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Abstract: Fully conjugated ladder copolymers have attracted considerable attention due to their
unique fused-ring structure and optoelectronic properties. In this study, two fully conjugated
ladder naphthalene diimide (NDI) copolymers, P(NDI-CZL) and P(NDI-TTL) with imine-bridged
structures are presented in high yields. Both of the two copolymers have good solubility and
high thermal stability. The corresponding compounds with the same structure as the copolymers
were synthesized as model system. The yields for each step of the synthesis of the model
compounds are higher than 95%. These results suggest that P(NDI-CZL) and P(NDI-TTL) can be
synthesized successfully with fewer structural defects. The structures and optoelectronic properties
of compounds and copolymers are investigated by NMR, fourier transform infrared spectroscopy
(FTIR), ultraviolet-visible spectroscopy (UV-vis), and cyclic voltammetry (CV). Both in solution
and as a thin film, the two copolymers show two UV-vis absorption bands (around 300–400 nm
and 400–750 nm) and a very weak fluorescence. The collective results suggest that the two fully
conjugated ladder copolymers can be used as potential acceptor materials.

Keywords: NDI; carbazole; thieno[3,4-b]thiophene; imine-bridged; Ladderized

1. Introduction

Recently, fully conjugated ladder polymers have been leaded to rapid development in the field
of organic optoelectronic materials due to their unique fused structure and excellent properties [1–9].
The main chain on the fully conjugated ladder polymer is π-conjugated and fused structure [10–14].
This structure can improve π-electron delocalization and create the unique properties [15–19], such as high
thermal and chemical stability, narrow band gaps, and high charge-carrier mobility. Although various
synthesis methods have been used to synthesis fully conjugated ladder polymers [20–29], there are still
some difficulties (such as structure defects or solution-processability) which need to be overcome to
improve the properties of ladder polymers [30–35].

Introduction of electron-rich donor units and electron-deficient acceptor units into the main
backbone chain of fully conjugated ladder polymer can offer an effective way to improve the ladder
polymer’s properties [36–40]. Naphthalene diimide (NDI) units and perylene diimide (PDI) units
demonstrate unique properties, such as high electron affinity, π-stacking behavior, and good absorption.
Therefore, NDI units and PDI units are often used as acceptor units [41,42]. Compared to PDI-based
copolymers, NDI-based copolymers have better regional regularity and a stronger intermolecular
interaction which can improve the π-stacking behavior and electron mobility. Recent NDI-based
copolymers contain different donor units such as thiophene (T), selenophene (Se), bithiophene (BT),
and thieno[3,2-b]thiophene (TT), have been reported to have excellent properties [43–50]. But, few
reports exist on fully conjugated ladder NDI-based polymers, which may be due to their limited
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solubility and structural defects. In 2011, Durban et al. first reported imine-bridged fully conjugated
ladder NDI-based polymer structures [51]. The ladder polymer shows good solution-processability
and has an electron mobility of 0.0026 cm2 V−1·s−1.

In this paper, we design a new synthesis method with the aim to obtain NDI-based fully
conjugated ladder polymer free of structure defects. The two fully conjugated ladder polymers
were constructed by acceptor unit (NDI) and donor unit (carbazole and thieno[3,4-b]thiophene).
Meanwhile, the corresponding compounds with the same structures as the copolymers were
synthesized as model systems. The two ladder polymers with imine-bridged structures were treated by
CH3COOH and presented in high yields. The imine-bridged structure was confirmed by NMR, FTIR,
UV-vis, and cyclic voltammetry (CV). This work will be beneficial to future research investigating the
performance and optimization of organic photovoltaic devices.

2. Materials and Methods

2.1. Materials

Commercial chemicals were used without further purification. Tetrahydrofuran (THF) and
dichloromethane (DCM) were distilled by a standard process before using. The reactions were monitored
by thin layer chromatography (TLC) with silica gel 60 F254 (Merck, 0.2 mm, Darmstadt, Germany).

