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A B S T R A C T

Background: Cuproptosis is a unique form of cell death that is dependent on copper, which is
fundamentally different from other recognized forms of cell death. However, the molecular and
immune characteristics in cuproptosis-defined subgroups of cholangiocarcinoma (CCA) remain to
be further illustrated.
Methods: We conducted a comprehensive investigation into the genetic and transcriptional vari-
ation, prognostic significance, and expression profiles of 16 cuproptosis-related genes (CRGs). To
construct a prognostic signature based on differentially expressed genes between molecular
subtypes, we employed LASSO and multivariate Cox regression analyses. We then assessed the
values of this signature in prognostic prediction, immune infiltration, and therapeutic responses
in CCA. The robustness of the signature was further validated in the GEO and IMvigor210 cohorts.
Additionally, qRT-PCR and Western blotting (WB) were utilized to confirm the expression of the
signature genes across different cell lines.
Results: A total of 16 CRGs were analyzed revealed differentially expressed, and two CRG-related
clusters were identified, which displayed contrasting survival times.
Then, a robust cuproptosis-related risk model was established and was an independent prognostic
factor for CCA, which was further validated across two external cohorts. Low-risk patients had a
better overall survival than high-risk patients. The comprehensive results showed that a low-risk
score was correlated with metabolism-related pathways, high infiltration of CD8 T cells, B cells,
and M1 macrophages, active immunity and less aggressive phenotypes, high chemotherapeutic
sensitivity, and more benefit from immunotherapy. In contrast, a high-risk score was associated
with cancer and metastasis-related pathways, high infiltration of M2 macrophages, high
expression of immune checkpoint genes, suppressive immunity and more aggressive phenotypes,
and less benefit from chemotherapeutic and immunotherapy. In addition, the critical CRGs were
further validated through qRT-PCR and WB.
Conclusions: We developed a novel risk model for CCA patients, which serves as a promising
biomarker for distinguishing prognosis as well as molecular and immune characteristics.
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1. Introduction

Cholangiocarcinoma (CCA) is a highly heterogeneous epithelial cell malignancy stemming from biliary epithelia and liver, with
rising mortality worldwide over the past few decades [1]. According to the primary anatomic subtype, CCAs are classified into three
categories: intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). CCA is asymptomatic in its early stage, leading to most CCA
patients being diagnosed at advanced stages of the disease, where therapeutic options are severely limited [2]. Recent advances in
treatments, such as surgical treatment, chemotherapy, and immunotherapy, have notably improved the prognosis of many patients
with CCA [2,3]. However, most patients still tend to have unfavorable prognoses, with five-year overall survival (OS) rates lingering
between 7 % and 20 %, which has garnered significant scientific and clinical interest [4]. What is more, sketchy molecular testing was
conducted to guide CCA treatment [5]. The progress in identifying targeted genetic abnormalities in CCA highlights the emerging role
of precision medicine in this disease. By employing transcriptomic analyses to identify gene signatures associated with CCA, which
could provide a comprehensive evaluation of immune pathway-related signaling and tumor-related characteristics. Therefore, there is
an urgent need to further explore distinct and practical molecular signatures that could enhance individualized treatment approaches
and prognostic assessments for CCA.

Copper, an essential micronutrient, plays a pivotal role in numerous physiological processes within the human body, including
cellular growth and proliferation [6]. However, the accumulation of excessive copper levels can lead to various cellular metabolic
dysfunctions, ultimately resulting in cell death [7]. It is well known that copper is also required for cancer cell proliferation, tumor
angiogenesis, as well as metastasis [8]. Elevated copper levels have been observed in a variety of malignancies compared to normal
patients, including lung cancer [9], breast cancer [10], carcinoma of gallbladder [11] and so on. Further, copper has the potential to
diminish the abundance of 60S ribosomal subunits while impairing rRNA processing, thereby enhancing the sensitivity of CCA cells to
tripterine [12]. In recent years, a novel form of cell death termed cuprotosis has been identified, which is characterized by the direct
binding to fatty acylation components in the tricarboxylic acid cycle (TCA cycle) [13]. When respiring, the accumulation of lipoylated
TCA enzymes occurs, leading to the abnormal aggregation and imbalance of these proteins, which effectively obstructs the TCA cycle,
inducing inevitably acute proteotoxic stress, culminating in cell death [13]. Cuprotosis is recognized as a copper-dependent form of
cell death [14], which is distinct from other known death mechanisms such as ferroptosis, pyroptosis, and necroptosis. Multiple studies
[15,16] highlighted the prognostic significance andmolecular subtypes associated with cuproptosis-related genes, whichmay pave the
way for developing innovative therapeutic strategies. However, the precise role of cuprotosis in CCA remains to be clarified.

In this study, we aim to comprehensively explore the various aspects of cuproptosis-related genes (CRGs) and to establish a
cuproptosis-related prognostic signature in CCA. We further analyzed this cuproptosis-related signature in association with prognosis,
tumor microenvironment (TME) infiltration, and treatment responses in CCA samples by utilizing high-dimensional datasets from E-
MTAB. The results were further verified and supplemented using the GEO and IMvigor210 datasets. The results were also verified in
cell lines through quantitative real-time PCR (qRT-PCR) and Western blotting (WB).

