
1Scientific RepoRts | 6:32626 | DOI: 10.1038/srep32626

www.nature.com/scientificreports

G-actin guides p53 nuclear 
transport: potential contribution 
of monomeric actin in altered 
localization of mutant p53
Taniya Saha1, Deblina Guha1, Argha Manna1, Abir Kumar Panda1, Jyotsna Bhat2, 
Subhrangsu Chatterjee2 & Gaurisankar Sa1

p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information 
is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, 
which utilizes minus-end directed motor dynein. The present study suggests that monomeric 
actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified 
p53(1–393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. 
Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear 
colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based 
docked model of p53:G-actin complex was generated based on crystal structures. MD simulation 
reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies 
have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which 
validates the docking protocol we adopted. Co-immunoprecipitation study using “hot-spot” p53 
mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants 
(R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, 
which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. 
Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, 
destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S.

p53, the guardian of genome, executes its tumor suppressor function through maintenance of the genetic integrity, 
cell-cycle machinery, apoptosis and DNA repair1. In order to check genetic errors, p53 accumulates in the nucleus 
in response to cellular stress like DNA damage, hypoxia, and nucleotide deprivation2. Once p53 is transported 
into the nucleus, it trans-activates its target genes, involved either in cell-cycle arrest (e.g., p21, 14-3-3) or apopto-
sis (e.g., BAX, PUMA, NOXA)3. p53 functions as a homo-tetramer. Each monomer of p53 (393 amino acid long) 
consists of an intrinsically disordered amino-terminal trans-activation domain (Met1-Asp42), a proline-rich 
domain (Asp61-Ser94), a DNA-binding domain (Thr102-Lys292) and an unstructured carboxy-terminal domain 
(Pro301-Asp393) containing a tetramerization domain (Asp324-Ala355)4. The transit of p53 from cytosolic envi-
ronment to nucleus is an essential event as it is the site where p53 functions as a transcription factor. Microtubules 
and its associated ‘− ’ end-directed motor protein dynein have been proposed to participate in nuclear transport of 
p53 following DNA damage5. In this context, a recent report by Wang et al. suggests that polymerization of actin 
negatively regulates the nuclear import of p536. This preliminary finding hints that parallel to microtubule-based 
p53 traffic, some other mode of transport might also exist for p53 that involve another cytoskeletal protein, actin.

Actin participates in diverse protein-protein interaction and plays multi-dimensional cellular functions; 
ranging from cell motility, maintenance of cell shape, cell polarity to regulation of transcription. Actin exists in 
2 forms- monomeric G-actin and polymeric F-actin. Recently, an actin-dependent mechanism for long-range 
transport of vesicles has been reported7. Actin regulates the subcellular localization of “junction mediating and 
regulatory protein”, a transcriptional co-activator8. It was reported that an actin-binding RPEL motif present in 
“myocardin-related transcription factor”, regulates its nucleo-cytoplasmic shuttling9. Notably, wild-type p53 has 
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been found to be very closely associated with the cytoplasmic actin filaments at the time of DNA synthesis10. 
Overall these evidence suggest that transport of p53 might require its association with actin. The objective of the 
present work is to determine the contribution of specific structural forms of actin (monomeric/fibrous), which 
might be involved in p53 nuclear import.

Alteration in the protein structure in course of mutation has been recognized as an important factor that 
affects p53 localization. Mutation in its DNA-binding domain (DBD) is a frequent event in cancer which contrib-
utes to the proliferation and differentiation of the neoplastic population. According to IARC TP53 mutation data-
base, single point mutations in p53DBD accounts for more than 95% of the reported malignant mutations11. Six 
amino acid residues in p53DBD have been mapped, having the highest frequency of mutation, popularly known 
as sites of “hot-spot” mutations11. The core domain p53 mutants can be distinguished into–contact and structural 
mutants. In response to genotoxic stress, weakly destabilized p53 contact-mutants (R273H and R248W), pre-
dominantly show nuclear distribution. On the contrary, structural-mutants, R175H, R248Q, R249S, R250L, and 
R110P typically show perinuclear localization of protein aggregates12.

Our study reveals monomeric G-actin directs p53 traffic towards the nucleus through protein-protein inter-
action. A characteristic perinuclear colocalization between p53 and G-actin is evident in response to genotoxic 
stress. Considering p53 ‘hot-spot’ mutants, our study suggests that structural mutants show reduced degree of 
association with G-actin, resulting in altered localization of mutant p53. Based on the experimental information, 
a hypothetical model of p53:G-actin complexation has been derived using molecular docking and MD simulation 
studies. Our study explores p53Arg249 to be situated at the p53:G-actin interface, which upon mutation into 
Serine (p53R249S) abrogates the protein-protein complex, and results in its cytosolic sequestration.

Results
Tracing p53 nuclear translocation using actin stabilizing/depolymerizing drugs. Tumor suppres-
sor p53 is a short-lived protein, where genotoxic stress is responsible for increasing its half-life13. We used doxoru-
bicin (Dox) to generate cellular stress to provoke the accumulation of p53 in the nucleus14. With time, Dox (1 μ M)  
induced p53 level, and the majority of the p53 pool was transported into the nucleus (Fig. 1a). Analysis of plot 
profiles for p53 distribution revealed the same (Suppl. Fig. 1a). This inference is conceivable from the quantitative 
image analysis data where total nuclear p53 level was normalized with the DNA content (Fig. 1b, upper panel). 
There was a significant negative correlation [r =  (− )0.817] between p53 nuclear import and the level of total 
F-actin in Dox-treated cells (Fig. 1b, bottom panel).

Since p53 nuclear transport was increased with the concomitant decrease in F-actin level, we next intended to 
test whether actin disruption has any direct effect on p53 transport. Different drugs have been chosen that alter 
the cellular actin dynamics; e.g., Cytochalasin-D (Cyt-D) - inhibits actin polymerization; Latrunculin-B (Lat-B) 
- impairs addition of actin subunits to the filament ends, and Jasplakinolide (Jas) - increases actin nucleation. 
The altered actin structure and respective 3D-surface plots in response to Cyt-D, Lat-B and Jas have been shown 
in Supple. Fig. 1b. In cases of Cyt-D and Lat-B treatment, fibrous actin became depolymerized as shown by the 
punctate phalloidin staining (Fig. 1c). When Cyt-D-/Lat-B-primed cells were treated with Dox, no significant 
alterations in p53 nuclear-trafficking were observed (Fig. 1c). Interestingly, Jas, that stabilized F-actin, signifi-
cantly abolished Dox-induced p53 nuclear import (Fig. 1c). 3D-surface plots in Fig. 1c showed the distribution of 
p53 at different stress-conditions. Importantly, when the F-actin/G-actin ratio is tilted towards F-actin, a reduced 
nuclear accumulation of p53 is observed. This indicates that probably G-actin is playing an important role for 
p53-nuclear translocation event.

