco,  2009; 
Venturi & Keel, 2016). Rhizosphere micro-organisms 
trigger plant response via microbial elicitors known 
as microbe-associated molecular patterns (MAMPs), 
such as lipopolysaccharide, peptidoglycans, flagellin 
and chitin (Millet et al., 2010). MAMPs trigger sys-
temic defense responses (also known as induced sys-
temic resistance [ISR]) and priming by rhizosphere 
beneficial bacteria. MAMPs can also trigger systemic 
acquired resistance (SAR) which is induced mostly 
by pathogens (Conrath et al., 2015; Fu & Dong, 2013; 
Pieterse et al., 2014). Other well-described molecules, 
such as Nod and Myc factors released by rhizobia and 
mycorrhiza, are utilized to initiate symbiosis with 
plants (Oldroyd,  2013). Similar to microbe–microbe 
signaling, AHL-type QS molecules are also reported 
to affect plant gene expression and functions related 
to plant development, stress response and immunity 
(Palmer et al., 2014). Root-associated microbes, free-
living, symbiotic or endophytic, can produce various 
types of molecules. Rhizosphere microbes mitigate 
stress responses by regulating the nutritional and 
hormonal balance in plants and inducing systemic 
tolerance to biotic and abiotic stresses and plant 
growth. Rhizosphere microbes have the ability to 
synthesize phytohormones such as abscisic acid, in-
dole acetic acid, cytokinins, gibberellic acid, salicylic 
acid, auxins, cytokinins, gibberellins, among others 
(Egamberdieva et al.,  2017). Another class of mol-
ecule emitted by rhizosphere microbes, VOCs, can 
lead to drastic plant growth promotion (Bailly et al., 
2014; Ryu et al., 2003; Sánchez-López et al., 2016). 
VOCs can also influence the uptake of specific nu-
trients such as iron and sulfur by plants (del Carmen 
Orozco-Mosqueda et al.,  2013; Meldau et al.,  2013; 
Zhang et al., 2009) suggesting that VOCs originating 
from bacterial metabolic activity could be used by 
plants in conditions of nutrient deficiency. However, 
the mechanisms underlying growth promotion and 
nutrient acquisition by microbial volatiles are still 
poorly understood.

Recent research has proposed that a unique bacte-
rial root microbiota is stimulated by specific chemical 
compounds (e.g. coumarins) produced by plants under 
nutrient-limiting soils (Harbort et al.,  2020; Stringlis 

et al.,  2018; Voges et al.,  2019). These studies have 
shown that root-secreted coumarins are inducible under 
iron starvation and mediate an interaction between the 
host and microbial commensals that improve host iron 
nutrition (Fourcroy et al.,  2014; Jin et al.,  2007). This 
interaction suggests that the root microbiota is an inte-
gral component of plant edaphic adaptation to growth 
in iron-limiting soils. Similarly, a study from Koprivova 
et al. (2019) using a loss of function mutant showed that 
root-specific camalexin biosynthesis controls the plant 
growth promoting effects of multiple bacterial strains; 
however, no nutritional component was shown in this 
study. Brisson et al. (2022) showed that amino acids, shi-
kimic and quinic acid, increased under phosphate stress 
are preferentially absorbed by micro-organisms that 
were positively correlated with root growth (Zhalnina 
et al., 2018). Other studies have demonstrated the direct 
integration between plant phosphate status, associated 
root microbiota and soil phosphorus content (Castrillo 
et al.,  2017; Finkel et al.,  2019). This may suggest that 
plants modulate their root exudation profiles to stimu-
late the proliferation of groups of micro-organisms that 
aid with nutrient acquisition or are involved in plant–
microbe signaling (Table 1). Despite the advances in our 
understanding of variability and functional roles of root 
exudates in soil phosphorus, nitrogen, iron acquisition 
among plant species (as shown in Figure 1), this topic 
remains understudied compared to research on root 
morphology and microbial symbiosis for plant nutrient 
acquisition. Wen et al.  (2021) proposed that incorpora-
tion of root exudation, root morphology and microbial 
symbiosis is key for a holistic understanding of below-
ground interactions.