2. Materials and methods

2.1. Patients and datasets

RNA-seq data (FPKM value) of 53 CCA samples, including 44 cancer samples and 9 para-cancer samples were downloaded from the
Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/, accessed in November 25, 2023). Single-nucleotide variant
(SNV) data and copy number variation (CNV) data were also obtained from TCGA database. A total of 75 tumor samples and 29 normal
samples, and their clinicopathological information in the E-MTAB-6389 cohort was available on the ArrayExpress website (https://
www.ebi.ac.uk/arrayexpress/). GSE244807 dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE244807) was used
as the validation cohort. The gene expression profiles and survival data of CCA patients in this dataset were obtained from Gene
Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo). For all included RNA-seq data, normalization and log2 (x
+1) transformation were performed. The mRNA transcriptome profiling and corresponding clinical data of the IMvigor210 cohort
were extracted from http://research-pub.gene.com/IMvigor210CoreBiologies. The clinical samples lacking survival status or OS were
excluded for further analysis.

A total of 16 CRGs were identified based on the previous study [13], which included 10 genes discovered through whole-genome
CRISPR/Cas9 screen analysis, 3 Cu transporter-related genes, and 3 TCA cycle-related genes. Raw sequencing data were downloaded
from the E-MTAB-6389 dataset. Reads were first trimmed using Trimmomatic (version 0.39) to remove low quality bases and adaptor
sequences [17]. Samtools (version 1.9) was used to sort the reads coordinates [18]. Normalize the alignment data using the Bam-
Coverage function of deepTools (version 3.5.0) [19]. Finally, gene lists were exported and intersected for further analysis.

2.2. Molecular characterization of CRGs in CCA

The mutation frequency and corresponding waterfall plot for 16 CRGs in CCA samples were illustrated utilizing the R maftools
package. The frequency of CNV was presented through a cleveland dot plot by the ggpubr package. The distribution of the 16 CRGs
across 23 chromosomes was visualized using the circlize package. To compare the differential expression of 16 CRGs between the
tumor and normal samples, the limma and ggpubr packages were employed. Additionally, X-tile software (version 3.6.1; Yale Uni-
versity, New Haven, CT, USA) [20] was utilized to determine the optimal cut-off values for CRGs based on the associations with patient
OS. We performed statistical test and plotted the Kaplan-Meier (K-M) curve to determine the prognostic value of single CRG in CCA
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using limma, survival, and survminer packages. The igraph package was used to calculate and visualize the correlations between
expression levels of CRGs. Univariate and multivariate Cox regression analysis for OS was performed in CCA. The forest plot of each
variable was visualized by the forestplot package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis of CRGs were analyzed by the clusterProfiler package.

2.3. Construction of cuproptosis-related clusters

The advantage of non-negative matrix factorization (NMF) in gene expression data analysis lies in its ability to identify localized
gene expression features that are dominated by a small number of functional categories, suggesting that they are groupings of genetic
components based on cell function. The novelty of this approach relative to other clustering methods is that NMF generates clusters
based on local patterns, grouping together sets of genes with strongly correlated behaviors only in subsets of the data [21]. Based on
the expression levels of CRGs, we employed a NMF approach to categorize patients into distinct clusters associated with cuproptosis
utilizing the ConsensusClusterPlus package. The optimal number of clusters was established through analysis of the consensus matrix
heatmap and cophenetic correlation coefficient. Principal component analysis (PCA) was performed to validate the robustness and
reliability of the established CRG clusters.

2.4. Estimation of gene set enrichment analysis and tumor microenvironment cell infiltration between CRG clusters

Gene set variation analysis (GSVA) was conducted to investigate the difference of the biological function between CRG clusters
using GSVA package of R and "c2.cp.kegg.v7.5.symbols". Single sample gene set enrichment analysis (ssGSEA) analysis was then
conducted to assess the presence of immune cells and the associated immune functions within the tumor immune microenvironment.
To analyze the ratio of immune-stromal components in this environment, we employed the estimate package in R. Furthermore, we
compared the immune scores across the different CRG clusters. Moreover, tumor immune dysfunction and exclusion (TIDE) score was
calculated online (http://tide.dfci.harvard.edu/) [22], including integrated TIDE score, microsatellite instability (MSI) score,
dysfunction, and exclusion of each CCA sample.

2.5. Identification of differentially expressed genes between CRG clusters and construction of cuproptosis gene clusters

Based on between different CRG clusters, lists of differentially expressed genes (p-value <0.05, |log2(FoldChange)| > 0.585) were
identified by using the limma package. In the signaling pathway analysis, CRG cluster-related DEGs were carried out by using the GSEA
method based on the KEGG with the clusterProfiler package and “c2.cp.kegg.Hs.symbols”. Univariate Cox analysis was conducted on
DEGs to identify DEGs that were associated with OS (p value < 0.05), which were subsequently selected for further investigation. The
NMF analysis was then performed on the expression levels of OS-related DEGs to divided patients into distinct clusters based on
cuproptosis gene expression, employing the R package ConsensusClusterPlus. Additionally, Kaplan-Meier analysis was utilized to
examine survival differences among the identified clusters.

2.6. Construction of the cuproptosis-related scoring prognostic model

The least absolute shrinkage and selection operator (LASSO) Cox regression were performed on OS-related DEGs to reduce the
dimension of high-latitude data using glmnet package. Subsequently, we performed a multivariate Cox regression analysis on the DEGs
identified through the LASSO regression analysis. Finally, we determined the risk score for each patient by employing the following
formula:

Risk score=(coefficient A) * exp A+ (coefficient B) * exp B+ … … + (coefficient N) * exp N. The coefficient N and exp N in the
formula represent the coefficient index and expression level of genes, respectively.

X-tile software was employed to identify the optimal cut-off values that differentiate between high- and low-risk groups, utilizing
the relationships with patient OS. Patients categorized with a high-risk score (E-MTAB-6389> 1.52, GSE244807> 5.69) were assigned
as the high-risk group, while those with a low-risk score (E-MTAB-6389 ≤ 1.52, GSE244807 ≤ 5.69) were classified into the low-risk
group.

