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Abstract Over the past two decades, high-throughput
(HTP) technologies such as microarrays and mass spec-
trometry have fundamentally changed clinical cancer
research. They have revealed novel molecular markers of
cancer subtypes, metastasis, and drug sensitivity and resis-
tance. Some have been translated into the clinic as tools for
early disease diagnosis, prognosis, and individualized treat-
ment and response monitoring. Despite these successes,
many challenges remain: HTP platforms are often noisy
and suVer from false positives and false negatives; optimal
analysis and successful validation require complex work-
Xows; and great volumes of data are accumulating at a
rapid pace. Here we discuss these challenges, and show
how integrative computational biology can help diminish
them by creating new software tools, analytical methods,
and data standards.

Introduction

Since the commercialization of DNA microarray technol-
ogy in the late 1990s, high-throughput (HTP) data relevant
to cancer research have been accumulating at an ever-
increasing rate. These data have led to crucial insights into
fundamental cancer biology, including the mechanisms of
tumorigenesis, metastasis, and drug resistance (Rhodes and
Chinnaiyan 2005). They have also had enormous clinical
impact, e.g., several cancers can now be fractionated into
therapeutic subsets with unique prognostic outcomes
based on their molecular phenotypes (Buyse et al. 2006;
Dhanasekaran et al. 2001; Lowe et al. 2010; Pegram et al.
1998; Slamon and Press 2009; Spentzos et al. 2004; Zhu
et al. 2010b). Despite these successes, many cancers still
have a high mortality rate and no eVective treatment. Looking
at 1.9 million patients from 31 countries and 5 continents,
the CONCORD study found that current treatments achieve
a 5-year survival rate for less than 50% of diagnosed can-
cers (Coleman et al. 2008). For many cancers, survival
rates have not changed in decades—pancreatic cancer
remains almost 100% lethal, and the overall survival rate
for lung cancer has improved only from 13% to 16%. Most
cancers still lack any eVective early disease biomarkers,
and predictive signatures are limited to a few known muta-
tions, such as EGFR or kRAS in lung cancer or HER2 in
breast cancer. Predictive and prognostic biomarkers are
often inconsistent from study to study (i.e., they show poor
overlap), and cannot be validated by other methods or in
new cohorts of patients (Diamandis 2010; Dupuy and
Simon 2007; Lau et al. 2007).

The key diYculty is that cancer is a complex and hetero-
geneous disease: many genes are ampliWed, deleted,
mutated, and up- or down-regulated. Many pathways are
activated or suppressed. These changes vary substantially
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in diVerent cancers, in diVerent patients with the same can-
cer, and even in diVerent tumor samples from the same
patient (Axelrod et al. 2009; Bachtiary et al. 2006; Black-
hall et al. 2004). To get the full picture, we will need to
combine information from diverse experimental platforms
and other sources that oVer diVerent perspectives on the
problem, e.g., gene and protein expression, protein–protein
interactions (PPIs) and pathways, chromosomal aberra-
tions, mutation events, epigenetic changes, and clinical
information from drug trials and the bedside—leading to
integrative computational biology.

The challenges fall into three main categories. The Wrst
is noise: HTP platforms are inherently noisy—results vary
substantially from run to run and from lab to lab, and are
prone to false positives and negatives. The second chal-
lenge is volume: there is a vast quantity of relevant data,
new data are piling up at an increasing rate and old data
need to be constantly reinterpreted and updated in the light
of new Wndings or reanalyzed with improved algorithms.
The third challenge is analysis: simple methods—such as
diVerential expression analyses of microarray data—often
miss much of the signal in the data.

Integrative computational methods will continue to play
a central role in addressing these challenges. We need new
designs for databases; new software and workXows to com-
bine and continuously update heterogeneous and distrib-
uted data; new analytical methods to identify complex
signals in diVerent data sources; and new standards for
generating, maintaining, and sharing data. These methods
will depend on advances in many areas such as statistics,
knowledge representation and ontology, machine learning,
data mining, graph theory, and visualization. Integrative
analyses may ultimately lead to a better understanding of
cancer, earlier diagnoses and true personalized medicine,
where therapies are individually tailored based on combina-
tions of single nucleotide polymorphisms, and gene, protein
and microRNA expression levels (AuVray et al. 2009;
Augen 2001; Cervigne et al. 2009; Reis et al. 2010; Zhu
et al. 2010a, b).

Integrative computational biology shares many tools and
goals with the closely related Weld of systems biology, the
discipline that attempts to explain the structure and behav-
ior of complex biological systems as a function of their
simpler components (Kirschner 2005). The term systems
biology may be applied to describe anything from the out-
put of an ‘omics’ experiment to explicit mechanical models
of tumor growth (Deisboeck et al. 2009; Hornberg et al.
2006). Integrative computational biology, in contrast, spe-
ciWcally concerns the computational interrogation and inte-
gration of diverse HTP molecular biology data.

In this review, we discuss the major challenges of HTP
cancer studies and give examples of integrative computa-
tional methods that help to meet them.

The challenges facing HTP cancer biology

A wealth of genomic and proteomic cancer data is now
available from HTP screens. While these data have
improved our understanding of basic cancer biology and
some have even translated into improved patient diagnosis
and treatment, signiWcant challenges remain. In this section
we brieXy review some of the major obstacles to the pro-
gress of HTP cancer research.