MANIPULATING RHIZOSPHERE 
MICROBES AND PLANT ROOT 
EXUDATES FOR NUTRIENT 
ACQUISITION

Plants recruit the majority of their microbes within proxi-
mal soils and can be heavily influenced by keystone mi-
crobial strains (Sánchez-Cañizares et al.,  2017). Several 
strategies to manage and manipulate the rhizosphere 
microbiome for plant health have been proposed; how-
ever, their ability to be successfully applied on a broader 
scale is limited (Chaparro et al., 2012; Wallenstein, 2017). 
Currently, several approaches are available and applica-
ble. One approach is to alter the rhizosphere by directly 
inoculating bacterial or fungal strains in soils near plant 
roots (He et al., 2019).

Although this is becoming a widely used strategy, 
drawbacks include difficultly in fine-tuning microbial 
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root colonization, competition with native microbiota and 
maintaining functionality under highly managed agricul-
tural settings (Kaminsky et al., 2019; Salomon et al., 2022). 
This can be partially explained by the spatial and tempo-
ral variability that microbes experience in the field after 
application due to differences in management, and the 
technical challenges encountered in the selection, formu-
lation and production process (Kaminsky et al., 2019). The 
identification of key genes involved in microbial associa-
tion with roots can substantially help to better understand 
how bacteria colonize roots (Bible et al., 2021). In support 
of this, Cole et al.  (2017) identified a comprehensive set 
of microbial genes that control or influence competitive 
root colonization in the model plant Arabidopsis. Mavrodi 
et al. (2021) demonstrated how root exudates alter the ex-
pression of diverse metabolic, transport, regulatory and 
stress response genes of Pseudomonas in the rhizosphere 
of Brachypodium distachyons. These findings stress the 
potential for manipulation and improvement of the colo-
nization capabilities of plant beneficial microbes. Studies 
have used metagenomic analysis of endophytic bacterial 

communities to determine protein-encoding gene frag-
ments that can be used to predict key traits for the mi-
crobe's survival (Sessitsch et al., 2012). In order to deploy 
a soil inoculant's full functional potential, microbial 
colonization and survival mechanisms need to be fully 
elucidated.

Structure and activity of microbial communities are 
strongly influenced by the bioavailability and composition 
of organic materials in soils. Different organic materials 
with an undefined biochemical composition, such as or-
ganic amendments (e.g. manure, compost, compost teas, 
plant extracts, humic and fulvic acids, etc.), are used to 
increase diversity under the expectation that this would 
lead to enhanced microbial functionality (Griffiths & 
Philippot, 2013). A more targeted approach proposes the 
use of identified and known organic amendments to steer 
desired outputs in an advantageous direction, stimulating 
functional groups of bacteria via management practices 
(Chaparro et al., 2012; van Agtmaal et al., 2015). Adding 
organic materials containing precursors for metabolic 
pathways could lead to the production of biocontrol, 

T A B L E  1   Root-derived metabolites acting as substrates or signals of plant rhizosphere beneficial bacteria participating in mobilization 
of nutrients in substrates or plant nutrient acquisition

Root-derived metabolites Signalling or substrate-associated function Reference

Isoflavonoids (Daidsein, genistein) Regulation of nodule factors White et al. (2017)

Benzoxazinoids (indol-3-glycerol-phosphate) Trigger colonizarion of plant growth promoting 
rhizobacteria

Neal et al. (2012)

Coumarin (scopoletin) Iron deficiency Stringlis et al. (2018)

Coumarins (scopoletin,fraxetin) Recruitment of iron (III) reducing bacteria for 
iron acquistion

Harbort et al. (2020)

Coumarin Semiochemicals in the communication between 
the roots and Pseudomonas simiae

Yu, He, et al. (2021); Yu, Stringlis, 
et al. (2021)

Phytoalaexin (camalexin) Stimulate activity of plant growth-promoting 
rhizobacteria

Koprivova et al. (2019)

Flavones (apigenin and luteolin) Enrich Oxalabacteraceae under nitrogen 
depravation

Yu, He, et al. (2021); Yu, Stringlis, 
et al. (2021)

Triterpenes (thalianin, thalianyl fatty acid 
sters, arabidin)