Subsequently, a Kaplan-Meier analysis was performed to evaluate the survival probability between the two risk groups utilizing the
survival and survminer packages.

Receiver operating characteristic (ROC) curves were generated to predictive the accuracy of this model, and the area under the
curve (AUC) values for 1-, 3-, and 5-year survival were calculated using the timeROC package. The external cohort GSE244807 was
employed to validate the risk score prognostic model. Furthermore, univariate and multivariate Cox regression analyses were con-
ducted to ascertain whether the risk score could be regarded as an independent prognostic factor. Additionally, a sankey diagram was
utilized to illustrate the distribution of patients across CRG clusters, risk scores, and their corresponding survival status.

2.7. Correlations of cuproptosis-related risk score with immune infiltrates and immune checkpoint genes (ICGs) in CCA

Enrichment analysis to determine the signaling pathways differences between high- and low-risk groups, GSEA was performed. We
then employed R package ESTIMATE to evaluate the relative proportion of 22 types of immune cells. Then, we analyzed the spearman
correlation between the relative proportions of immune cells and the risk score, and compared the differences of ICGs between the risk
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Fig. 1. Landscape of genetic and transcriptional alterations of cuproptosis-related genes (CRGs) in CCA. (A) The landscape of mutation profiles of 44
CCA patients from TCGA-CHOL cohort. Mutated genes (rows, 16 CRGs) are ordered by mutation rate. The right shows mutation percentage, and the
top shows the overall number of mutations. The color-coding indicates the mutation type. (B) The CNV frequency of CRGs in TCGA-CHOL cohort.
(C) The circus plot showed the location of CNV alteration of CRGs on 23 chromosomes. (D) The network showed interactions among CRGs in TCGA-
CHOL cohort. (E) The top 10 enriched items of CRGs in GO analysis in biological process. (F) The top 10 enriched pathways of CRGs in KEGG
database. (G) Differences in the expression levels of 16 CRGs between tumor and normal samples in TCGA-CHOL cohort. (H) Multivariate cox
regression analysis of 9 CRGs associated with overall survival in E-MTAB-6389 cohort. CCA, CHOL: cholangiocarcinoma; CNV: copy number
variation; GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; TCGA: the Cancer Genome Atlas. ns: not significant, *p < 0.05, **p
< 0.01, ***p < 0.001, ****p < 0.0001.
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score groups. Then, we compared the ratio of immune-stromal components between different risk groups.

2.8. Estimation of cuproptosis-related risk prognostic model in immunotherapy response and chemotherapeutic sensitivity

The TIDE score, calculated through an online platform, serves as a valuable tool in identifying patients who are more likely to
benefit from immunotherapy. In addition, the IMvigor210 cohort [23] was utilized to validate the predictive capability of the
cuproptosis-related risk prognostic model in assessing responses to immunotherapy. The difference in risk scores between complete

Fig. 2. Correlations of CRG clusters with clinical features, tumor microenvironment (TME), immune checkpoint genes (ICGs), and tumor immune
dysfunction and exclusion (TIDE) score. (A) Consensus matrix of nonnegative matrix factorization (NMF) analysis. (B) The K-M plot of the two CRG
clusters. (C) Differential expression of CRGs between CRG clusters. (D) The heatmap showed the different expressions of CRGs and clinicopatho-
logical characteristics between CRG clusters. (E) Gene set variation analysis (GSVA) heatmap of the two CRG clusters. (F) The single sample gene set
enrichment analysis (ssGSEA) analysis of the two CRG clusters. (G) Correlations between the two CRG clusters and TME scores. (H) The different
expressions of ICGs between CRG clusters. (I) TIDE score of the two CRG clusters. CRG: cuproptosis-related genes; OS: overall survival; KEGG: Kyoto
Encyclopedia of Genes and Genomes; ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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response (CR)/partial response (PR) and stable disease (SD)/progressive disease (PD) was compared. The gene expression and drug
sensitivity data for predicting drug responses were downloaded from the Genomics of Drug Sensitivity in Cancer website (GDSC,
https://www.cancerrxgene.org). To calculate the half-maximal inhibitory concentration (IC50) values for anti-CCA agents, we
employed the calcPhenotype function of the oncoPblueict R package. The lower-IC50 indicates more sensitivity to the drug.

2.9. RNA extraction and quantitative real-time PCR

Total RNA was extracted by Trizol reagent (ThermoFisher: #15596018) according to the manufacturer’s protocol. The PrimeScript
RT reagent kit (EZBioscience: #A0010CGQ) and SYBR-Green PCR reagent (ThermoFisher: # 4309155) were used to perform cDNA
synthetization and analysis. The housekeeping gene GAPDH was utilized as an internal control. The primers used for RT-qPCR are
shown in Table S1. The 2− ΔΔCt method was applied to calculate the relative expression levels of genes.

2.10. Western blotting (WB)

The expression levels of critical CRMs were verified through Western blotting (WB). Cells were lysed using radio-
immunoprecipitation assay (RIPA) buffer, and the total protein samples were subsequently subjected to separation via 10 % Tris-
Tricine SDS-PAGE, followed by transfer onto a polyvinylidene fluoride (PVDF) membrane. After blocking with skim milk in TBST
for 2 h, the PVDF membrane was incubated overnight at 4 ◦C with the primary antibody (RAB3B: Cohesion, #CQA9216; KIAA0754:
Proteintech, #13058-1-AP; FBXO32: Cohesion, #CQA1166). After washing the membrane 3 times, it was incubated with horseradish
peroxidase (HRP)-conjugated secondary antibody for 1 h at 37 ◦C. Subsequently, the membrane was developed using ECL solution, and
the resulting bands were visualized with a ChemiDoc™ Imaging System.