Fluctuation in F/G-actin ratio results in altered p53 nuclear transport. Next, we sought to study the 
F/G-actin ratio in different actin perturbing drugs-treated conditions; to correlate the data with the degree of p53 
nuclear import. For this purpose, A549 cells were treated with only Dox or in combination with Cyt-D/ Lat-B/ 
Jas. It was observed that in response to Dox, there was an increase in the level of G-actin, which showed an intense 
distribution in the perinuclear region (Supple. Fig. S2a,b). Plot profile analysis and mean gray value of G-actin 
distribution in control/Dox-treated cells indicate the same. In HCT116 cells, an increase of G-actin expression 
was also noticed in presence of Dox (Supple. Fig. S2c). These results are in accordance with the previous report by 
Litwiniec et al., which suggested perinuclear staining pattern of G-actin upon treatment with etoposide15.

Earlier report suggests that actin stabilization retards nuclear transport of p536. This study indicates that alter-
ation of F/G-actin ratio might influence the amount of p53 transported into the nucleus. Therefore we studied 
the alteration in the F/G-actin ratio in response to actin disrupting drugs, in presence or absence of Dox. The 
distribution of both F- and G-actin in different drug-treated condition has been studied with the help of confocal 
imaging, based on which a quantitative relationship between nuclear/total p53 mean and F/G-ratio has been gen-
erated (Fig. 2c). There is an increase in G-actin concentration in Dox-treated cells, which is reflected in the cor-
responding fall of F/G-actin ratio (Fig. 2a,b). In response to Cyt-D +  Dox, fibrous actin was totally disrupted and 
level of G-actin was increased. Likewise, in Lat-B +  Dox condition, the net G-actin pool was increased because 
the F-actin polymerization process slowed down. However, in the case of Jas +  Dox treatment, F/G-actin ratio 
increased as an assembly of actin filaments was prompted. From these observations, it can be suggested that due 
to Cyt-D/Lat-B pre-treatment, the F/G-ratio dropped (Fig. 2b). Since the level of G-actin increased due to Cyt-D/
Lat-B treatment (Fig. 2a,b), p53 was transported to the nucleus (Refer to Fig. 1c). This finding is in accordance 
with the report that actin filament disruption results in p53 activation16. However, the unavailability of mono-
meric G-actin, in presence Jas (Fig. 2a,b) is believed to retard the nuclear shuttling of p53 even in the presence of 
Dox (Refer to Fig. 1c). 3D-surface plots reflect a positive correlation exists with respect to the distribution of p53 
and G-actin in different conditions (Supple. Fig. S2d). This explains when the level of G-actin falls, p53 nuclear 
accumulation is less; whereas when the G-actin level increases in Dox-treated condition, p53 translocates to the 
nucleus. Graphical representation of F/G ratio reveals that there is a significant change (P <  0.01) in the F/G ratio 
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for Jas+ Dox condition compared to Dox alone condition (Fig. 2b). An inverse correlation-ship was observed 
between nuclear p53 vs F/G ratio in actin-disrupted conditions [r =  (− )0.714] (Fig. 2c).

Figure 1. p53 nuclear translocation depends on the F-/G-actin dynamicity. (a) Wild-type p53-expressing 
cells were treated with 1 μ M doxorubicin for different time intervals. Wild-type p53 was stained with the Alexa-
546-tagged anti-p53 antibody (DO-1). F-actin and nucleus were stained with Alexa-488-tagged phalloidin 
and DAPI respectively. Scale bar: 10 μ m. (b) Nuclear p53 was quantitated by quantitative fluorescent imaging 
and normalized with nuclear DNA content (upper panel). Scatter plot of total cellular F-actin and nuclear p53, 
generated at different time points after Dox treatment (bottom panel). The solid line shows the best line fitted 
to the data based on the simple regression model. The correlation coefficient (r) was mentioned in the graph. 
(c) The degree of p53 nuclear translocation at different drugs-treated conditions; scale bar: 10 μ m. 3D-surface 
plots are shown in the right panel. Nuclear/total p53 was quantitated by quantitative fluorescent imaging and 
has been plotted for the above experimental conditions (right). Values are mean ±  SEM of five independent 
experiments in each case or representative of typical experiment.
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Co-transfection of A549 cells with wild-type p53 and EGFP-tagged wild-type actin revealed interaction 
between these two molecules (Fig. 2e). To find out the type of actin involved in such interaction we performed 
colocalization experiments with actin-specific probes. Wild-type p53 expressing A549 cells showed a significant 
degree of positive colocalization correlation between p53 and G-actin (Fig. 2d, bottom panel). On the contrary, 
p53 did not show significant positive Pearson’s colocalization correlation with F-actin (Fig. 2d, upper panel). 
Pearson’s r obtained through quantitative image analysis was found to be significant (p <  0.005) for p53 and 
G-actin (0.80), compared to the values found in the case of p53 and F-actin (0.1), indicated in Supple. Fig. S3a.