Noise

Cancer is a heterogeneous disease, and HTP platforms are
noisy, i.e., the resulting data sets have false positives and
false negatives. Consequently, there can be large variation
in results from lab to lab (Bell et al. 2009; Irizarry et al.
2005); methods are needed to control this noise and to inte-
grate diVerent data sources to make them more reliable. The
main noise issues that plague HTP cancer research are false
negatives and false positives, intra- and inter-sample heter-
ogeneity, and platform bias.

False negatives and false positives in HTP data

HTP screens suVer from substantial noise—both false
positives and false negatives—which must be resolved
through complementary experiments and computational
analysis (AuVray et al. 2009; Augen 2001). For example,
while HTP PPI screens can identify thousands of protein
interactions at once, they do so at the cost of either high false
discovery rates or poor sensitivity. The false discovery rate is
the proportion of detected interactions that are false, and sen-
sitivity is the proportion of true interactions that are success-
fully detected. When interactions detected by two HTP
studies were tested in small-scale screens, they were found to
have false discovery rates of 22% (Rual et al. 2005) and 38%
(Stelzl et al. 2005). An evaluation of Wve HTP methods
found that their sensitivity rates ranged from only 21 to 36%
at false discovery rates of 0–11% (Braun et al. 2009). Simi-
larly, mass spectrometry analyses of human serum typically
produce many false negatives (Gstaiger and Aebersold
2009). One problem is that human serum has a high dynamic
range—protein concentrations are estimated to vary over ten
orders of magnitude (Gstaiger and Aebersold 2009).
Mass spectrometers have a much smaller range of detection,
leading to false negatives: low abundance proteins are not
detected. This challenge may be somewhat diminished by
extensive sample fractionation (Kislinger et al. 2006).

Tumors are heterogeneous

Often only a single sample from each tumor is available for
analysis. But tumors are highly heterogeneous, so these
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samples may not be representative of the whole tumor
(Axelrod et al. 2009; Bachtiary et al. 2006; Blackhall et al.
2004). Tumors comprise cells belonging to several distinct
subpopulations—e.g., tumor regions can be hypoxic to
diVerent extents, or be made up of diVerent proportions of
tumor initiating cells (cancer stem cells)—and these diVer-
ences have consequences for predicting drug response and
prognosis (Axelrod et al. 2009; Blackhall et al. 2004; Jubb
et al. 2010). Intra-tumor heterogeneity can lead to diVerent
cell populations expressing diVerent levels of protein, or
having diVerent mutations and copy number alterations,
which complicates analyses. For example, variable tumor
epithelial and stromal cell content in breast tumor samples
can signiWcantly aVect gene expression proWles and signa-
ture accuracy (Cleator et al. 2006; Myhre et al. 2010).
Some of these diYculties can be alleviated with techniques
such as laser-capture micro-dissection (Fend and RaVeld
2000), which can isolate regions of a sample that contain a
more uniform population of cells, but these techniques
remain costly and slow. In addition, they may not result in a
suYcient amount of material for follow-up experiments.
Though single samples from tumors can suYce for popula-
tion-level studies (Axelrod et al. 2009), the fact that two
samples from the same patient can be quite diVerent means
that this heterogeneity poses a signiWcant challenge to per-
sonalized medicine. On top of that, in cancer studies there
are issues with the control samples available for analysis:
often these “normal” samples come from tissue directly
adjacent to the tumor. The properties of these samples, such
as gene expression proWles, may be quite diVerent from
those of more distant tissue or of a healthy patient (Chan-
dran et al. 2005).

DiVerent experimental platforms can disagree

Experimental platforms produced by diVerent companies
can yield conXicting results (Curtis et al. 2009; Elias et al.
2005; Tan et al. 2003). For example, diVerent microarray
platforms use diVerent probe design and labeling and have
diVerent dynamic ranges. A gene may be overexpressed in
cancer on one platform, yet under-expressed on another,
simply because the two platforms use diVerent DNA
sequences to “probe” the same gene. On a given platform,
some genes are represented by many probes while others by
one or none, and this representation is diVerent for diVerent
platforms. Genes that are expressed at low levels are partic-
ularly problematic for concordance across array platforms
(Barnes et al. 2005). Another problem is that genome anno-
tations continue to grow and change (Eggle et al. 2009).
Updated probe set deWnitions can substantially aVect the
number and the identity of diVerentially expressed genes
(Sandberg and Larsson 2007). Further, HTP technology
is developing rapidly and new technologies are coming into

use every year; and there will always be new diVerences
and conXicts to resolve. The challenge is to have infrastruc-
ture set-up to compare and integrate new technologies as
they come along, and systematically identify the best
workXow for data processing and analysis, e.g. (Ponzielli
et al. 2008).

Analysis

A primary goal of integrative computational biology analy-
sis in individualized medicine is to identify small groups of
genes/proteins/microRNAs, etc., that can be used to
improve diagnosis, predict outcome or predict treatment
response, i.e., to identify prognostic or predictive signa-
tures. Their identiWcation in HTP data is challenging since
basic analysis methods fail to capture the entire signal in
the data, and good signatures comprise not only the most
diVerentially expressed molecules. For this section we will
focus our attention on gene expression microarray studies,
but the criticisms apply equally well to similar experimen-
tal designs, such as those using HTP protein or microRNA
assays.