2.11. Statistical analysis

qRT-PCR and WB were repeated at least 3 times. Statistical analyses were performed with software programs (SPSS version 26.0
(IBM); R version 4.3.1; GraphPad Prism 8). To compare variables between groups were assessed using the Mann-Whitney U test, t-test
or one-way Anova for continuous variables. The Kaplan-Meier method was employed to conduct survival analysis, with differences
assessed using the log-rank test. For the correlation analysis of continuous data, the Spearman test was utilized. All statistical tests were
two-sided, and p < 0.05 was considered to have the statistically significant difference.

3. Results

3.1. Overview of molecular characterization of CRGs in CCA

In our study, we identified a total of 16 CRGs as reported by Tsvetkov et al. [13]. Of the 44 CCA patients in the TCGA cohort were
used to analysis the somatic mutations and CNVs of CRGs in CCA. The genetic mutation landscape of CRGs was observed in 5 of 44
(11.36 %) CCA samples (Fig. 1A). Missense mutations were the most common mutation type, followed by frameshift deletion. We
found CDKN2A had the highest mutation frequency (5 %), followed by MTF1, LIAS, ATP7B. Next, we analyzed the frequencies of the
CNVs of 16 CRGs in CCA (Fig. 1B). The amplification frequency of LIAS, SLC31A1 and GCSH were the highest, while CDKN2A had the
highest loss frequency of CNV. The location of the CNV alterations of 16 CRGs on 23 chromosomes were shown in Fig. 1C. In addition,
we explored the molecular interactions between CRGs. We found high expression levels of PDHB, PDHA1, LIAS, DLST, DBT, DLD,
CDKN2A, SLC31A1, GCSH and LIPT1 were the risk factors for CCA patients (Fig. 1D).

To further elucidate the role of CRGs, we conducted an in-depth investigation through GO and KEGG enrichment analyses. We
found that the GO analysis demonstrated significant enrichment related to the acetyl-CoA metabolic process, aerobic respiration,
copper ion import (Fig. 1E). KEGG pathway analysis were significantly enriched in the lipoic acid metabolism, 2-Oxocarboxylic acid
metabolism, TCA cycle and platinum drug resistance (Fig. 1F). Subsequently, we investigated the expression of 16 CRGs both in the
TCGA-CHOL samples and normal samples. Compared to normal tissues, significantly higher expression for CDKN2A, ATP7A, DLD,
DLST, MTF1, LIAS, PDHA1, PDHB, GLS, LIPT1 in tumor tissues (Fig. 1G). Seven prognostic CRGs were identified by Kaplan-Meier
analysis (Fig. S1) and univariate Cox regression analysis (Fig. S2). As a result, multivariate Cox regression analysis further revealed
that CDKN2A, MTF1, LIAS, PDHA1, FDX1 and SLC31A1 were independent prognostic factors (Fig. 1H).

3.2. Construction of CRG clusters in CCA

To further analyze the expression features and potential biological characteristics, we used the consensus clustering algorithm to
categorize patients with CCA within the E-MTAB-6389 cohort. Utilizing the expression profiles of 16 CRGs, we successfully classified
the patients into two distinct groups: CRG cluster A (n = 43) and CRG cluster B (n = 32) (Fig. 2A, Figs. S3A–H). The PCA analysis
demonstrated that CCA samples were obvious categorized into two clusters (Fig. S3I). The Kaplan-Meier survival analysis showed that
the patients with cluster A had better OS than patients with cluster B (Fig. 2B). In addition, CRGs including CDKN2A, DLD, DBT, LIAS,
PDHA1, FDX1, LIPT1, GCSH, ATP7B were significantly higher expressed in cluster A, while ATP7A, DLST, MTF1, PDHB, GLS, SLC31A1
were significantly higher expressed in cluster B (Fig. 2C). Fig. 2D illustrated the varying expressions of CRGs along with the associated
clinicopathological characteristics between CRG cluster A and B.
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3.3. Correlations of CRG clusters with tumor microenvironment and immune checkpoint genes (ICGs)

The GSVA analysis showed the different activation of KEGG pathways between two CRG clusters (Fig. 2E). We observed that notch
signaling pathway, glycolysis gluconeogenesis, cell cycle, and pancreatic cancer were significantly enriched in cluster B. To examine
the immune infiltration composition in different CRG cluster subgroups, we utilized ssGSEA and immune-stromal ratio algorithms to
compare the relative abundance of immune cells and assess the tumor microenvironment (TME) score. We found that activated
dendritic cell, immature dendritic cell, natural killer T cell, natural killer cell, type 17 T helper cell and type 2 T helper cell were
differentially infiltrated between two CRG clusters (Fig. 2F). Meanwhile, the StromalScore and the ImmuneScore of cluster B were
higher than cluster A (Fig. 2G). Next, we further observed that ICGs including CD274, CTLA4, CD27, CD28, CD40, CD48, LGALS9, PVR
and CD226 were significantly expressed lower in cluster A than cluster B (Fig. 2H). Moreover, integrated TIDE score, the dysfunction
score and the exclusion score were significantly higher in cluster B, while the microsatellite instability (MSI) score was higher in cluster
A (Fig. 2I). These findings suggested that the TME influenced by the two CRG clusters exhibits notable differences.