Figure 2. Nuclear translocation of p53 is negatively-correlated with the shift in F/G-actin ratio. (a) Confocal 
images showing the distribution of F- and G-actin in different drugs-treated conditions. F- and G-actin were 
stained with Alexa-488-tagged phalloidin and Alexa-594-tagged DnaSe1 respectively. Nucleus was stained with 
DAPI. Magnification 60× . 3D-surafce plots show the respective distribution of F- and G-actin. Scale bar: 10 μ m. 
(b) Bar diagram of F-/G-actin ratios in the different drugs-treated conditions in A549 cells. (c) Scatter plot showing 
negative-relationship between nuclear/total p53 and F/G ratios. The solid line shows the best line fitted to the data 
based on the simple regression model. The correlation coefficient (r) was mentioned in the graph. (d) Colocalization 
between p53 and F-actin/G-actin in A549 cells. p53 was stained with Alexa-546/-488-tagged p53 (DO-1) antibody. 
F-/G-actin were directly stained with Alexa-488-tagged phalloidin or Alexa-594-tagged DnaSe1 respectively. 
Nucleus was stained with DAPI. Image magnification: 60× . Scale bar: 10 μ m. Pearson’s colocalization correlation(r) 
between red and green channels is presented in colocalization scatter plots. (e) A549 cells were co-transfected with 
EFGP-tagged wild-type actin and wild-type p53. p53-associated proteins were pulled-down with p53 antibody 
and Western blotted with anti-GFP and anti-p53 antibodies. GAPDH was used as internal loading control. Data 
are representative or as the mean ±  SEM and are the cumulative results of five independent experiments (n =  25), 
*p <  0.05, **p <  0.01, ***p <  0.001.
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Wild-type p53 directly interacts with G-actin and shows distinct perinuclear colocalization.  
Since our preliminary findings suggest that p53 colocalized with monomeric G-actin, next our inten-
tion was to study whether it involves protein-protein interaction. For this purpose, we selectively expressed 
non-polymerizable actin mutant (G13R-actin) to exogenously produce GFP-chimeric G-actin, defective in form-
ing fibrous actin17. Since the mutation occurs at the nucleotide-binding pocket, it interferes with ATP-binding 
and keeps the protein in monomeric state. Confocal imaging revealed that G13R-actin strongly colocalized with 
wild-type p53 in the perinuclear region and p53 molecules translocate to the nucleus (Fig. 3a). 3D-reconstruction 
images distinctly revealed the merged pixels in yellow, where these two proteins colocalized. Quantitative image 
analysis revealed a high-level of positive colocalization correlation [Pearson’s r =  (+ )0.697] (Fig. 3a, lower left). 
Colocalized pixels showed a distribution along the linear regression line of the scatter plot.

Physical interaction between p53 and G-actin was validated by co-immunoprecipitation study when 
GFP-tagged G13R-actin was pulled down by p53 antibody (DO-1). Co-transfection of varying concentrations of 
wild-type p53 and G13R-actin-EGFP revealed that the degree of physical interaction between these two proteins 
increased with the higher amount of transfected cDNA (Fig. 3b, upper panel). Dox treatment further augmented 
such interaction (Fig. 3b, lower panel). With this observation, we were curious to identify whether this interac-
tion is a direct protein-protein interaction or is mediated via any other protein. In order to establish this in vitro, 
histidine pull-down assay was performed using purified His6-p53 and G-actin18. Ni-NTA-beads bound His6-p53 
protein was purified using gravity flow column (Fig. 3c, upper panel). The purified His6-p53 protein was incu-
bated with purified G-actin and the bound proteins were analyzed by SDS-PAGE followed by coomassie staining, 
which distinctly revealed bands for both His6-p53 and G-actin (Fig. 3c, lower right panel).

G13R-actin, which codes for monomeric actin population, colocalized and directly interacts with p53. With 
this crucial finding, we tried to address the events in an experimental condition where the G13R-actin mutant is 
substituted with a plasmid coding for filamentous actin. Hence, we involved Lifeact in our study to explore the 
relative correlation of distribution between filamentous actin with p53. Lifeact is 17 amino acid-long peptide 
tagged with m-Cherry, which selectively binds to F-actin (Supple. Fig. S3a) and fluoresce19. p53 did not show any 
positive colocalization correlation [Pearson’s r =  (− )0.280] with F-actin, when lifeact was used (Fig. 3a, lower right 
panel), though wild-type p53 shuttled inside the nucleus. Colocalization correlation value for G13R actin-p53 
wild-type pair is significantly higher compared to Lifeact-p53 wild-type pair (p <  0.005) (Supple. Fig. S3a).