Carbon source for bacteria proliferation Huang et al. (2019)

Phenazines Key-stone metabolites with growth-promoting 
properties

Dahlstrom et al. (2020)

Organic acids (malate) P,K,Mn,Zn and Cu increase soil availability Tesfaye et al. (2003)

Organic acids (oxalate, citrate) Siderophore producing Burkholderia species Weisskopf et al. (2011)

Fatty acid (2-Methylbutyric acid, palmitic acid) Enhancing bacterial recruitment to enhance 
plant growth under salinity stress

Xiong et al. (2020)

Galactoside Supporting growth of nitrogen-fixing Ensifer 
meliloti

Bringhurst et al., 2001

Organic acids (fumaric acid) Colonization of Bacillus amyloliquefaciens SQR9 Zhang et al. (2014)

Flavonoids (2-phenyl-1,4-benzopyrone) Plant–fungal symbiotic signal Maillet et al. (2011)

Amino acids Chemotaxis to plant growth-promoting bacteria 
Pseudomonas protegens CHA0

Hida et al. (2020)
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nutritional and anti-stress from indigenous soil bacte-
ria (Garbeva & Weisskopf,  2020). For instance, volatiles 
emitted belowground by bacteria differentially impacted 
plant nutrient content indicating that these volatiles can 
affect the nutritional status of plants (Martín-Sánchez 
et al., 2020). Similarly, Tsolakidou et al.  (2019) proposed 
that microbial synthetic communities can be used as com-
post inoculants to produce compost with desired charac-
teristics such as biocontrol of targeted pathogens and plant 
growth promotion. The development of targeted inocula-
tion methods and synthetic communities offer a venue to 
disentangle the inherent complexity of interactions in situ 
enabling tractable testing of hypotheses by manipulation 
in gnotobiotic systems. Challenges, limitations and oppor-
tunities of synthetic communities for plant research are 
further reviewed by Vorholt et al. (2017).

Research in synthetic biology has begun to explore the 
optimization of engineered plant growth-promoting rhi-
zobacteria to develop strains which do not suffer the eco-
logical shortfalls of their natural progenitors. Transfer of 
plant growth-promoting bacteria traits on mobile genetic 

elements into selected bacterial ‘chassis’ or whole com-
munities can be used to customize effective rhizosphere 
bacteria with desirable traits for specific purposes (Haskett 
et al.,  2021). Many mechanisms of nutrient mobilizing 
bacteria including nitrogen, phosphorus solubilization 
and phytohormone biosynthesis, have been elucidated in 
a fine detail to be genetically engineered. For example, a 
recent study used a combinatorial synthetic biology-based 
approach to generate 82 biochemically diverse phytase en-
zymes which were integrated into the genomes of three 
bacterial strains. In this study, a fraction of the enzymes 
was able to mineralize phytate and promoted Arabidopsis 
growth (Shulse et al., 2019). Similarly, other important ad-
vances have been made recently towards developing ap-
plication to N-fixing rhizobacteria that are associated with 
cereals (Ryu et al., 2020), which use phytohormones to en-
hance biomass, tolerance to abiotic stressors and improve 
resident bacteria colonization (Zúñiga-Feest et al.,  2018; 
Guo et al., 2019). However, an important prevalent chal-
lenge is to engineer rhizobacteria with important quali-
ties for plant assimilation (e.g. N-fixing, P-solubilizing) 

F I G U R E  1   Overview of specialized root-derived metabolites mediating nutrient acquisition for plants. Nutrient deprivation induces the 
release of specialized primary and secondary metabolites from the plant roots to the soil. In turn, specialized metabolites serve as resource 
or signals for rhizosphere micro-organisms that are enriched under nutrient stress. These micro-organisms can mediate nutrient availability 
or display other plant growth-promoting traits. Thus, root exudates can modulate the rhizosphere microbiome or individual microbial 
taxa capable to solubilize or mineralize plant nutrients such as nitrogen, phosphorus and iron increasing nutrient procurement for plants. 
Depicted in the picture are identified metabolites and associated bacteria taxa. Lastly, most metabolites mediating similar interactions with 
other plant essential nutrients are not yet identified.
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without impacting the energetic balance in the plant 
(Haskett et al., 2021).