3.4. Identification of cuproptosis gene clusters in CCA

In differential expression analysis in the E-MTAB-6389 cohort, a total of 16 CRG cluster-related DEGs were obtained. GSEA were
performed on these DEGs showed that CRG cluster A was mainly abundant in metabolism-related pathways (Fig. 3A), and CRG cluster
B was abundant in arrhythmogenic right ventricular cardiomyopathy arvc, cancer-related pathways (pathways in cancer, P53
signaling pathway), and cell cycle (Fig. 3B). Subsequently, we performed univariate Cox regression analysis on the DEGs associated

Fig. 3. Function enrichment in cuproptosis-related gene (CRG) clusters and construction of cuproptosis gene clusters. Gene set enrichment analysis
(GSEA) enriched in CRG cluster A (A) and cluster B (B). (C) The heatmap showed the different expressions of overall survival (OS)-DEGs and
clinicopathological characteristics between gene clusters. (D) The K-M plot of the two gene clusters. (E) Differential expression of CRGs between
gene clusters. KEGG: Kyoto Encyclopedia of Genes and Genomes; *p < 0.05, ***p < 0.001.
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with the CRG clusters, identifying a total of 9-genes associated with OS (OS-related DEGs, p < 0.05). Utilizing the expression profiles of
these OS-related DEGs, we distinguished two distinct clusters through NMF-clustering analysis (Figs. S4A–I). Fig. 3C illustrated the
variations in the expression of OS-DEGs alongside the clinicopathological characteristics delineated between the cuproptosis gene
clusters. Notably, gene cluster A exhibited a significant correlation with elevated expression levels and a greater number of mortality
events. As shown in Fig. 3D, the patients with gene cluster B had better OS than patients with gene cluster A. Furthermore, CRGs
including DLD, DBT and LIAS were significantly higher expressed in gene cluster B, while ATP7A, MTF1 and SLC31A1 were the
opposite (Fig. 3E).

3.5. Construction and validation of the cuproptosis-related risk prognostic model

LASSO (Figs. S5A and B) and multivariate Cox regression analysis of the 9 OS-related DEGs showed that RAB3B, KIAA0754, and
FBXO32 were independent prognostic factors. Next, we constructed a 3-gene risk prognostic model as follows: Risk score =

0.321256*RAB3B+0.410032*KIAA0754 + 0.343371*FBXO32. X-tile software was utilized to identify the optimal cut-off values
within the E-MTAB-6389 cohort (cutoff = 1.52) and the GSE244807 cohort (cutoff = 5.69). Subsequently, the CCA samples were
categorized into high- and low-risk groups based on the cut-off values.

As illustrated in Fig. 4A and B, an increase in risk score was associated with a higher incidence of mortality and a reduction in
survival time among patients.

The heatmap showed the different expressions of RAB3B, KIAA0754, and FBXO32 between the high- and low-risk groups in E-
MTAB-6389 cohort and GSE244807 cohort. In addition, Kaplan-Meier analysis showed that patients in low-risk group was superior to
these in high-risk group in both E-MTAB-6389 cohort (Fig. 4C) and GSE244807 cohort (Fig. 4D). Furthermore, the risk score model
prediction accuracy evaluated by the AUC of 1-, 3-, and 5-year was 0.741, 0.802, and 0.79, respectively, in the E-MTAB-6389 cohort
(Fig. 4E). In the GSE244807 cohort, AUC values for predicting 1-, 3-, and 5-year OS were 0.548, 0.553, and 0.502 (Fig. 4F). The Sankey
diagram showed the distribution of patients by CRG clusters, risk score, and survival outcomes are represented in Fig. 4G.

Meanwhile, we found that risk scores in CRG cluster B were significantly higher than that in CRG cluster A (Fig. 4H), while in gene
cluster A were significantly higher than that in gene cluster B (Fig. 4I). Moreover, the expression of CRGs including ATP7A, DLST,
MTF1, PDHB, SLC31A1 were significantly higher in the high-risk group, while others were the opposite (Fig. 4J). Univariate (Fig. 5A)
and multivariate (Fig. 5B) Cox regression analysis further revealed that the risk score was an independent prognostic factor.

3.6. Immune characteristics of different risk score subgroups

In order to further explore the biological characteristics between risk score subgroups, GSEA and CIBERSORT were performed. The
results of the GSEA of KEGG terms showed that low-risk subgroup was mainly significantly enriched in metabolism-related pathways
(Fig. 5C), and high-risk subgroup was significantly abundant in Fc gamma r mediated phagocytosis, cancer-related pathways (path-
ways in cancer, MAPK signaling pathway), cell adhesion and migration pathways (Fig. 5D). We further investigated the correlation of
immune cells infiltration with risk score (Fig. 5E). Macrophages M2, neutrophils, and NK cells activated were positively correlated
with risk score, while T cells gamma delta and T cells CD4 memory resting were negatively correlated with risk score. Meanwhile, we
observed that B cells naive, T cells CD8, T cells follicular helper, T cells regulatory Tregs, NK cells activated, Monocytes, Macrophages
M1, and Mast cells activated were more abundant in the low-risk subgroup, while plasma cells and Macrophages M2 were more
abundant in the high-risk subgroup (Fig. 5F). TME scores including the stromal score and immune score were significantly higher in the
high-risk subgroup (Fig. 5G). ICGs including CD274, CD27, CD28, CD40, CD48, ICOS, TIGIT, LGALS9, PVR and CD226 were signifi-
cantly expressed higher in the high-risk subgroup (Fig. 5H).