To get the atomistic insight of p53:G-actin interaction, we undertook protein-protein docking approach using 
crystal structures (PDB code: 4MZR for p53, fragment: 94–356 and 3HBT for G-actin) (Supple. Fig. S3c). Here we 
mainly used two different docking algorithms, ZDOCK version 3.0.220 and Schrödinger’s protein-protein dock-
ing module PIPER21. To delineate the robustness of our derived p53:G-actin model, docking benchmark studies 
using a known crystal structure (PDB code: 1YCS) was carried out. 1YCS is the crystal structure of the complex 
between p53DBD and BP2 protein22. Our objective was to reproduce a known crystal structure as a control for 
docking calculation, which will validate the docking algorithm we have adopted. Both the docking software were 
used to reproduce the crystal structure 1YCS as well as to obtain the p53:G-actin complex. Importantly, ZDOCK 
has been reported to successfully reproduce protein-protein docking benchmark of 176 test cases (http://zdock.
umassmed.edu/help.html). Furthermore, literature suggests that knowledge of interface residues constrain the 
initial search space of docking software, which considerably improves the accuracy of protein-protein docking23. 
For this purpose, during the docking calculation between p53DBD and BP2, Arg248 (p53) was selectively men-
tioned as a contacting residue in the interface, as derived from analysis of 1YCS. With this information, the crystal 
structure was reproduced as the top models (Model-1, RMSD =  1.330 Å, and Model-3, RMSD =  1.312 Å) among 
the ZDOCK predictions (Supple. Fig. S4). Parallel to this, when another amino acid constraint (Met243) was 
used for docking calculation; the crystal structure was again reproduced (Model-1, RMSD =  1.330 Å, and Model-
4, RMSD =  1.312 Å). Even in the case of blind docking, where no constraint was used, the crystal structure was 
reproduced (Model-3, RMSD =  1.329 Å). In case of 1YCS, all atoms RMSD of reproduced structures were found 
to be within 1.5 Å. Moreover, when the top 5 models were superimposed upon 1YCS, all the predicted models 
showed similar docked poses with that of the crystal structure (data not shown). Schrödinger’s protein-protein 
docking module PIPER was also found to be successful in reproducing 1YCS for blind/constraint-driven docking 
calculation. Hence both the docking modules successfully reproduced 1YCS, irrespective of no constraint, or sin-
gle point constraint. According to the energy-scoring function, these reproduced structures attained top ranking 
positions and showed minimum RMSD values as compared to 1YCS (Supple. Fig. S4). These observations provide 
the docking benchmark study for 2 different docking approaches for a crystal structure and validate the accuracy 
of the docking protocols in predicting near to correct complexes. Since the co-immunoprecipitation data from 
our mutational studies suggests that the association between p53:G-actin is reduced in case of p53R249S mutant 
(Reference: Fig. 5c & Supple. Fig. S3d), Arg249 was considered as a residue participating in p53:G-actin interac-
tion. Here we used Arg249 (p53) as a constraint for p53:G-actin docking calculation (similar to Arg248/Met243 
constraint in p53 and BP2 docking calculation). Our observation was that Model-1, -2 and -4 (ZDOCK) exhib-
ited similar structures. Using the same parameters, when this docking calculation was done with PIPER, similar 
docked pose (Model-5) was derived (Suppl. Fig. S4). Similar docked-poses for both p53:BP2 and p53:G-actin 
were derived using another protein-protein docking algorithm ClusPro 2.024 (Suppl. Fig. S5). Importantly, 
the same docked pose for p53:G-actin complexation was produced with various docking approaches, and for 
ZDOCK the pose appeared for 3 times among the top 5 models (Suppl. Fig. S4, third panel). By the ranking of the 
model and the fact whether it appears multiple times among the top 5 models with varied docking algorithms, 
we selected Model-1 (ZDOCK) and carried out all atoms Molecular Dynamics (MD) Simulation (AMBER14) 
in an implicit solvent for 50 ns. Details of docking benchmark studies, docking calculation, and MD simulation 
have been included in the Materials and Methods section. Since the parameters were proved to be successful for 
reproducing a known crystal structure 1YCS, with the help of different docking algorithms, our assumption is 
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Figure 3. Interaction of wild-type p53 with the polymerization-deficient G13R-actin mutant. (a) Colocalization 
of wild-type p53 with EGFP-tagged G13R-actin in the perinucleus. Over-expressed wild-type p53 was stained 
with the Alexa-546-tagged anti-p53 antibody (upper panels). Wild-type p53 (stained with Alexa-488-tagged 
anti-p53 antibody) did not show any positive colocalization with F-actin (stained with mCherry-Lifeact) (middle 
panels). The selected ROIs have been magnified in the inset images where the pixels showing intense colocalization 
are marked with arrowheads. Image magnification: 60× . Scale bar: 10 μ m. Three-dimensional (3D) confocal 
microscopy revealed punctated colocalized yellow pixels of EGFP-G13R-actin and wild-type p53, shown by 
arrowheads. 3D-reconstruction image shows no correlation between mCherry Lifeact and wild-type p53. Pearson’s 
colocalization correlation (r) between red and green channels is presented in colocalization scatter plots (inset 
images, lower panels). (b) Physical association between wild-type p53 and G-actin, at increasing concentrations (0.1, 
0.5, 1.0, 2.0 μ g) of G13R-actin-EGFP cDNA, indicated in the upper panel. Association of wild-type p53 and G-actin 
in control and Dox-treated condition were presented in the lower panel. GAPDH was used as the internal loading 
control. Data are representative three independent experiments. (c) His pull-down assay shows purified p53(1–393)
His and purified monomeric G-actin directly interacts in vitro. The purified His6-p53 protein has been detected in 
the Ni-NTA column ‘elute’ fraction, upper panel. Purification of G-actin (lower panel, left). Purified His6-p53 (400 μ 
g) was incubated with 170 μ g of monomeric G-actin in Ni-NTA column. Coomassie staining reveals the position of 
p53His and G-actin in ‘bait-prey’ complex (lower panel, right). (d) Post-simulation p53:G-actin dynamic complex, 
in surface/electrostatics (upper panel), p53 in surface/electrostatics and G-actin in cartoon/secondary structure 
(middle panel), p53 in cartoon/secondary structure and G-actin in surface/electrostatics (lower panel). p53 and 
G-actin have been shown in cyan and red color respectively.
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that the theoretically-derived p53:G-actin complex is most likely the probable structure of the real association. 
Post-simulation p53:G-actin model and the surface electrostatics of the complex are represented in Fig. 3d.

Molecular interface in cross-linked actin dimer overlaps with p53:G-actin interface: basis 
of p53:G-actin interaction. Crucial amino acids contacts in p53:G-actin theoretical model (within 
1.8 Å–3.9 Å) are shown in Fig. 4a. Amino acids Gln165, Gln167, His168, His178, Gly245, Arg248, Arg249, 
Leu289, Phe328, Leu348 and Leu350 of p53 form polar contacts with Tyr151, Tyr154, Ala155, Glu152, Thr133, 
Ile272, Ala350, Thr309 and Arg357 of G-actin respectively (Suppl. Table S1). The movie of MD simulation tra-
jectories is included in the supplementary information (Suppl. Movie S1). The relative distance (> 25 Å) of Gly13 
(G-actin) from interacting interface of p53:G-actin model suggests that mutation at Gly13 does not interfere with 
p53:G-actin complexation (Suppl. Fig. S6a).

The theoretical understanding behind the differential affinity of p53 toward F-/G-actin was crucial to correlate 
the experimental findings. Inference for the same was identified with respect to the interface of G-actin involved 
in forming contacts with p53. Furthermore, the interface of monomeric actin involved in forming contacts within 
fibrous actin was analyzed. The crucial points of contacts in the actin-dimer crystal are mediated by protomer-1 
of first G-actin and protomer-3 of second G-actin (PDB code: 2A5X)25. On the other hand, protomer-3 region of 
G-actin (indicated in Fig. 4b, left panel) was found to form contacts with p53 in the p53:G-actin dynamic model. 
Comparing these residues involved in making contacts, it is clear that the same interface (at protomer-3) of mon-
omeric G-actin participates in both actin:actin and p53:G-actin interaction (Fig. 4b). Hence p53 is supposed to 
have poor affinity for fibrous-form of actin as the common interface for interaction is already engaged. A ribbon 
representation of this said event has been shown in Suppl. Fig. S6b.