Root exudates have been proposed as a plausible mech-
anism for fine tuning the plant microbiome because of 
their chemically diverse composition with signaling prop-
erties and their capacity to influence the composition 
and function of the root microbial community (Jacoby 
et al., 2020). Earlier research explored genetic variation to 
induce traits that increase the exudation of organic acids 
or positive associations with symbiotic or nonsymbiotic 
soil organisms that favor plant nutrition. For example, P-
efficient crop lines used natural and induced genetic varia-
tions for carboxylate (Pearse et al., 2007) and phosphatase 
exudation (George & Richardson,  2008). Although car-
boxylate and phosphatase exudation were evident under 
controlled conditions, the strategy  showed variable suc-
cess when evaluated in soils.

More recently, research on root exudate traits from 
wild relatives of modern crops has offered opportunities 
to reduce the use of fertilizers and pesticides (Iannucci 
et al., 2017; Preece & Penuelas, 2020). Because wild plant 
species are often able to successfully grow, reproduce and 
maintain adequate nutrition in nutrient-poor soils, it has 
been hypothesized that wild types may produce different 
extracellular enzymes and higher proportion of organic 
anions release resulting in more efficient solubilization of 
phosphorus (Preece & Peñuelas, 2020). Differential micro-
bial composition patterns in the rhizosphere of modern 
crops relative to their wild progenitors have been reported 
in potato and maize (Pantigoso, Manter, & Vivanco, 2020; 
Pantigoso, et al., 2020; Schmidt et al., 2020). For instance 
the rhizosphere microbiome of wild potatoes was shown 
to be correlated with the higher capacity to uptake and 
utilize phosphorus when compared to modern potato cul-
tivars. Other important studies deciphering differences 
in cultivated crops'  rhizosphere microbiomes relative to 
their wild ancestors' have expanded our understanding 
on rhizobacterial community shifts during domestication 
(Mendes et al., 2018; Pérez-Jaramillo et al., 2017; 2019). The 
tight association between root exudates and rhizosphere 
microbiome and the latest discoveries on the heritability 
component of the plant microbiome support the efforts of 
harnessing root exudates from wild relatives to improve 
functional features of modern crops (Peiffer et al., 2013; 
Rüger et al.,  2021). Recent evidence shows that the ma-
nipulation of root exudate composition from root apices 
enriching certain bacterial communities throughout the 
root system is feasible (Kawasaki et al., 2021). The advan-
tage of this approach is that exudates are deposited at the 
root–soil interface, where they are most likely impacting 
microbial growth. Additionally, the release of substrates 
along host life cycle can maintain selection pressure on 
a given established community. Alternative approaches 

encourage the identification, selection and use of certain 
root exudates to directly mobilize nutrients in the soils 
and use them in combination with elicitors to encour-
age inoculant proliferation (Garbeva & Weisskopf,  2020; 
Rizaludin et al., 2021).

FUTURE RESEARCH AND 
PERSPECTIVES

Due to its multifunctional properties, root exudates are 
key to manipulate plant–microbial interactions to im-
prove nutrient acquisition. Future research should focus 
on: (1) Identifying specialized molecules with elicita-
tion of microbial activity, (2) Identifying microbes which 
help plants to alleviate nutrient scarcity efficiently, (3) 
Investigating the molecular mechanisms underlying the 
composition of root exudates under nutrient scarcity and 
(4) Developing protocols to discover and test root exu-
date derived compounds that could increase the nutrient 
acquisition ability of PGPR. To achieve the discovery of 
these specialized metabolites, we still need to develop op-
timal and universally standardized methods of root exu-
date collection and analysis that resemble environmental 
soil conditions (Pantigoso et al., 2021). In addition, iden-
tifying patterns in root exudate profiles and rhizosphere 
microbiomes under a wide range of environmental condi-
tions, nutrient status and plant developmental stages will 
increase our understanding of plant–microbial interac-
tions in the rhizosphere.