3.7. Estimation of immunotherapy response and chemotherapeutic sensitivity in different risk score subgroups

The TIDE algorithm was utilized to evaluate the potential clinical effectiveness of immunotherapy across different risk score
subgroups. Higher integrated TIDE score indicated an increased likelihood of immune evasion, implying that patients with elevated
scores are less likely to derive benefits from immunotherapy. Our findings revealed that the TIDE score in the low-risk group was
significantly lower compared to that in the high-risk group, suggesting that low-risk patients may gain more advantages from
immunotherapy than high-risk patients (Fig. 6A). We also found that the low-risk subgroup had a higher MSI score, while the high-risk
subgroup had higher T cell dysfunction and exclusion score. Patients categorized with a combination of a low-risk score and a high
TIDE score exhibited the most favorable prognosis. In contrast, those with a high-risk score coupled with a low TIDE score demon-
strated the worst prognosis (Fig. 6B). Then, we conducted a validation of the predictive efficacy of the cuproptosis-related risk
prognostic model within the IMvigor210 cohort. CCA patients were divided into low- and high-risk groups based on the previously
constructed risk prognostic model. The Kaplan-Meier curve revealed that patients with low-risk score had a better OS than those with
high-risk score (Fig. 6C). Furthermore, CCA patients in the low-risk group were more likely to benefit from immunotherapy (Fig. 6D
and E). The distribution of patients by risk score, immunotherapy response, and survival status in the IMvigor210 cohort (Fig. 6F). We
then further investigated the risk score values to assess their potential as biomarkers for predicting the chemotherapeutic responses in
patients with CCA. Higher imputed sensitivity score indicated a lower sensitivity to the drug. In our results, we found patients in the
low-risk group had a lower IC50 in oxaliplatin, palbociclib, sabutoclax, uprosertib, and afuresertib, while the IC50 in savolitinib,
trametinib, and ulixertinib were lower in the high-risk group (Fig. 6G).
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3.8. Quantitative real-time PCR, and western blotting

The expression levels of the three key genes in CCA were further validate by qRT-PCR and WB on normal intrahepatic bile duct cell
(HIBEC) and CCA cells (HUCCT1 and RBE). As shown in Fig. 7A–C, qRT-PCR showed that the expression of the RAB3B, KIAA0754, and
FBXO32 were significantly upregulated in tumor cells. The results of WB also demonstrated a consistent significant upregulated in
RAB3B, KIAA0754, and FBXO32 at the protein level (Fig. 7D).

4. Discussion

Cuproptosis is a unique form of cell death that is dependent on copper and distinct from other known types of cell death, and was
first proposed by Tsvetkov et al. [13]. The mechanism underlying cuproptosis was believed to involve interactions with components of
the TCA cycle within mitochondria, leading to the accumulation of copper ions in cells. This accumulation induces a conserved
post-transcriptional protein modification pathway and lipoylation [13]. Furthermore, studies have indicated a significant increase in
serum copper ion levels in tumor tissues compared to normal, like lung cancer [9], breast cancer [10], carcinoma of gallbladder [11].
Recently, plenty of studies have focused on the crucial role of the cuproptosis in both tumor development and patient prognosis.
However, due to the high malignancy, rapid progression, and lack of effective treatments in CCA patients, there is an urgent need to
develop effective diagnostic and prognostic biomarkers for precise therapy. Therefore, the association between CRGs and prognosis in
CCA still remain to be further illustrated.

In the present study, we systematically investigated the molecular characteristic of 16 CRGs at genetic and transcriptional vari-
ations in CCA. We found that CDKN2A had the highest mutation frequency, followed byMTF1, LIAS and ATP7B, as reported previously
[24]. We observed that the CNV levels exhibited significant differences in relation to the expression of CRGs, suggesting a potential
contribution of CNV to the heterogeneity of CRGs in CCA. Then, we investigated the differentially expressed CRGs between normal and
tumor samples, uncovering that 11 CRGs were significantly upregulated in tumor samples when compared to normal. Furthermore, the
results from GO and KEGG analyses indicated that these CRGs were particularly enriched in TCA cycle, pyruvate metabolism,
glycolysis, as well as copper ion import; this aligns with findings from numerous studies that have highlighted the significance of
copper metabolism in cancer [25]. Moreover, we found that the expression of the majority of CRGs were significantly correlated with
patient prognosis. Highly expressed ATP7B, CDKN2A, FDX1, and LIAS were steadily associated with better prognosis in CCA patients,
while ATP7A, PDHA1, and SLC31A1 were the opposite. Subsequently, we identified six significant prognostic genes by multivariate
cox regression. FDX1, a key gene that promotes copper induced death, and its deletion play a crucial role in inducing protein lip-
oylation, which subsequently leads to resistance against cuproptosis [26]. PDHA1 was an anti-cuproptosis genes, which plays a role in
hepatocellular carcinoma cancer metastasis and clinical pathology [27].