Figure 4. Theoretical understanding of p53:G-actin interaction from molecular docking and MD 
simulation studies. (a) Magnified images of amino acid contacts in p53:G-actin interaction in cartoon 
representation. The interacting amino acids are highlighted in sticks/spheres. Black dashed lines indicate 
the p53:G-actin interaction. Bond distances are included. (b) Structural superimposition shows a common 
interface of actin involved in actin:actin and p53:actin complexes. p53:G-actin docked complex has been shown 
in cartoon structure (cyan and purple color) in the left panel. Actin:actin dimer has been represented as cartoon 
structure (orange and purple color) in the middle panel. The interface of p53:G-actin and G-actin:G-actin 
complex has been marked with a circle. Superimposed structures of actin:actin and p53:G-actin docked model, 
right panel. Common interface of protomer-3 of G-actin involved in both the interaction has been marked with 
a circle.
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p53:G-actin interaction involving “hot-spot” mutants: basis of altered localization of mutant 
p53. Mutations in p53DBD have been reported to result in altered localization of the protein26,27. It is note-
worthy to mention that fluctuation in thermodynamic stability of p53 arises due to single point mutations4. p53 
contact mutants (R273H and R248W) retain same thermodynamic as well as kinetic stability28. On the other 
hand, p53 structural mutants (R175H and R249S) show a greater degree of thermodynamic instability and often 
show altered subcellular localization or cytoplasmic sequestration12. The assembly of mutant p53 into large 

Figure 5. Degree of physical interaction between p53-mutants and G-actin dictates subcellular-localization 
of p53. (a) Colocalization of p53WT/p53R273H/p53R175H/p53R249S with G13R-actin-EGFP upon co-
transfection in p53-null H1299 cells. Wild-type and mutant p53 were stained with Alexa-546-tagged anti-p53 
antibody. Nucleus was stained with DAPI. The colocalized yellow pixels in the merge images are indicated with 
arrowheads. Image magnification: 60× . Scale bar: 10 μ m. Cartoon representation of post-simulated p53:G-actin 
complex is shown in the right panels, showing the position of point mutations (p53) in each case (in spheres/
sticks). Wild-type p53 is at the left side and mutant p53 is at the right side of right panels. For p53R249S, super-
imposition of post-simulated p53:G-actin models (WT versus R249S) are shown in the bottom panels, showing 
the position of amino acid residues. A cartoon is shown depicting the amino acid shifts, where colored circles 
represent amino acid residues specified at left. Dotted-lines indicate the shifting of amino acid residues in R249S 
mutant. Double-headed arrows indicate the interaction between amino acids. Physical interaction between 
G13R-actin and p53-mutants, (b) p53R273H and (c) p53R273H/p53R175H/p53R249S, were performed by co-
immunoprecipitation (with anti-p53 antibody) and Western blot (with anti-GFP antibody) assays. GAPDH has 
been used as the internal loading control. (d) Cytosolic and nuclear lysates from ectopically wild-type/mutant 
p53-expressing HCT116 (p53−/−) cells were Western blotted to analyze the subcellular distribution of p53. 
Tubulin and Histone-3 have been used as cytosolic and nuclear loading control. Data are representative of three 
independent experiments. (e) Percent cell death in p53-null cells upon over-expression of wild-type/mutant 
p53. Data are representative as the mean ±  SEM and are the cumulative results of five independent experiments, 
*p <  0.05, **p <  0.01, ***p <  0.001. (f) Schematic diagram showing the basis of altered subcellular localization of 
mutant p53. Colored arrows lengths indicate the respective degree of nuclear localization of mutant p53.
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aggregates in the cytosolic environment has been found to be consistent with an impaired p53 nuclear import12. 
Hence next our objective was to assess whether impaired binding to G-actin might explain the altered subcellular 
localization of the structural mutants. For this purpose, we selectively chose three ‘hot-spot’ point mutations 
(p53R273H-contact mutant; p53R175H and p53R249S-structural mutant). To satisfy our goal, we transiently 
over-expressed p53 mutants (R273H, R175H, and R249S) and G13R-actin-EGFP in p53-null H1299 cells, and 
studied the relative interaction of mutant p53 with G-actin.

Confocal imaging studies revealed that both p53WT and p53R273H shuttled into the nucleus (Fig. 5a, first & 
second panel) and colocalized with G13R-actin close to the perinuclear region [Pearson’s r =  (+ )0.60 and (+ )0.744 
respectively]. Co-immunoprecipitation assay confirmed physical interaction of p53R273H with G13R-actin 
(Fig. 5b). Zinc-binding domain mutant p53R175H, on the contrary, has been found to co-aggregate with other 
tumor suppressors, p63, and p73, showing cytosolic sequestration12. In wild-type p53 structure, Arg175 lies in 
the proximity of zinc-ion binding domain (Cys176, His179, Cys238 and Cys242), highlighted in (Fig. 5a, third 
panel, right; PDB code: 2OCJ)29. The introduction of the bulky imidazole ring (in His175) in place of p53Arg175 
(R175H) contributes to loss of this tetrahedral coordination of Zn2+ ion29. Upon co-expression of p53R175H and 
G13R-actin-EGFP, p53R175H showed a punctate pattern of “cytoplasmic spots” near the perinucleus, and failed 
to translocate into the nucleus (Fig. 5a, third panel). Another structural mutant p53R249S shows a tendency to get 
accumulated in the cytoplasm30. Transient transfection of p53-null cells with p53R249S and G13R-actin revealed 
reduced colocalization between p53 and G-actin, suggesting towards their reduced physical interaction (Fig. 5a, 
bottom panel).

Next, we conducted co-immunoprecipitation experiments to assess the extent of G-actin association with 
p53 mutants and its putative role in nuclear localization. We found that all three p53 mutants exhibited a varying 
degree of interaction with G-actin, among which the interaction was more prominent for p53R273H (Fig. 5c). 
In case of other two structural mutants (R175H and R249S), a reduced affinity towards G-actin was observed. 
Structural distortion in the Zn2+ binding domain in p53R175H resulted in a reduced degree of p53:G-actin inter-
action. Likewise, the protein-protein association is significantly diminished in case of p53R249S mutant. This 
hints that Arg249 must be a residue participating in the interaction. This information was used as input for 
p53:G-actin docking calculation where Arg249 was considered as a constraint (Fig. 3d). We tried to correlate the 
varying degree of p53:G-actin interaction, with the respective subcellular localization of wild-type and mutant 
p53. Subcellular fractionation data revealed predominant nuclear localization of p53WT/R273H. Structural 
mutants’ p53R175H and p53R249S, on the other hand, were mostly found in the cytosolic fraction, which was 
indicative of their reduced nuclear import (Fig. 5d). Confocal studies revealed the same inference (Suppl. Fig. 
S7a,b). This diminished degree of nuclear translocation in case of p53R175H and R249S is attributed to their 
reduced affinity for G-actin to form p53R175H/R249S:G-actin complex. Taking together, these findings infer that 
the respective level of p53:G-actin interaction (in wild-type or mutant p53) dictates the subcellular localization 
of p53. Quantification of % cell death upon over-expression of p53 wild-type/mutants shows that mutant p53 
bearing cells are more resistant to genotoxic stress exerted by Dox (Fig. 5e).