As soil environment and nutrient status changes, 
tradeoffs occur among the three plant functional traits for 
nutrient procurement: root exudation, root morphology 
and root-microbial symbiosis. However, often only the 
two latter strategies are considered, limiting our holistic 
understanding of plant acquisition strategies. A deeper 
understanding of integrated strategies of resource acqui-
sition used by plants is needed in order to by combining 
knowledge on the roles of root exudates with the other two 
better-studied strategies (Galindo-Castañeda et al., 2022; 
Wen et al., 2021). The frontiers of an integrative functional 
strategy for resource acquisition include the identification 
of root exudate compounds, prevalent across plant spe-
cies, that are enriched under macro and micronutrient 
limited environments as well as identifying novel mole-
cules that correlate with high nutrient uptake efficiency, 
enrichment of PGPR species in the rhizosphere or colo-
nization and activity of symbiotic microbes. In addition, 
advances in the development of improved methods in an-
alytical chemistry and bioinformatics that allow the detec-
tion of novel metabolic signals, in chromatography-mass 
spectrometry profiling, would remain critical to better 
understand which parts of whole biochemical networks 
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respond to genetic perturbation or environmental stress 
(Obata & Fernie, 2012; Wang et al., 2016).

Second, the effects of root exudated compounds, from 
sufficient versus nutrient-deficient conditions, on the ac-
tivity of either individual beneficial micro-organism or 
synthetic communities, need to be further investigated 
under various soils with and without the influence of the 
plant. Before that, protocols need to be developed to test 
the functional potentially of newly identified single com-
pounds or blends, on nutrient content availability, micro-
bial community composition and function and its potential 
positive effect on plant health and yield (Badri et al., 2013; 
Zhalnina et al., 2018). Although metabolic composition of 
root exudates is under the genetic control of the plant, ex-
ternal factors such as soil type and environmental stresses 
affect root exudation (Badri & Vivanco,  2009; Pantigoso 
et al.,  2021). Revealing molecular mechanisms underly-
ing the composition of the root exudates under nutrient-
limiting conditions for plants, soil types and rhizosphere 
microbial communities will be valuable information to 
use microbes and root exudate derived compounds to help 
plant alleviate plant nutritional stress (Hong et al., 2021). 
However, the identification of genes associated with root 
exudation profiles require multidisciplinary approaches 
incorporating plant genetics, nutrient stress biology, mo-
lecular biology, soil microbiology and bioinformatics. 
Successful integration of these disciplines can greatly 
improve our understanding of the mechanistic processes 
controlling root exudate, under abiotic conditions and dif-
ferent soil types, further allowing development of applica-
tions that can be incorporated to targeted plant breeding 
and formulation of customized chemical blends to ul-
timately customize compound-microbe-crop combina-
tions that enhance efficiency of resource acquisition for 
plants (Hong et al., 2021; Song et al., 2020). Likewise, the 
development of plant-controlled symbiosis in which rhi-
zosphere bacteria are able to display nitrogen fixation or 
phosphorus solubilization only when in contact with an 
engineering compound-producing plant (e.g. rhizopine; 
Haskett et al., 2021). Similarly, the development of plant-
controlled symbiosis in which the bacteria display its 
functionality (e.g. nitrogen fixation) only when in contact 
with the desired host plant; thus, preventing their interac-
tion with non-tagerted plant species (Haskett et al., 2022).

Third, the exploitation of root exudate traits in wild rel-
atives of crops offers opportunities to reduce the use of fer-
tilizers and pesticides by providing a large course of genetic 
material with desirable traits (Preece & Peñuelas, 2020). 
Investigating root exudate composition, for instance, the 
abundance and number of compounds involved in mobi-
lizing and chelating nutrient in wild relatives compared to 
their domesticated counterparts may reveal missed mol-
ecules lost in the process of conventional breeding and 

domestication. This is in parallel to the recently revealed 
changes on wild and domesticated rhizosphere microbi-
omes (Pérez-Jaramillo et al.,  2018). Speculating further, 
observed changes in structure and function of rhizo-
sphere microbiomes may be a consequence of the shifted 
chemical composition of root exudate profiles from wild 
relatives, since rhizosphere microbes utilized these di-
verse molecules blends as source of nutrient and signals 
(Lannucci et al., 2017; Preece & Peñuelas, 2020).
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