Lists of diVerentially expressed genes show poor overlap 
across studies

The most popular way of analyzing microarray data is to
detect whether individual genes are diVerentially expressed
in one condition versus in another, e.g., in non-responders
versus responders to some drug treatment. DiVerentially
expressed genes are widely used in cancer research—their
applications include deriving molecular signatures of can-
cer subtypes, increasing our understanding of the biology of
tumorigenesis, and providing new candidate markers for
diagnosis, prognosis, and drug response. Unfortunately,
there are major challenges with their identiWcation and
interpretation. Previous work has shown that lists of diVer-
entially expressed genes are poorly reproduced across stud-
ies (Tian et al. 2005; Zhang et al. 2008); even random
subsets of samples from one experiment can yield widely
divergent gene lists. These problems are caused by high
dimensionality, small number of samples, and noise (bio-
logical and technical variability), but they can be exacer-
bated by the analysis method. For example, analyses that
quantify the diVerential expression of gene groups rather
than individual genes show higher conservation across plat-
forms and studies (Subramanian et al. 2005).

The most diVerentially expressed genes do not yield 
the best signatures

Very often in microarray experiments, the most diVeren-
tially expressed genes are used to construct prognostic or
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predictive signatures: machine learning methods are trained
to use the expression levels of those genes to predict, e.g.,
the disease state of a patient and probability of survival.
The problem with this approach is that single-gene analyses
overlook multivariate eVects. More sophisticated analyses
are needed to identify sets of genes that complement one
another, i.e., ones whose combined expression levels yield
the best-performing prognostic signatures. Such analyses
show that genes essential to a good prognostic signature
are often not highly diVerentially expressed on their own
(Chuang et al. 2007; Fujita et al. 2008).

Signatures validate poorly on other data sets

One of the most important contributions of HTP biology to
cancer research has been to develop prognostic and predic-
tive signatures. Unfortunately, many signatures have failed
to validate by other methods or in new cohorts of patients
(Lau et al. 2007; Zhu et al. 2008). Obviously, this is a great
concern for personalized medicine. Existing prognostic and
predictive biomarkers for the same condition overlap only
partially, and the set of biomarker genes identiWed depends
strongly on the subset of patients used to generate it
(Ein-Dor et al. 2005). One study estimated that to achieve
50% overlap in prognostic gene sets for breast cancer
patients would require several thousand samples (Ein-Dor
et al. 2006). Several factors contribute to these problems,
including: (1) diverse patients and heterogeneous tumors,
(2) diVerent proWling platforms, (3) diverse statistical and
bioinformatics approaches to biomarker identiWcation
(Shedden et al. 2008), (4) an insuYcient number of samples
(Ein-Dor et al. 2006), and (5) the existence of multiple
equivalent signatures (Boutros et al. 2009; Ein-Dor et al.
2005).

Volume

The pace of discovery is rapid, data are piling up, and anno-
tations are changing all the time. We need integrated work-
Xows to organize data sets and make them easy to access,
incorporate, annotate and update.

Large amounts of data need to be integrated 
and maintained

There are several examples of the rapid increase of knowl-
edge and data. The Gene Expression Omnibus (GEO) cur-
rently contains over 490,000 microarray samples (Edgar
et al. 2002). Roughly 100 cancer genomes have been
sequenced so far—most of these just within the past year—
and several major projects are underway, which should see
that number quickly increase. For instance, the Interna-
tional Cancer Genome Consortium (ICGC) plans to

sequence 500 tumors from each of 50 diVerent cancers
(Hudson et al. 2010), and the Cancer Genome Atlas
(TCGA) will sequence more than 20 diVerent tumor types
in the next 5 years (Ledford 2010). Between 2008 and
2010, the number of papers published per year containing
in their abstracts “cancer genome”, “personalized medi-
cine”, and “whole AND genome AND sequencing” have
roughly doubled, and “cancer AND signature” has shown a
50% increase (Fig. 1) [data generated using MEDSUM
(Galsworthy 2009)].

Many disease-related targets remain uncharacterized

Many disease-related targets remain uncharacterized; we
have little or no information about their protein interaction
partners, the pathways they control or are aVected by, or
their splice variants, functional mutations, or protein struc-
ture. For example, while there are roughly 21,000 genes in
the human genome (Clamp et al. 2007), the Reactome and
KEGG Pathway databases contain pathway annotations for
only about 4,000 of these (Kanehisa et al. 2008; Matthews
et al. 2009). And while many studies have shown that inter-
action networks provide information that can substantially
improve predictive signatures (Chuang et al. 2007; Fortney
et al. 2010; Nibbe et al. 2010), they can do so only for
genes represented in the interactome.

We used the I2D interaction database (Brown and Juri-
sica 2005, 2007; Niu et al. 2010), to investigate how many
cancer-associated genes remain uncharacterized in terms of
their protein interactions, combining known interactions
and interologs (interactions in other species that are trans-
ferred to humans via orthology). For instance, if we con-
sider cancer genes with fewer than 5 interactions to be
uncharacterized [this is unlikely to be their true connectivity,

Fig. 1 The rapid accumulation of personalized medicine publications.
Counts of associated publications from the last 10 years for several
personalized medicine search terms, retrieved with MEDSUM. Year is
shown on the x-axis and publication count on the y-axis. The search
term “cancer AND signature” is shown in blue; “whole AND genome
AND sequencing” in turquoise; “personalized medicine” in red; and
“cancer genome” in green
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because cancer proteins are typically network hubs (Jons-
son and Bates 2006)], then we identify 19% of genes in the
Sanger Cancer Gene Census [SCGC; (Futreal et al. 2004)]
and 47% of the genes in Online Mendelian Inheritance in
Man [OMIM; (Hamosh et al. 2005)] as uncharacterized
(Fig. 2). Looking at genes in the Cancer Data Integration
Portal (CDIP) that are implicated in cancer by at least two
studies, we Wnd similar numbers; 42% of genes associated
with prostate cancer, 31% of genes associated with ovarian
cancer, and 24% of genes associated with lung cancer are
uncharacterized. Interestingly, even though lung cancer is
represented by a much smaller set of genes in CDIP—only
1,232 genes, versus 5,575 for ovarian and 9,803 for prostate
cancer—it shows a roughly comparable proportion of
uncharacterized genes across diVerent interaction cut-oVs
(Fig. 2).