According to the p53:G-actin hypothetical model, p53Arg273 resides away from the most nearby residue 
(Glu152) of protein-protein interface (Fig. 5a, second panel). Hence mutation from p53Arg273 into His273 is 
not supposed to interfere with the p53:G-actin complexation. p53R73H forms a stable complex with G-actin and 
translocates into the nucleus. On the contrary, mutation at p53Arg249 into Serine, results in reduced p53:G-actin 
interaction. The simulation models for both p53wt:G-actin and p53R249S:G-actin were superimposed so as to 
find out the probable outcome of R249S mutation at the atomic level. Superimposition of post-simulated coordi-
nates shows that in wild-type p53:G-actin complex, Arg249 (p53wt) forms a polar contact with Arg357 (G-actin). 
When mutated to Ser249, this crucial interaction is perturbed, whereas Arg357 forms another contact with 
p53Arg174. Hence the loss of Arg249-Arg357 interaction is compensated with the Arg174-Arg357 interaction. 
This change at the atomic level of p53:G-actin interaction can be hypothesized to be the reason for reduced degree 
of p53R249S:G-actin association. The movie of MD simulation trajectories has been included in the supplemen-
tary information (Suppl. Movie S2).

Discussion
The tumor suppressor p53 is a 393 amino acid long transcription factor that mediates the cellular outcome in 
response to DNA damage31. In response to genotoxic stress, wild-type p53 gets stabilized and translocates to 
nucleus32. On the contrary, mutant p53 lose its wild-type tumor suppressive functions and acquires new onco-
genic properties33. The tuning of its altered structure in course of mutation and gain of its new oncogenic proper-
ties has been well studied in literature3,34.

Here we report that monomeric G-actin regulates p53 nucleo-cytoplasmic shuttling in response to genotoxic 
stress. G-actin interacts with wild-type p53 and directs p53 traffic in reaching the nucleus. Co-expression of 
wild-type p53 and G-actin (G13R mutant) plasmids suggested that p53 interacts with the monomeric form of 
actin. A distinctive perinuclear pattern of colocalization was evident between p53 and G-actin, which inferred 
that the route towards perinuclear translocation of p53 is mediated by virtue of its interaction with G-actin. 
Histidine-pull down experiment confirmed that the binary interaction between p53 and G-actin is a direct 
protein-protein interaction. Superimposition of actin:actin and p53:G-actin model reveals that a common inter-
face of protomer-3 of G-actin is involved in both the complex formation. This might account for reduced affinity 
of p53 towards F-actin. Interaction of p53 with G-actin is, therefore, a pre-requisite for p53 in order to get trans-
ported into the nucleus. Prior stabilization of actin with Jasplakinolide treatment, results in reduced conversion of 
F-actin to G-actin, which is assumed to be the reason for reduced nuclear translocation of p53. On the contrary, 
actin depolymerizing/G-actin sequestering drugs exert no such hindrance. The experimental results altogether, 
suggests a mechanism where G-actin directly interacts with p53 and escorts it towards perinuclear region. It is 
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again to recall that previous studies suggested the role of actin in p53 nuclear transport, but our study distinctively 
revealed the contribution of G-actin in the p53 transport event.

Regarding p53 mutants, reports suggest that globally denatured p53 mutants are found as cytoplasmic aggre-
gates in the perinuclear region35. Since the cancer-associated conformational mutants reveal altered subcellular 
localization, our assumption is that there must be some dispute in the mutant p53 nuclear trafficking machinery, 
which could be attributed to reduced interaction between mutant p53 and G-actin. Next, we aimed to confer how 
the position of a point mutation in p53 structure affects complexation of p53 and G-actin12. We have selectively 
chosen p53R273H, R175H, and R249S, which falls among the most frequent ‘hot-spot’ p53 mutants. Integrating 
our experimental information with theoretical predictions we observed the following results:

•	 Wild-type p53 interacts with G-actin, shows perinuclear colocalization in response to genotoxic stress, and 
translocates to the nucleus.

•	 p53R273H interacts with G-actin and translocates to the nucleus. Since according to the hypothetical model 
Arg273 resides away from the interface, mutation of p53Arg273 does not seem to interfere with p53:G-actin 
complexation.

•	 p53R249S shows reduced interaction with G-actin. It fails to get transported into the nucleus and predomi-
nantly shows cytoplasmic localization. The model proposes that Arg249 of p53 forms polar interaction with 
Arg357 of G-actin. Since Arg-Arg pairings have been found to be very crucial in making protein structures 
thermodynamically stable36, our assumption is Arg249-Arg357 imparts stability to p53:G-actin complex. 
Mutation at Arg249 into serine results in cytoplasmic sequestration of mutant p53, due to loss of its interac-
tion with Arg357 of G-actin.

•	 p53R175H shows reduced interaction with G-actin, forms perinuclear aggregates and fails to get imported 
into the nucleus. It involves a mutation in the Zn2+ ion-binding domain, resulting in distortion of the native 
p53 structure13.

The above mechanism accounts for the G-actin-mediated regulation of p53 localization that unifies poorly 
connected information regarding wild-type/mutant p53 localization and provides a new angle for the under-
standing of the same. In a nutshell, to prevent the aberrant proliferation of the tumor cells, p53 gets transported 
into the nucleus and activates cell-cycle checkpoint proteins; promote DNA repair, cellular senescence, and 
apoptosis. The failure of p53 structural mutants to restrict abnormal malignant growth mainly stems from their 
inability to get efficiently transported into the nucleus. Therefore the biological consequence of mutant p53 
mis-localization/cytoplasmic retention becomes significant as it accelerates tumor cell proliferation, migration, 
and invasion with the loss of tumor suppressive activity.