2.2. Instrumentation

1H and 13C NMR data were acquired on a Bruker AV600 spectrometer. The electrochemical behavior
was recorded by cyclic voltammetry (Ivium Plus II, Ivium Technologies BV, Eindhoven, The Netherlands)
with a standard three-electrode electrochemical cell, consisting of a glassy carbon working electrode, a Pt
wire counter electrode, and an Ag/Ag+ (0.01 M in CH3CN) reference electrode. UV-visible absorption
spectra were obtained on a Shimadzu UV-visible spectrometer (UV-2550, Shimadzu Corp., Tokyo, Japan).
Fluorescence spectra were investigated by a Shimadzu fluorescence spectrophotometer (RF-5301PC,
Shimadzu Corp., Tokyo, Japan). MALDI-TOF analyses were obtained by a Bruker Daltonics Inc. Autoflex III
(Billerica, MA, USA). Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC)
measurements were carried out under nitrogen on a Perkin-Elmer Pyris 6 TGA (Perkin-Elmer, Waltham,
MA, USA) (heating rate of 10 ◦C/min) and Perkin-Elmer Diamond DSC instruments (Perkin-Elmer,
Waltham, MA, USA) (scanning rate of 10 ◦C/min), respectively.

2.3. General Synthesis for Compound NDI-CZL and Polymer P(NDI-CZL)

The fully ladder-type conjugated compound and copolymer were synthesized in four steps (as shown
Scheme 1). First, the compound NDI-CZ and copolymer P(NDI-CZ) were synthesized by naphthalene
diimide and 2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-hexadecyl-9H-carbazole, using Suzuki
coupling conditions and Pd(PPh3)4 as a catalyst. Afterward, HNO3 was used in addition to the compound
and copolymer to introduce a –NO2 group. The –NO2 group was further converted into the corresponding
amine derivative through Pd/C-catalyzed hydrogenation. Last, the carbonyl groups reacted with adjacent
amine groups that can form intramolecular imine-bridged fused structures, using CH3COOH as catalyst.
The model compound NDI-CZL was synthesized successfully in high yield which then permitted the
synthesis of the fully ladder-type conjugated copolymers, P(NDI-CZL). The details of the synthesis for
compounds and copolymers can be found in the supporting information. The compounds and copolymers
were characterized in detail by NMR and MALDI-TOF, see the Supporting Information.
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Scheme 1. The synthetic routes to compound NDI-CZL and polymer P(NDI-CZL).

2.4. General Synthesis for Compound NDI-TTL and Polymer P(NDI-TTL)

The ladder-type conjugated compound and copolymer were synthesized in four steps (as shown in
Scheme 2). First, the compound NDI-TT and copolymer P(NDI-TT) were synthesized by naphthalene
diimide and 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene, using Stille coupling conditions and
Pd(PPh3)4 as catalyst. Then, HNO3 was used in addition to the compound and copolymer to introduce
–NO2 group. The –NO2 group was further converted into the corresponding amine derivative through
Pd/C-catalyzed hydrogenation. Last, the carbonyl groups reacted with adjacent amine groups that
can form intramolecular imine-bridged fused structures, using CH3COOH as catalyst. The model
compound NDI-TTL was synthesized successfully in high yield, allowing the synthesis the ladder-type
conjugated copolymers, P(NDI-TTL). The details of the synthesis for compounds and copolymers are
seen in the supporting information. The compounds and copolymers were characterized by NMR and
MALDI-TOF, see Supporting Information.
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3. Results

3.1. Synthetic Route Discussion

To ensure the synthetic route can successfully synthesize the fully conjugated ladder copolymers
with fewer structure defects, first we use model compounds to discuss the synthetic routes.
The compounds NDI-CZ, NDI-CAN, and NDI-CZL were synthesized in high yields; 98%, 95%,
and 95%, respectively. The compounds NDI-TT, NDI-TTN, and NDI-TTL were synthesized in high
yields; 97%, 98% and 95%, respectively. The NMR spectrum and MALDI-TOF were used to identify
the structure of target compounds. The successful synthesis of the fully conjugated ladder copolymers
was made feasible by; (1) the simplicity of the synthesis route; (2) the determined structure; and (3) the
high yields obtained at every step.