The human interactome is poorly characterized

PPI networks provide biological context and meaning for
gene signatures and yield better network-based prognostic
and predictive signatures. Unfortunately, with current
experimental knowledge the coverage of the human inter-
actome is only around 13%. The human interactome is esti-
mated to have around 650,000 interactions (Stumpf et al.
2008), and currently there are only 82,857 unique experi-
mentally derived interactions (and an additional 55,471
unique interologous interactions) in I2D, a database that
integrates HTP PPI data sets and most online PPI databases
[such as BioGRID (Stark et al. 2006), BIND (Bader et al.
2003), DIP (Xenarios et al. 2000), HPRD (Peri et al. 2004),
InnateDB (Lynn et al. 2008); IntAct (Hermjakob et al.
2004) and MINT (Zanzoni et al. 2002)]. While HTP meth-
ods can help to identify many protein interactions, their

overlap is usually low, and even when combined were
shown to result in a false negative rate of around 41%
(Braun et al. 2009). Interaction dynamics with respect to
time and localization remain largely unknown. Also,
though over 92% of human genes have splice variants
(Wang et al. 2008), and many genes may have hundreds or
even thousands of such variants [for instance, the Drospo-
hila gene Dscam may have over 38,000 alternative splice
forms (Schmucker et al. 2000)], we still lack information
about most variant-speciWc interactions.

How integrative computational biology can address 
these challenges

The Weld of integrative computational biology uses tech-
niques from computer science, mathematics, physics and
engineering to comprehensively analyze and interpret bio-
logical data. Through the creation of new analysis and visu-
alization methods, software tools and databases, it can help
diminish the challenges to HTP cancer biology. Here we
present some successful applications of integrative compu-
tational biology to cancer research. These applications fall
into four main categories: data integration, network analy-
sis, databases, and standards.

Data integration

As we have seen, noise in HTP cancer studies can arise
both from biological and technological variability. One of
the most eVective strategies for reducing both types of
noise is data integration. The idea is simple: we can be
more conWdent about the result of an experiment if similar
experiments yielded similar results. We can integrate diVer-
ent experiments that measure the same biological entity,
such as microarray studies measuring tumor versus normal
gene expression diVerences on diVerent experimental plat-
forms. We can also integrate diVerent data types, such as
mutation, expression, and proteomic data. Clearly, data
integration can increase our conWdence in results that are
consistent across multiple studies and experimental modali-
ties. But data integration can also increase sensitivity, since
diVerent platforms and methods exhibit diVerent biases—
e.g., some protein interactions may be undetectable by
some methods. Integrative computational approaches can
also be complemented by better experimental design: e.g.,
in tumor proWling, analyzing multiple samples from the
same patient reduces the eVect of intra-tumor heterogeneity
(Bachtiary et al. 2006; Blackhall et al. 2004), and executing
multiple MudPIT (Multi-dimensional Protein IdentiWca-
tion Technology) runs signiWcantly improves sensitivity
(Gortzak-Uzan et al. 2008; Kislinger and Emili 2005;
Sodek et al. 2008; Wei et al. 2011).

Fig. 2 Many cancer-implicated genes remain uncharacterized.
Percentages of known disease genes (y-axis) with zero, fewer than 5,
or fewer than 10 known protein interactions (x-axis) in I2D version
1.85 (provided in Supplementary File 1). A large percentage of disease
genes from the Sanger Cancer Gene Census (blue) and Online Mende-
lian Inheritance in Man (turquoise) remain uncharacterized. Similar
results hold for genes implicated in prostate (green), lung (orange),
and ovarian (red) cancers by two or more studies, as retrieved from the
Cancer Data Integration Portal
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Integrating the same type of data across multiple platforms 
and studies

With microarray and similar data, small sample numbers
and diVerent experimental platforms can lead to highly var-
iable results. These problems can be addressed by combin-
ing data from diVerent studies and platforms, which
increases the eVective number of samples and helps control
for inter-platform heterogeneity.

Most approaches to integrating microarray data can be
divided into two general classes, pooling and meta-analy-
ses. In pooling, multiple expression data sets are merged
into a single data set (van Vliet et al. 2008; Warnat et al.
2005); typically, gene measurements from each separate
study are transformed before pooling to make the experi-
ments more comparable (Fierro et al. 2008). Previous work
found that pooling six breast cancer data sets (over 900
samples in total) yielded better-performing signatures (van
Vliet et al. 2008). In contrast, for a meta-analysis, statistics
are computed for each data set separately and then com-
bined. Meta-analyses identify gene changes that are seen
consistently across many studies (Rhodes and Chinnaiyan
2005). Several cancer-speciWc databases gather information
from multiple studies to facilitate meta-analysis, including
Oncomine (Rhodes et al. 2007), GeneSigDB (Culhane et al.
2010), and CDIP. CDIP currently covers lung, ovarian,
prostate and head and neck cancers. For example, for pros-
tate cancer, CDIP contains 119 diVerent microarray analy-
ses with over 850 tumor and normal samples. While 12,975
unique genes are signiWcantly diVerentially regulated in at
least one study, far fewer show this trend across multiple
studies and we can use this information to prioritize genes,
both for biological validation and for signature generation.