In conclusion, the inferences drawn from our study confirm the role of G-actin in p53 nuclear transport 
event, though it was not completely explored whether G-actin only delivers p53 in the perinucleus; or it also 
dictates the final entry of p53 inside nucleus. A report by Liang and Clarke demonstrates that once the p53 cargo 
reaches the perinuclear region, it interacts with importin receptors, probably through recognition of one or more 
nuclear localization signal (NLS-I, NLS-II, NLS-III)37. The NLSs of p53 interact with the carrier hetero-complex, 
importin-α /β , which facilitates the entry of p53 inside the nucleus38. Our assumption is that, NLS-recognizing 
importin-α /β  hetero-complex binds the p53 cargo and drives its nuclear transit as p53:G-actin complex reaches 
the perinucleus.

Overall the present study emphasizes on the role of G-actin in guiding p53 transport towards the nucleus, 
which needs further study to unveil the contribution of other protein transporters associated with this event. 
Parallel to G-actin mediated traffic, other interactions mediated by importin-α /β  at the nuclear membrane, also 
need to be explored with an effort to explain mutant p53 cytoplasmic retention.

Materials and Methods
Cell culture. A549 (lung carcinoma) cell line was purchased from National Centre for Cell Sciences, Pune. 
Human colon carcinoma HCT116 (p53+/+/p53−/−) and lung Carcinoma cell line H1299 (p53−/−) were purchased 
from ATCC, USA. The cell lines were cultured in DMEM or RPMI, supplemented with 10% heat-inactivated 
fetal bovine serum (Lonza, USA), L-glutamine (2 mM), sodium pyruvate (100 μ g/ml), non-essential amino acids 
(100 μ M), streptomycin (100 μ g/ml), and penicillin (50 U/ml; Himedia, India). Primary antibodies used are p53 
(DO-1; Santa Cruz, USA), α -GFP (Cell signaling, USA), α -Tubulin (Thermo Scientific, USA), GAPDH and 
Histone-3 (Biobharati Lifescience, India). Precision plus protein dual color standards (Bio-Rad) was used to 
detect the molecular weight of proteins in SDS-PAGE. Cyt-D, Lat-B, and Jas purchased from Calbiochem, USA 
was used at 5 μ M, 1 μ M, and 50 nM concentration respectively followed by Dox (1 μ M, Sigma, USA) for 45 min-
utes. We made working stocks of all drugs (dimethyl sulfoxide for Cyt-D, Lat-B, and Jas; sterile H2O for Dox).

Plasmid constructs and transfection. Over-expression plasmids encoding p53wt, contact, and structural 
p53 mutants, pCMV-Neo-Bam-p53wt, p53R273H, p53R249S (Addgene, USA)39 and p53R175H40 were tran-
siently transfected for localization experiment or immunoprecipitation assay. Actin plasmids, wt-actin-EGFP/ 
G13R-actin-EGFP17/mCherry-LifeAct41 were over-expressed for immunoprecipitation and/or imaging 
experiments. For co-immunoprecipitation and/or immunofluorescence experiment, co-transfection of 1μ g  
pCMV-Neo-Bam-p53wt/p53R273H/p53R175H/p53R249S and wt-actin-EGFP/G13R-actin-EGFP/mCherry 
LifeAct was performed using 5 μ l of Lipofectamine 2000 (Invitrogen, USA), following the product manual. The 
complex of DNA and Lipofectamine 2000 was prepared in 200 μ l serum-free OPTIMEM (Invitrogen, USA) and 
the complex was incubated for 20 min before adding to cells. For Histidine pull-down assay, His6-p53(1–393) 
bacterial expression plasmid was expressed in BL21-DE3 cells.
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Immuno-precipitation & Western blot. For whole cell lysates, cells were homogenized in buffer 
(20mM Hepes pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 1 mM Na-EDTA, 1 mM Na-EGTA, and 1 mM DTT) supple-
mented with protease and phosphatase cocktail inhibitor42. For determining interaction between two proteins, 
co-immunoprecipitation technique was employed. For co-immunoprecipitation between p53wt/R273H/R175H/
R249S and wt-actin-EGFP/ G13R-actin-EGFP, 200 μ g protein was immuno-precipitated. Immunocomplex was 
purified using anti-p53 (DO-1) antibody and protein A/G-Sepharose beads (Invitrogen, USA). The immunop-
urified protein was immunoblotted with anti-GFP antibody. Subcellular fractions were generated using nuclear 
and cytosolic extraction buffer.

Isolation of G-actin from rabbit muscle’s acetone powder. Actin was purified from muscle acetone 
powder of rabbit purchased from Sigma-Aldrich (M6890)43. 180 mg of muscle acetone powder was homogenized 
in buffer G (2 mM Tris-HCL (pH 8.0), 200 uM ATP, 0.5 mM DTT, 0.1 mM CaCl2, 1 mM NaN3). The Slurry was 
centrifuged at 30,000 g for 30 min, 4 °C. Pellet (0.38 gm) was re-suspended in 1 ml buffer G. 2 M KCl, 2 M MgCl2 
and KCl were subsequently added and homogenized at 4 °C. Supernatant was spun at 100000 g, 2 h, 4 °C. The pel-
let was rinsed with 50 μ l buffer G. Pellet was re-suspended into 2 ml buffer G and dounce homogenized. Dounced 
slurry was then dialyzed. Dialyzed actin was spun at 100000 g, 2 h, 4 °C. Supernatant, the ultimate G-actin was 
collected in a dialysis bag and stored in dialyzing G-buffer at 4 °C.