3.2. SEC Trace for Copolymers

The number average molecular weight (Mn) of the copolymers was investigated by size-exclusion
chromatography (SEC) in THF (polystyrene standards) (as shown in Figure 1). All data are listed in
Table 1. The Mn values of P(NDI-CZ), P(NDI-CZL), P(NDI-TT), and P(NDI-TTL) were 16.4 × 103 g/mol,
18.9 × 103 g/mol, 20.2 × 103 g/mol, and 26.0 × 103 g/mol, respectively, and the polydispersity index
(PDI) values were 1.62, 1.78, 1.50 and 1.76, respectively. The increased molecular weights of P(NDI-CZL)
and P(NDI-TTL) can be recognized as being overestimations due to the rigidity structure, rather than
the actual molecular weight. The planarity the structure after ladderization reaction will effectively
increase the hydrodynamic radius of copolymers in solution.
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Figure 1. The SEC chromatograms of polymers.

Table 1. Polymer properties and yields.

Yield % Mn × 103 g/mol a Mw × 103 g/mol a PDI a T/◦C b HOMO/eV c LUMO/eV d ∆Egap/eV e

P(NDI-CZ) 96 16.4 26.5 1.62 430 −5.24
(±0.10) −3.38 1.86

P(NDI-CZL) 93 18.9 33.7 1.78 455 −5.47
(±0.10) −3.62 1.85

P(NDI-TT) 96 20.2 30.1 1.50 415 −5.25
(±0.10) −3.62 1.63

P(NDI-TTL) 93 26.0 45.7 1.76 422 −5.68
(±0.10) −3.85 1.83

a Determined by GPC; b determined from thermogravimetric analysis (TGA), T was the temperature when 5%
weight loss had occurred; c measured by cyclic voltammetry (CV), EHOMO = −(Φox + 4.8) eV (highest occupied
molecular orbital (HOMO)); d calculated by ELUMO = EHOMO + ∆Egap (lowest unoccupied molecular orbital (LUMO));
e band gap calculated from the onset of the absorption in the UV-vis spectra, ∆Egap = 1240/λ.

3.3. Thermal Properties of the Copolymers

The thermal properties of the copolymers were acquired by thermal gravimetric analysis
(TGA) (as shown in Figure 2) and differential scanning calorimetry (DSC), (as shown in Figure 3).
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The decomposition temperatures (with a 5% mass loss) for copolymers P(NDI-CZ), P(NDI-CZL),
P(NDI-TT), and P(NDI-TTL) were 430 ◦C, 450 ◦C, 415 ◦C, and 420 ◦C, respectively. All the decomposition
temperatures of the copolymers were above 410 ◦C, indicate that the copolymers have an excellent thermal
stability. After ladderization reaction, the decomposition temperatures of copolymers were increased.
In the heating and cooling DSC scans, there were no apparent glass transition processes or other thermal
processes. This phenomenon suggested that the copolymers have amorphous structures.Polymers 2018, 10, x FOR PEER REVIEW  5 of 11 
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3.4. FTIR Spectra of Copolymers

Furthermore, the imine-bridged structure was confirmed by the FTIR spectrum (shown in Figure 4).
After the nitration reaction, the –NO2 stretch peak around 1520 cm−1 appeared in both compounds
NDI-CZN, NDI-TTN and copolymers P(NDI-CZN), P(NDI-TTN), compared to NDI-CZ, NDI-TT,
P(NDI-CZ) and P(NDI-TT), respectively. Then the Pd/C-catalyzed hydrogenation reaction, the loss of –NO2

stretch peak and two –NH2 stretch peaks appeared (3387 and 3185 cm−1 for NDI-CZA, 3354 and 3198 cm−1

for P(NDI-CZA), 3387 and 3185 cm−1 for NDI-TTA, 3415 and 3198 cm−1 for P(NDI-TTA), respectively).
The completely disappears of the –NO2 stretch peak means the Pd/C-catalyzed hydrogenation is
thoroughly effective. Last, after the ladderization reaction which formed the imine-bridged structures, the
two –NH2 stretch peaks and the –C=O stretch peak (around 1736 cm−1) completely disappeared and a
–C=N stretch peak appeared around 1590 cm−1.