Integrating diVerent types of data

Integrating complementary data from diVerent sources is
helpful for reducing noise and prioritizing targets (Gortzak-
Uzan et al. 2008; Varambally et al. 2005). For example,
Gortzak-Uzan et al. (2008) combined proteins identiWed in
ovarian cancer ascites with diVerentially expressed genes
from CDIP and PPIs from I2D to identify putative biomark-
ers for early ovarian cancer detection in serum. For target
prioritization, prognostic and predictive signatures can be
put in their biological context by overlapping and expand-
ing them with data from cancer-speciWc resources such as
the Sanger Census database (Bamford et al. 2004; Stratton
et al. 2009), the COSMIC catalog of somatic mutations
(Bamford et al. 2004), GeneSigDB, and Oncomine. Tech-
niques such as Gene Set Enrichment Analysis (GSEA)
(Subramanian et al. 2005) can be used to combine experi-
mental data with annotation and pathway databases such as
the Gene Ontology (Ashburner et al. 2000), KEGG, and

Reactome which allows us to convert lists of diVerentially
expressed genes into lists of diVerentially expressed gene
groups, which are more stable across studies (Subramanian
et al. 2005).

Integrating data to predict new PPIs

Protein networks are essential for cancer signature design
and interpretation (Chuang et al. 2007; Ergun et al. 2007;
Rhodes and Chinnaiyan 2005), yet current experimental
networks are far from complete, contain false positives, and
in general lack context, such as condition, place and
strength of individual interactions. Biological techniques
can also be enriched by in silico approaches to predict new
interactions and the context of existing ones. For example,
we recently developed FpClass (Kotlyar and Jurisica 2006;
Kotlyar et al. 2011), an association mining algorithm that
greatly expands coverage of the human proteome without
increasing false discovery rate: it predicts 178,738 new
high-accuracy interactions for 9,372 proteins. FpClass inte-
grates many diVerent data types to predict interactions,
including sequence, domains, gene expression, and post-
translational modiWcations. Importantly, FpClass reduces
the number of uncharacterized disease genes (again, where
a gene is considered uncharacterized if its protein product
participates in fewer than 5 interactions, see Fig. 2) to 34%
for OMIM and 11% for SCGC.

Integrating data to predict disease gene function

Though many cancer-related genes remain uncharacterized,
HTP data and in silico methods can be applied to assign
them putative functions (Hu et al. 2007). For example, in
the successful MouseFunc prediction challenge (Pena-
Castillo et al. 2008), teams of scientists competed to predict
mouse gene function (Gene Ontology categories) on the
basis of several diVerent data sources, including expression,
sequence, interactions, phenotype annotations, disease
associations and phylogenetic proWles. Computational
methods for predicting the function of uncharacterized can-
cer genes have been previously reviewed in (Hu et al.
2007).

Network analysis

Network approaches have been successful in addressing
some of the analysis-based challenges of HTP cancer
biology. Genes do not act in isolation; they form highly
complex and interlinked molecular networks. Examining
genes in the context of these networks can yield valuable
clues about their function and relations, and expand our
knowledge of individual cancer pathways and their cross-talk
(Agarwal et al. 2009; Mills et al. 2009). Despite the noise
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in current protein interaction data sets, network analysis can
uncover biologically relevant information, such as lethality
(Hahn and Kern 2005; Jeong et al. 2001), functional organi-
zation (Gavin et al. 2002; Maslov and Sneppen 2002;
Wuchty 2006), hierarchical structure (Ravasz et al. 2002;
Yu et al. 2006), modularity (Han et al. 2004) and network-
building motifs (Milo et al. 2002; Przulj et al. 2006; Rice
et al. 2005). Three important applications of protein net-
works to cancer research include signature generation, sig-
nature interpretation, and disease gene prediction.

Networks for signature generation

By integrating network information with gene expression
data, we can identify predictive signatures that perform bet-
ter and are more conserved across studies than signatures
based on gene expression data alone. There are many ways
of using networks to create improved gene signatures. One
class of methods that has proven very successful is score-
based subnetwork biomarkers (Chuang et al. 2007; Fortney
et al. 2010; Hwang et al. 2009; Ideker et al. 2002; Nacu
et al. 2007). In these approaches, genes are aggregated
around an initial “seed” gene in a network to generate sub-
networks whose pooled activity levels can be used to predict
the value of some response variable, such as disease status
or survival time. Subnetworks identiWed using this approach
were shown to be highly conserved across studies, and to
perform better than individual genes or pre-deWned gene
groups at predicting breast cancer metastasis (Chuang et al.
2007). Importantly, many crucial genes belonging to subnet-
work biomarkers were not diVerentially expressed on their
own, demonstrating the added value of a network approach.
Related approaches have been used to develop subnetwork
biomarkers for colon cancer using a combination of prote-
ome and transcriptome data (Nibbe et al. 2009, 2010).