Based on the expression profile of CRGs, we further classified CCA patients into two distinct molecular subtypes. Moreover, a
majority of the CRGs exhibit differential expression between different CRG clusters. Additionally, the patients in cluster A subgroup
had a better prognosis and less death events than patients in cluster B. These findings suggest that the observed differences could be
partially ascribed to different responses to treatment in CCA. To substantiate this hypothesis, we further analyzed the patterns of
immune cell infiltration and the expression of immune checkpoint genes between two clusters. Compared to patients with cluster A,
patients with subtype B significantly enriched in notch signaling pathway, cell cycle, Fc gamma r mediated phagocytosis and
pancreatic cancer, which were found to be involved in the cell proliferation and progression of CCA [28]. In addition, cluster B-related
genes were mainly enriched in geneCluster A, which may be associated with pathways related to promoting tumor progression;
moreover, patients in geneCluster B subgroup had a better prognosis than patients in geneCluster A, consistent with the above results.
We also found striking differences in dendritic cell, natural killer cell, type 17 T helper cell and type 2 T helper cell, StromalScore and
ImmuneScore between clusters. Previous studies have shown that the CCA microenvironment is ‘immune cold’, with a paucity of
cytotoxic immune cells and an abundance of immunosuppressive elements, especially myeloid cells [29]. Higher TIDE score indicated
that patients were less likely to benefit from immunotherapy [22]. In contrast, patients classified in cluster A exhibit a lower integrated
TIDE score, suggesting they may be sensitive to ICIs. These findings demonstrate a significant relationship between cuproptosis and
tumor immunity, highlighting the potential implications of cuproptosis in the prognosis and treatment of CCA.

Previous studies have demonstrated a correlation between programmed cell death-related phenotypes and CCA, and corresponding
prognostic models have been established [30,31]. However, whether cuproptosis was also an important indicator for prognostic
prediction in CCA at the transcriptomic level needs to be further investigated. Two distinct genomic subtypes were identified based on
the OS-associated DEGs. Furthermore, genomic subtypes demonstrated a strong correlation with patient prognosis, highlighting its

Fig. 4. Evaluation of the cuproptosis-related risk prognostic model in the E-MTAB-6389 cohort and validation in GSE244807 cohort in CCA. (A) The
distribution of risk score, survival status, and the expression of three genes in the cuproptosis-related risk prognostic model in E-MTAB-6389 cohort.
(B) The distribution of risk score, survival status, and the expression of three genes in the cuproptosis-related risk prognostic model in GSE244807
cohort. (C) The Kaplan-Meier OS curves for patients in the high- and low-risk groups in the E-MTAB-6389 cohort. (D) The Kaplan-Meier OS curves
for patients in the high- and low-risk groups in the GSE244807 cohort. (E) ROC curves showed the prognostic performance of the cuproptosis-related
risk prognostic model in the E-MTAB-6389 cohort. (F) ROC curves showed the prognostic performance of the cuproptosis-related risk prognostic
model in the GSE244807 cohort. (G) Sankey diagram of subtype distributions in groups with different risk scores and survival outcomes. (H)
Differences in risk scores between CRG clusters. (I) Differences in risk scores between gene clusters. (J) Differential expression of CRGs between
high- and low-risk groups. CRGs: cuproptosis-related genes; ROC, receiver operating characteristic; OS, overall survival; ns: not significant, **p <

0.01, ***p < 0.001, ****p < 0.0001.
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predictive capacity for CCA. In order to better evaluate the cuproptosis pattern in individual CCA patients, we have developed a novel
prognostic model that was based on 3 cuproptosis-related genes (namely, RAB3B, KIAA0754, FBXO32). RAB3B, one of the
low-molecular-weight GTP-binding proteins (small G proteins) in the Rab family, and acts as a central regulator of vesicular traffic
[32]. A study showed that the up regulation of RAB3B may play an important role in the sphere formation, chemoresistance, and
metastatic potential of hepatoma cells [33]. KIAA0754, also known as MACF1 (microtubule actin cross-linking factor 1), was a
multidomain protein that can associate with microfilaments and microtubules. Zhang et al. showed that m6A modification level and
expression of potential driver gene MACF1 could be regulated by METTL14, which can influence the proliferation and metastasis
ability of CCA cells [34]. FBXO32, a component of the SCF E3 ligase complex, was shown to favor breast cancer cell xenograft
development, and its overexpression was associated with poor prognosis [35]. Another study showed that FBXO32 favors melanoma

Fig. 5. Evaluation of the risk score prognostic model with clinical application, tumor microenvironment, and immune checkpoint genes (ICGs) in
the E-MTAB-6389 cohort. The forest plot for univariate Cox (A) and multivariate Cox regression (B) considering clinical indicators and risk score in
CCA. Gene set enrichment analysis (GSEA) enriched in low-risk group (C) and high-risk group (D). (E) Correlations between the abundance of
immune cells and three genes and risk score. (F) Difference in the abundance of immune cells between high- and low-risk groups. (G) Immune-
stromal component evaluation of the high- and low-risk groups. (H) The different expressions of ICGs between high- and low-risk groups. ns:
not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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cell migration, proliferation, and tumor development in vivo [36].
In our study, the distribution plots and K-M plot showed that the patients in the high-risk subgroup had a shorter OS than patients in

the low-risk group in the E-MTAB training and validation cohorts. Furthermore, the risk score was tested as an independent signature

Fig. 6. Estimation of the risk score prognostic model in immunotherapy response and chemotherapeutic sensitivity in CCA. (A) Tumor immune
dysfunction and exclusion (TIDE) score between high- and low-risk groups. (B) The Kaplan-Meier OS curves among four groups classified by the risk
score and TIDE score. (C) The Kaplan-Meier OS curves for patients in the high- and low-risk groups in the IMvigor210 cohort. (D) Difference in risk
scores among four immunotherapy response groups in the IMvigor210 cohort. (E) Difference in risk scores between binary response groups. (F)
Sankey diagram of subtype distributions in groups with different risk scores and immunotherapy response in the IMvigor210 cohort. (G) Difference
in chemotherapeutic sensitivity between high- and low-risk groups in the E-MTAB-6389 cohort. ***p < 0.001, ****p < 0.0001; CR: complete
response; PR: partial response; PD: progressive disease; SD: stable disease; OS, overall survival.
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for CCA patients, and the AUC value of the signature in predicting prognosis showed satisfactory predictive ability. Meanwhile, pa-
tients with CRG cluster B and gene cluster A exhibited a higher risk score and the worst outcomes, and a higher risk score was usually
accompanied by higher expression levels of CRGs with poor outcomes in CCA tissues. We further validated the expression of these 3
genes in qRT-PCR and WB ways. The qRT-PCR and WB results showed that RAB3B, KIAA0754, and FBXO32 were significantly
upregulated in CCA cells than in normal cell in both the mRNA and protein levels. Taken together, these results indicated that the
scoring system’s has independent and robust prognostic-predictive ability in CCA.