3.5. Photophysical Properties of Compounds and Copolymers

The UV-vis absorption spectra of the three compounds and copolymers in dilute THF solutions
and thin films are shown in Figure 5. Compound NDI-CZ shows two distinct UV-vis absorption
bands, around 300–400 nm and 400–700 nm. The absorption band around 300–400 nm was assigned to
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π-π* transitions in the molecular backbone. The absorption band around 400–700 nm was assigned
to intramolecular charge transfer (ICT) between donor unit (CZ) to acceptor unit (NDI). After the
nitration reaction, –NO2 group was introduced into the molecular backbone. As the –NO2 group is a
strong electron-withdrawing group which can destroy the balance of the intramolecular charge transfer
in the molecular backbone, the absorption band around 400–700 nm disappears. After the structural
transformation in which the imine-bridge structure is forming, the intramolecular charge transfer
between donor unit and acceptor unit reappears. Therefore, there are reappearance corresponding
absorption band around 400–650 nm.
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The copolymers show a similar UV-vis absorption to the compounds. Copolymer P(NDI-CZ) was a
typical donor-acceptor (D-A) type polymer with two distinct UV-vis absorption bands, around 300–400 nm
and 400–700 nm. The copolymer P(NDI-CZN) has only one UV-vis absorption band, around 300–450 nm.
Copolymer P(NDI-CZL) shows two UV-vis absorption bands, around 300–420 nm and 420–700 nm.

Moreover, compared to the solution absorption, the thin-film absorption of the compound NDI-CZ
and copolymers P(NDI-CZ) showed slight red-shifting due to the interchain aggregation and π-π
stacking. While, due to the fused-ring constitution restricts the free torsional motion, the thin-film
absorption of the final fully conjugated ladder compound NDI-CZL and the copolymer P(NDI-CZL)
show no obvious red-shifting compared to the solution absorption.

Figure 6 showed the UV-vis absorption spectra of the compounds and copolymers in dilute THF
solutions and as thin films. Compound NDI-TT showed two distinct UV-vis absorption bands, around
300–400 nm and 400–600 nm. The absorption band around 300–400 nm is assigned to π-π* transitions
in the molecule backbone. The absorption band around 400–600 nm is assigned to intramolecular
charge transfer (ICT) between donor unit (TT) to acceptor unit (NDI). After the nitration reaction, –NO2

group was introduced into the molecular backbone. As –NO2 group is a strong electron-withdrawing
group which can destroy the balance of the intramolecular charge transfer in the molecular backbone,
the absorption band around 400–600 nm disappears. After the structural transformation in which the
imine-bridged structure is formed, the intramolecular charge transfer between the donor unit and
acceptor unit reappeared. Therefore, the absorption band around 400–560 nm reappeared.

The copolymers show a similar UV-vis absorption to the compounds. Copolymer P(NDI-TT)
was a typical D-A type polymer with two distinct UV-vis absorption bands, around 300–420 nm and
420–750 nm. The copolymer P(NDI-TTN) has only one UV-vis absorption band, around 300–500 nm.
Copolymer P(NDI-TTL) shows two UV-vis absorption bands, around 300–420 nm and 420–670 nm.

Moreover, compared to the solution absorption, the thin-film absorptions of the compound
NDI-TT and copolymers P(NDI-TT) showed red-shifting due to the interchain aggregation and π-π
stacking. While the fused-ring constitution restricts free torsional motion, the thin-film absorption of
the final fully conjugated ladder compound NDI-TTL and copolymer P(NDI-TTL) showed no obvious
red-shifting compared to the solution absorption.
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3.6. Electrochemical Properties of Copolymers

The electrochemical properties of ladder-type conjugated copolymers and model compounds were
performed by using cyclic voltammetry in a three-electrode cell at room temperature with Ag/Ag+ as the
reference electrode and Fc/Fc+ redox system as the internal standard. It is assumed that the redox potential
of Fc/Fc+ has an absolute energy level of −4.80 eV compared to a vacuum. The CH2Cl2 solution contains
0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6). The scan rate was 30 mV·s−1 in the range of
−1.4–1.7 V. Figure 7 shows the CV curves of the copolymers. The energy levels of the highest occupied
molecular orbital (HOMO) were calculated by EHOMO = −(Φox + 4.8) eV. Band gap was calculated from
the onset of the absorption spectra, ∆Egap = 1240/λ. The lowest unoccupied molecular orbital (LUMO)
level of the polymers was calculated by ELUMO = EHOMO + ∆Egap. All the result data of the copolymers
were listed in Table 1. The HOMO values of copolymers P(NDI-CZL) and P(NDI-TTL) were −5.47 eV and
−5.68 eV, respectively. The LUMO values of copolymers P(NDI-CZL) and P(NDI-TTL) were −3.62 eV and
−3.85 eV, respectively.
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