Networks for signature interpretation

Many genes that play a role in predictive signatures have
not been previously linked to cancer, and thus can be con-
sidered as novel candidate cancer genes. Networks can be
used to link these genes with known cancer mechanisms
and pathways (Radulovich et al. 2010; Rhodes et al. 2005;
Sodek et al. 2008; Tomasini et al. 2008). Gene signatures
mapped to protein interactions can be further annotated
with other proWles (including proteomic, CGH, and miRNA
studies), and with network structures, such as graphlets
(Przulj 2007; Przulj et al. 2006). Networks can also reveal
new connections between diVerent prognostic signatures.
For example, we recently identiWed a 15-gene prognostic
and predictive signature in lung cancer (Zhu et al. 2010a).
Though our signature did not directly overlap with previ-
ously published ones, network analysis revealed that they

were highly related: there were direct interactions between
the protein products of genes from our signature and others.
Similar results have been shown in other studies (Zhu et al.
2009, 2010b).

Networks for identifying new disease genes

Analyses of the network connectivity of cancer genes have
shown that they can be characterized by several topological
properties. For example, proteins encoded by cancer genes
tend to be central in interaction networks [they have high
degree and betweenness centrality (Jonsson and Bates 2006;
Rambaldi et al. 2008; Syed et al. 2010)], have high clustering
coeYcients (Li et al. 2009), and are overrepresented in net-
work motifs (Rambaldi et al. 2008). Several methods use the
topological characteristics of known cancer genes, in combi-
nation with other features (such as Gene Ontology categories,
protein domains, biological pathways, and sequence fea-
tures), to predict new cancer genes (Aragues et al. 2008;
Rambaldi et al. 2008) or functional SNPs (Savas et al. 2009).
Many algorithms identify modules in interaction networks,
or groups of densely interconnected genes that can be highly
functionally related (King et al. 2004; Newman 2006; Palla
et al. 2005; Spirin and Mirny 2003). Module-Wnding algo-
rithms can also be applied to predict new disease genes (Chu-
ang et al. 2007; Goh et al. 2007): clusters enriched for known
cancer genes may implicate novel genes in cancer.

Generating context-speciWc co-expression networks 
from microarray data

Co-expression networks are distinct from PPI networks:
instead of indicating physical interactions, edges (and edge
weights) between genes reXect the degree of correlation of
their expression proWles. Co-expression networks have also
been useful in cancer research, e.g., (Aggarwal et al. 2006;
Choi et al. 2005). For example, we can use microarray data
from diVerent health and disease conditions, such as cancer
and non-cancer, to create networks speciWc to those con-
texts. We can then compare the networks using a variety of
measures that reXect local and global network structure,
such as graphlets (Przulj et al. 2006), communities (Palla
et al. 2005), etc. Weighted Gene Co-expression Network
Analysis (WCGNA) (Zhang and Horvath 2005), a popular
method for generating and interpreting co-expression net-
works, has been applied to study prostate cancer (Wang
et al. 2009) and glioblastoma (Horvath et al. 2006).

Databases and visualization

Integrated and updated tools and resources can help to deal
with the large volume of HTP biological data being gener-
ated, as well as facilitate integrative analyses of cancer
123
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proWles. Integrative databases fulWll several essential func-
tions; for instance, they organize heterogeneous and distrib-
uted data sources and make them easy to use, and they
update and reinterpret old data in the light of new Wndings
(e.g., updated probe set mappings for a microarray plat-
form). For example, the I2D database integrates HTP-
detected PPIs with PPIs from several source databases.
Tens of thousands of these I2D PPIs are unique to a single
source database (Fig. 3); integrating these diVerent sources
both substantially improves coverage and increases conW-
dence for those interactions present in multiple sources.
Importantly, to support HTP data analysis, databases and
portals need to support multiple identiWers and batch pro-
cessing. Both databases and network visualization methods
have played essential roles in interpreting HTP biological
data and cancer signatures.

Integrating heterogeneous and distributed data sources

DiVerent data sources can be complementary. For instance,
while biological pathway databases may disagree on individ-
ual pathway deWnitions, by combining them we can diminish
their false positives and false negatives; by integrating path-
ways with protein interactions, we can improve their coverage
and relevance (Radulovich et al. 2010; Savas et al. 2009).
Having all of these data available from a single source or at
least in a standardized format simpliWes integrative analyses
and reduces the error and database incompatibility (arising

from, e.g., inconsistent gene nomenclature). One example is
CDIP (Gortzak-Uzan et al. 2008), a cancer informatics portal
that combines HTP data from microarrays, CGH, KEGG,
I2D, annotations from GeneCards (Rebhan et al. 1997), and
other molecular information speciWc to diVerent cancer types.
Another is mirDIP (Shirdel et al. 2011), a microRNA
integration portal that combines computational predictions of
microRNA: mRNA binding from multiple databases (version
1 combines 11 largest sources).

Updating old data to reXect the latest knowledge

In part because of the noise inherent in HTP platforms, our
best knowledge of what they are measuring and how their
data should be interpreted changes with time. Past work has
shown that using updated transcript data to re-annotate the
assignment of microarray probe sets to genes provided for
AVymetrix microarray platforms aVected 20–30% of all
probe sets (Gautier et al. 2004). Updated probe set deWni-
tions lead to higher precision and accuracy (Sandberg and
Larsson 2007), and more consistent results across diVerent
microarray platforms (Carter et al. 2005; Elo et al. 2005).
The Ensembl database (Hubbard et al. 2009) maintains and
regularly updates a list of probeset mappings for many pop-
ular microarray platforms.