Cancer immunotherapy has garnered significant attention due to the crucial role of immunobiology in the development of ma-
lignant processes. Additionally, cuproptosis is closely linked to the regulation of anti-tumor immunity, a comprehensive understanding
of cuproptosis in the TME and its impact on cell infiltration could enhance the effectiveness of CCA antitumor therapies and guiding
more effective immunotherapy strategies [37]. In this study, GSEA enrichment analysis illustrated that high-risk subgroup was
involved in cancer, cell adhesion and migration. Risk score signature was found to be significantly positively correlated with M2
macrophages. The composition of some immune cells was different between two risk score subgroups. B cells naive, T cells CD8, T cells
follicular helper, NK cells activated, Macrophages M1, and Mast cells activated were more abundant in the low-risk subgroup, while
Macrophages M2 were more abundant in the high-risk subgroup. In addition, higher stromal score, higher immunescore, and most
ICGs exhibited a higher risk score. Previous studies have revealed that M2 macrophages, a predominant subtype of macrophages, have
been proven to be correlate with chronic inflammation and promote tumor growth and invasiveness, these cells have been associated
with a poor outcome in intrahepatic cholangiocarcinoma [38,39]. Loeuillard et al. showed that tumor-associated macrophages as the
primary source of programmed death-ligand 1 (PD-L1) in human and murine CCA and facilitated CCA progression [40]. Liu et al.
showed that CD8+ and CD4+ T cells, and CD20+ B cells are positively correlated with the prognosis of CCA [41]. The findings of our
study corroborate these conclusions. Furthermore, the high-risk samples exhibited a greater presence of immunosuppressive cells as
well as signals associated with tumor development and metastasis, which suggested that high-risk subgroup was characterized by
immunosuppression and active tumor progression. Therefore, high-risk subgroup has a worse outcome than low-risk subgroup, in
agreement with above survival results.

Fig. 7. The expressions of three signature genes were validated by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). (A–C) RT-
qPCR was performed to detect the expression of RAB3B, KIAA0754, and FBXO32 in normal intrahepatic bile duct cell (HIBEC) and CCA cells
(HUCCT1 and RBE). (D) Expression of genes at the protein level by WB. ***p < 0.001, ****P < 0.0001.
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The TIDE prediction score exhibited a correlation with T cell dysfunction in tumors characterized by cytotoxic lymphocytes (CTL)-
high and T cell exclusion in tumors with CTL-low, thus representing the existence of two distinct immune escape mechanisms [22]. In
our study, compared to low-risk patients, high-risk patients had less CTL infiltration, higher TIDE, T cell exclusion and T cell
dysfunction score, so their diminished ICI response might be attributed to immune evasion via T cell exclusion and dysfunction [22]. In
contrast, the low-risk subgroup had a lower TIDE score along with a higher MSI score compared to the high-risk subgroup, which
suggested that patients in the low-risk subgroup may be more likely to benefit from ICI. To further validate the prognostic significance
of the risk score, we conducted survival analysis in the IMvigor210 cohort, which is comprised of patients undergoing immunotherapy.
We discovered that the risk score effectively distinguishes different outcomes in patients undergoing immunotherapy, with those
classified as low-risk demonstrating a greater likelihood of benefiting from the treatment.

A review showed that targeting copper-related cell metabolism was a promising strategy for cancer treatment [42]. In this study,
we aimed to predict the responses of 8 drugs in CCA. Higher imputed sensitivity score indicated a lower sensitivity to the corresponding
drug. We found that low-risk subtype patients were more sensitive to oxaliplatin, palbociclib, sabutoclax, uprosertib, and afuresertib
than high-risk subtype patients. A previous clinical study showed that the combination of gemcitabine with oxaliplatin has favorable
clinical efficacy and toxicity profile [43]. A case report showed that a 68-year-old patient with metastasis ICC harboring CDKN2A/B
loss, who achieved a partial response (PR) after the first-line treatment with a CDK4/6 inhibitor called palbociclib [44]. Results showed
that targeting CRGs might contribute to enhancing therapeutic effects of CCA patients.

Nevertheless, our study also showed some limitations. First, the CRG risk signature was performed based on data obtained
retrospectively from public databases, which was inevitably limited by inherent case selection bias. More large-scale prospective
clinical studies and samples of clinic tissues are needed to confirm our findings. Second, some datasets are missing some critical clinical
variables, such as chemotherapy and immunotherapy, which may affect the results of treatment response and cuproptosis state an-
alyses. Finally, more clinicopathologic samples should be included to validate the correlation between the expression of key CRGs and
immune markers (such as CD8 and PD-L1), and more in vivo or in vitro functional experiments are needed in the future to validate the
roles of the signature genes.

5. Conclusion

In conclusion, we have detailed the molecular characterization of CRGs in CCA and developed a novel risk model that aids in
predicting the prognosis and treatment for CCA patients, which was partially constituted by a 3-CRG signature (RAB3B, KIAA0754 and
FBXO32).
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