Histidine pull-down assay using purified proteins. To purify His6-p53, BL21(DE3) harboring 
pET15-p53 vector was cultured at 37 °C until reaching A600 =  0.6, induced with IPTG (0.5 mM) and grown for 
another 3 h at 30° 44. Bacterial pellets were lysed in bacterial lysis buffer (25 mM Tris, 500 mM NaCl, 1% Triton-X 
100, 5 mM Imidazole, protease-inhibitor cocktail, pH 8.0). Following centrifugation the supernatant was recov-
ered and incubated with Ni-NTA agarose resin, and His-tagged p53 (1–393) was purified using a gravity flow 
column. Ni-NTA beads (Qiagen) bound with His-tagged p53 was washed in wash buffer (Tris-NaCl buffer with 
20 mM Imidazole, pH 8.0) and subsequently eluted in elution buffer (Tris-NaCl buffer with 250 mM Imidazole, 
pH 8.0). His-tagged purified p53 was dialyzed against Tris-buffer (without imidazole). Purified His6-p53 was 
incubated with Ni-NTA beads, to which purified monomeric actin was added and incubated at 4 °C for overnight. 
Purified complex was eluted in elution buffer (Tris-NaCl buffer with 250 mM Imidazole, pH 8.0). Elute was run in 
10% SDS-PAGE, followed by coomassie staining to probe interacting proteins in the complex.

Immunofluorescence. Cells were grown on coverslips and fixed with 3.7%(v/v) paraformaldehyde for 
20 min at RT, followed by permeabilization with 0.05%(w/v) Triton-X-100 for 5 minutes. Next, cells were blocked 
with 3%(w/v) BSA in PBS for 2 h. Primary antibodies (1:100) were diluted in 1%BSA in PBS and incubated for 
overnight at 4 °C. Cells were stained with Alexa-488 phalloidin and/or Alexa-594 DnaSe1 (Invitrogen, USA) 
for staining F-actin and/or G-actin, respectively, according to the manufacturer’s protocol. Secondary antibod-
ies used (rabbit anti-mouse Alexa-488/-546, Invitrogen), were diluted in 1%BSA and incubated for 2 h at 4 °C. 
Nucleus was stained with DAPI (1:10,000). Images were acquired in Olympus fluoview confocal microscope/
BX61 using 63× /100×  objective. Laser intensities and detector gains were maintained at the same level during 
all imaging sessions. Z-stack images with an average step size of 0.35 μ  were captured and 3D-projections of each 
stack processed for background correction. Image calculations and colocalization analysis have been done using 
Olympus fluoview and ImageJ software.

Molecular docking with benchmark studies and MD simulation of p53:G-actin Complex. Crystal 
structures (PDB code: 4MZR for p53, fragment: 94-356 and 3HBT for G-actin) were used for protein-protein dock-
ing. Different docking algorithms; ZDOCK version 3.0.220, Schrödinger’s protein-protein module PIPER21 and 
ClusPro 2.024 were used for molecular docking. ZDOCK employs fast Fourier transform (FFT) correlation-based 
method, which performs a systematic search in the six-dimensional space created by 3 rotational and 3 trans-
lational degrees of freedom20. It has consistently been among the best-performing algorithms in the Critical 
Assessment of Prediction of Interactions (CAPRI)45,46. The scoring function implemented in ZDOCK is a linear 
weighted sum of van der Waals attractive and repulsive energies, short- and long-range attractive and repulsive 
electrostatic energies, and desolvation47. PIPER has also been found to determine the top scoring entries in the 
most recent CAPRI blind assessment of protein-protein docking. PIPER uses FFT approach along with accurate 
pairwise potentials that greatly reduces the number of false positive poses21. The scoring function in PIPER is 
given as the sum of terms representing shape complementarity, electrostatic and desolvation contributions21. 
ClusPro is another fully-automated docking algorithm which ranks the poses according to their clustering prop-
erties24. All atoms MD simulation in the implicit solvent was performed in AMBER1448. Force field parameters 
for ATP49, Calcium ion50, and Magnesium ion51 were obtained from Brayce group web server. Protein was param-
eterized using FF14SB force field parameters52 and ions were parameterized with GAFF force field parameters53. 
The protein system was neutralized with 9 Na+ ions. The system was minimized for 500 of minimization cycles, 
first, 250 cycles using steepest descent minimization and next 250 cycles using conjugate gradient minimization. 
Energy minimized system was used further for production simulation of 50 ns. The parameters set for simulations 
are as follows: calculation was performed for each 2 fs time step, coordinates were recorded at each 10 ps time 
step, temperature was maintained at 300K using Langevin thermostat with the collision frequency of 1ps−1 54,55. 
Generalized Born implicit solvent simulation method was adopted for this study56. The implicit solvent is com-
putationally much faster calculating the forces driving in between protein-protein complex. VMD and PyMOL 
software were used for visualizing the simulated trajectory57,58.

To establish docking benchmark for delineating the robustness of our p53:G-actin model, we took crystal 
structure of the complex p53DBD with BP2 (PDB code: 1YCS). The ability of ZDOCK to reproduce crystal struc-
tures was evaluated with the following procedure. First, the guest (BP2) and host (p53DBD) molecules in the 
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complex crystal structure (1YCS) were separated, and the guest structure was then docked back into the host 
structure by ZDOCK. Of many ZDOCK-generated guest-host complexes, only the top models with the strongest 
interaction energy (according to the energy scoring function) were compared to the corresponding crystal struc-
ture of the complex. In this comparison, the individual docked poses were superimposed on the crystal structure 
1YCS, and the root mean square deviation (RMSD) values for all atoms were calculated. RMSD is frequently used 
to measure the quality of reproduction of a crystallographic binding pose by a computational method, such as 
docking59. If the docking protocol is able to reproduce similar docking pose of a ligand with respect to the same 
ligand in the crystal structure, then it validates the docking algorithm. If the RMSD is < 2.0 Å or 1.0 Å, the crys-
tal structure of the complex can be said to be reproduced or accurately reproduced by the program60. Using the 
similar parameters, docking calculations were done in PIPER and ClusPro2.0 for both 1YCS and p53:G-actin 
complex. Knowledge of interface residue was also included in docking calculation to increase the likelihood of 
specified interaction. Data from mutational studies provide critical information for interaction, i.e. the complex 
does not form if certain residues are mutated61. Based on the mutational data, we used Arg249(p53) as a con-
straint for p53:G-actin docking calculation (similar to Arg248/Met243 constraint in p53:BP2 docking study).

Statistical analysis. Values are shown as the standard error of mean (SEM) except where otherwise indi-
cated. Comparison of multiple experimental groups was performed by 2-way ANOVA followed by a post-hoc 
Bonferroni modification of multiple comparison t-test. Data were analyzed and, when appropriate, the signif-
icance of the differences between mean values was determined by a Student’s t-test. Results were considered 
significant at p ≤  0.05.
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