Visualizing biological networks

Tools like Cytoscape (Shannon et al. 2003) and NAViGa-
TOR (Brown et al. 2009; McGuYn and Jurisica 2009; Viau
et al. 2010) allow biologists to visualize protein interactions
and perform network analyses using an intuitive graphical
interface, and have been widely used for cancer signature
interpretation and development. EVective network visuali-
zation tools integrate several relevant resources; e.g., NAV-
iGaTOR users can choose to supplement and annotate
network nodes and edges with additional data from several
sources including I2D PPIs, PSICQUIC (Orchard et al.
2010), STRING (Szklarczyk et al. 2011), Gene Ontology
categories, and KEGG, PhosphoSite (Hornbeck et al.
2004), PathwayCommons (Cerami et al. 2011), Reactome,
WikiPathways (Pico et al. 2008) biological pathways, and
i-HOP (HoVmann and Valencia 2005). NAViGaTOR also
provides tools for network analysis, including several mea-
sures of centrality, methods for identifying motifs and com-
munities, and random network and enrichment analysis.
DiVerent visualization tools can yield diVerent and comple-
mentary biological information; Fig. 4 shows three alterna-
tive visualizations of MAPK3 using pathway databases and
PPIs in NAViGaTOR. The MAP kinase signaling cascade
is implicated in tumor growth and may be a key anti-cancer
drug target (Roberts and Der 2007; Sebolt-Leopold and
Herrera 2004).

Fig. 3 The value of data integration: I2D, the Interologous Interaction
Database. Experimentally derived human interactions from I2D ver-
sion 1.85; the network comprises 13,190 proteins connected by 82,857
interactions. Interactions unique to a single source or database are ren-
dered as red (covering 11,781 proteins and 49,440 interactions), and
interactions present in two or more sources are colored blue. Node col-
or and size are proportional to degree. Visualization and annotation of
the network was performed in NAViGaTOR ver. 2.2.1. Network Wle
with GO and PubMed annotation is available as Supplemental File 2,
in NAViGaTOR 2.2 XML format
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Fig. 4 DiVerent databases oVer diVerent and complementary perspec-
tives on the same data. Querying diVerent databases for the same gene,
MAPK3 (with protein product MK03), results in pathway-related data
with diVerent structure and organization. Pathway data can be supple-
mented with protein–protein interaction data to provide more complete
networks. a From KEGG (release 57.0), the MAPK signaling pathway
(PATHWAY:hsa04010). b From Reactome (version 35), the MAP
Kinase Cascade (REACT_634). c Protein–protein interaction network

from I2D version 1.85, displayed in NAViGaTOR 2.2.1, and overlaid
with pathway data from a and b. Nodes represent proteins unique to
hsa04010 (blue), proteins unique to REACT_634 (green), and proteins
present in both pathways (red). Edges represent links unique to
hsa04010 (dark blue), REACT_634 (dark green), I2D (gray), or pres-
ent in both hsa04010 and I2D (light blue), or REACT_634 and I2D
(light green). The concentric circle layout uses Reactome nodes as a
center, and organizes remaining nodes based on local connectivity
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Web services for frequent updates

One of the main challenges faced by integrated databases is
staying current: the knowledge and data in the source dat-
abases are changing all the time. Fortunately, many source
databases provide access to their content through web services.
Integrated databases and analysis tools can then query these
databases in response to a user request and access the latest
data. For example, NAViGaTOR uses web services to access
pathway data from KEGG, Reactome, Pathway Commons
(Cerami et al. 2011) and Wiki pathways (Pico et al. 2008),
protein interactions from the IMEx consortium (Orchard et al.
2007), and protein interactions and gene associations via i-
HOP (HoVmann and Valencia 2005) or STRING. Of course,
not every relevant data set can be accessed through web ser-
vices; a list of web services currently available is provided by
the EMBRACE Registry (Pettifer et al. 2009).

Text mining for automated database annotation 
and quality-checking

Many of the data and observations gained from biological
experiments are not available in an easily accessible
form—they are buried in the text of journal articles. But
techniques from text mining can be used to automatically
extract biological knowledge from free text; these have
been extensively reviewed in, e.g., (Altman et al. 2008;
Cohen and Hunter 2008; HoVmann et al. 2005; Jensen et al.
2006; Rodriguez-Esteban 2009). For integrated databases,
text mining methods have proven especially valuable for
automatically annotating and quality-checking HTP data.
For example, text mining has been applied to annotate the
I2D PPI database (Niu et al. 2010) and to verify predicted
PPIs from FpClass (Kotlyar et al. 2011). Text mining can
also supplement integrated databases with new knowledge;
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e.g., by extracting gene-drug relationships (Kuhn et al.
2010; von Eichborn et al. 2011).

Standards and recommendations

Progress in HTP research relies on well-designed and widely
adopted standards for how data is produced, managed, and
analyzed. These provide a consistent way of dealing with
large volumes of data, help reduce noise, and ensure repro-
ducibility at both the experimental and computational levels.

Standards for HTP data and tools

DiVerent research groups, databases, and analyses must use
consistent reporting standards so their data can be eVec-
tively shared, integrated, and evaluated. In cancer research,
standards are needed at several levels of data collection and
analysis, from tumor collection, storage, and sample prepa-
ration to pre-processing and further computational study of
the resulting HTP data.

For many HTP data types, there are now well-developed
standards for data reporting, such as Minimum Information
About a Microarray Experiment [MIAME (Brazma et al.
2001)] and large public repositories for raw data, such as
the GEO (Barrett et al. 2005) and the PRoteomics IDEntiW-
cations database [PRIDE (Jones et al. 2006)]. Data stan-
dards development is an ongoing area of research, and has
been extensively reviewed (Brazma et al. 2006; Brooks-
bank and Quackenbush 2006; Enkemann 2010). Some out-
standing issues include data identiWers—e.g., the many-to-
many mappings between genes from databases like Entrez-
Gene and Ensembl—and open access to data. Though many
high-impact journals now mandate that all HTP data and
code associated with a publication be made open-access,
this requirement is not universal, and sometimes the same
journal will require microarray data submission, but not
proteomic data. Also, many articles that do publish their
data too frequently make them available only in an imprac-
tical form—such as hundreds of pages in supplementary
PDF Wles. We need new initiatives to standardize (and
enforce) HTP data submission formats to ensure that they
are machine-readable. This will enable wider use of data
and new discoveries, and may also substantially improve
quality of research by reducing errors and mistakes (Bag-
gerly and Coombes 2009; Carey and Stodden 2010).

For computational data analysis, we also need large-
scale comparisons to provide a fair evaluation of diVerent
methods. In cancer research, these eVorts depend on
resources like GeneSigDB (Culhane et al. 2010), a curated
database containing over 2,000 cancer gene signatures, and
large well-annotated data sets such as the set of gene
expression proWles for over 400 non-small cell lung cancer
adenocarcinoma tumors provided by the Director’s Chal-

lenge Consortium for the Molecular ClassiWcation of Lung
Adenocarcinoma (Shedden et al. 2008). New initiatives
such as TCGA and ICGC are expanding cancer proWles
across multiple diVerent platforms and tumor types. Mak-
ing the data and related clinical information publicly avail-
able will signiWcantly contribute to our understanding of
the molecular changes in cancer, enabling new discoveries
as well as more comprehensive validation of novel prog-
nostic and predictive signatures.

Recommendations for biological experiments

The quality of any computational analysis is limited by the
data that are available. Considering intra- and inter-tumor
heterogeneity, we may sometimes have too few samples or
too much noise to be able to develop cancer signatures with
the required accuracy and reproducibility. In this case,
computational analyses of the available data can at least
provide guidelines as to the kinds of experiments and data
that are needed. For example, one study estimated that to
achieve 50% overlap in prognostic gene sets for breast can-
cer patients would require several thousand samples (Ein-
Dor et al. 2006), and other work created a general tool to
calculate the number of samples needed to train a classiWer
as a function of normalized fold change, class prevalence,
and the number of genes on an array (Dobbin et al. 2008).
Much of the human PPI network, including PPIs of known
cancer genes, remains uncharacterized. Past work shows
that a reliable conWdence score can be associated with an
interaction by feeding the output of four diVerent comple-
mentary HTP assays into a logistic regression model
(Braun et al. 2009). Also, high-conWdence PPIs predicted
by various computational methods can focus future experi-
ments and reduce their false positives and false negatives
(Kotlyar and Jurisica 2006; Kotlyar et al. 2011).

A directory of tools and resources for integrative 
computational cancer biology

Below is a brief directory of links to some of the major
resources for integrative computational biology that appear
in this review.

Biological pathway annotations and related data

Reactome http://www.reactome.org/
Pathway Commons http://www.pathwaycommons.org/pc/
KEGG PATHWAY—Kyoto Encyclopedia of Genes
and Genomes http://www.genome.jp/kegg/pathway.
html 
WikiPathways http://www.wikipathways.org/
GO—Gene Ontology http://www.geneontology.org/
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Experimental data

Protein–protein interactions

I2D—Interologous Interaction Database http://ophid.
utoronto.ca/i2d/
STRING—Search Tool for the Retrieval of Interacting
Genes http://string-db.org/
BioGRID—Biological General Repository for Interac-
tion Datasets http://thebiogrid.org/
HPRD—Human Protein Reference Database http://www.
hprd.org/
IntAct http://www.ebi.ac.uk/intact/main.xhtml
MINT—Molecular INTeraction Database http://mint.
bio.uniroma2.it/
IMEx—International Molecular Exchange Consortium
http://www.imexconsortium.org/

Gene expression

CDIP—Cancer Data Integration Portal http://ophid.
utoronto.ca/cdip
Oncomine https://www.oncomine.org/
GeneSigDB http://compbio.dfci.harvard.edu/genesigdb/
ArrayExpress http://www.ebi.ac.uk/arrayexpress/
GEO—Gene Expression Omnibus http://www.ncbi.
nlm.nih.gov/geo/

Mutations

Sanger Cancer Gene Census http://www.sanger.ac.uk/
genetics/CGP/Census/
COSMIC—Catalogue of Somatic Mutations in Cancer
http://www.sanger.ac.uk/resources/databases/cosmic.html

Proteomics

PRIDE—PRoteomics IDEntiWcations database http://
www.ebi.ac.uk/pride/
PhosphoSite http://www.phosphosite.org/

microRNAs

mirDIP—microRNA Data Integration Portal http://ophid.
utoronto.ca/mirDIP

Network visualization software

NAViGaTOR—Network Analysis, Visualization, &
Graphing TORonto http://ophid.utoronto.ca/navigator/
Cytoscape http://www.cytoscape.org/

Gene function prediction

GeneMania http://genemania.org/

Cancer genome initiatives

TCGA—The Cancer Genome Atlas http://cancergenome.
nih.gov/
ICGC—International Cancer Genome Consortium http://
www.icgc.org/
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