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ectroscopy to study rat lung
tissues for distinguishing asphyxia from sudden
cardiac death†

Kai Zhang,‡ab Ruina Liu,‡c Xin Wei,b Zhenyuan Wang *b and Ping Huang*ad

Determining asphyxia as the cause of death is crucial but is based on an exclusive strategy because it lacks

sensitive and specific morphological characteristics in forensic practice. In some cases where the deceased

has underlying heart disease, differentiation between asphyxia and sudden cardiac death (SCD) as the

primary cause of death can be challenging. Herein, Raman spectroscopy was employed to detect

pulmonary biochemical differences to discriminate asphyxia from SCD in rat models. Thirty-two rats

were used to build asphyxia and SCD models, with lung samples collected immediately or 24 h after

death. Twenty Raman spectra were collected for each lung sample, and 640 spectra were obtained for

further data preprocessing and analysis. The results showed that different biochemical alterations existed

in the lung tissues of the rats that died from asphyxia and SCD and could be used to distinguish between

the two causes of death. Moreover, we screened and used 8 of the 11 main differential spectral features

that maintained their significant differences at 24 h after death to successfully determine the cause of

death, even with decomposition and autolysis. Eventually, seven prevalent machine learning classification

algorithms were employed to establish classification models, among which the support vector machine

exhibited the best performance, with an area under the curve value of 0.9851 in external validation. This

study shows the promise of Raman spectroscopy combined with machine learning algorithms to

investigate differential biochemical alterations originating from different deaths to aid determining the

cause of death in forensic practice.
Introduction

The determination of the cause of death holds signicant
importance in forensic practice, predominantly relying on
conventional morphological methods. However, in certain
cases, distinctive morphological indicators may be insufficient
to unquestionably determine the cause of death. For example,
in cases where an individual has died of asphyxia due to a pillow
covering the mouth and nose, hands choking the neck, or
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inadequate oxygen in the environment or in cases where the
body is examined aer several days of autolysis and decompo-
sition, morphological signs such as petechial hemorrhage,
ligature grooves, throttling marks, and neck muscle hemor-
rhage, which help to determine the cause of death as asphyxia,
may be absent or difficult to identify.1 Nevertheless, asphyxia
can be ascertained as the cause of death through systematic
autopsy, toxicology examination, and scene investigation by
ruling out alternative causes. However, it becomes harder when
the deceased has an underlying heart disease that can trigger
death because sudden cardiac death (SCD) is also a cause of
death that should be concluded by excluding other causes.
Unfortunately, this is not rare because asphyxia is a common
form of violence and SCD is a signicant public health issue
worldwide.2–4 Therefore, it is imperative to research means to
differentiate between asphyxia and SCD considering the major
forensic importance and social value of doing so.

Current studies have mainly focused on nding differentially
expressed mRNAs, miRNAs, proteins, or metabolites during
asphyxia5–8 or SCD.9,10 Although these biomarkers have shown
promising sensitivity, their specicity remains insufficiently
studied for their practical applications. In particular, further
research is needed on their altered content during aer-death
autolysis and decomposition as well as their determination
RSC Adv., 2024, 14, 5665–5674 | 5665
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efficiency. We previously reported that mass spectrometry-
based non-targeted metabolomics can be used to identify
differential metabolites between asphyxia and SCD.11–13

However, the sample pretreatment and data-collection proce-
dures related to molecular biology techniques and mass spec-
trometry are laborious, time-consuming, and expensive.

Raman spectroscopy has emerged as a highly promising
analytical technique for rapid, non-invasive, non-destructive,
and non-label detection, especially in biomedical research,
due to its minimal sample requirements, sample preparation,
and high resistance to water interference.14,15 Moreover, Raman
spectroscopy has gained increasing attention within the
forensic eld, such as for identifying illegal drugs,16 examining
questioned documents,17,18 detecting gunshot residue,19

analyzing body uid trace evidence acquired from crime
scenes,19–21 and estimating the postmortem interval.22,23 Raman
spectroscopy can examine subtle biochemical alterations in
certain pathophysiological mechanisms to diagnose associated
diseases.24,25 Infrared spectroscopy, another vibrational spec-
troscopy technique complementary to Raman spectroscopy, is
also widely used in forensic research to identify injuries,
histopathological changes,26,27 and determine the cause of
death.28,29 In addition, the technical advantages of Raman
spectroscopy make it more suitable for forensic practice than
other molecular biological techniques. Therefore, although no
relevant research has been reported yet to the best of our
knowledge, we believe that Raman spectroscopy can be utilized
to determine complex causes of death.

Herein, we established rat death models of asphyxia and
SCD. Raman spectra of the lung tissues collected at 0 h and 24 h
aer death were acquired. The differences in biochemical
changes in the lung tissues during death between asphyxia and
SCD were analyzed by chemometrics, and multiple classica-
tion models were built and compared to determine the cause of
death accurately.

Materials and methods
Animal experiments and sample preparation

Thirty-two male Sprague Dawley rats (weighing 200–250 g) were
obtained from the Experimental Animal Center of Xi'an Jiao-
tong University. The rats were housed in a controlled environ-
ment at 25 °C with a xed light–dark cycle of 12 h, provided with
unrestricted access to food and water before the modeling, and
randomly and equally allocated into asphyxia and SCD groups
(n = 16) based on the death-induction method. Subsequently,
each group was divided into immediate and 24 h aer-death
subgroups (n = 8) based on the sample collection time. Before
being euthanized, all the rats were anesthetized by the intra-
peritoneal injection of urethane (20%, 1.0–1.2 g kg−1) to mini-
mize potential suffering. Our animal operations were approved
by the Committee of the Ethics of Animal Experiments of Xi'an
Jiaotong University and followed the Institutional Animal Care
and Use Committee of Xi'an Jiaotong University Guideline.

In the asphyxia group, the model was constructed by stran-
gulating by ligature; whereby a cotton thread noose was placed
around the neck of each rat, and a small stick was inserted into
5666 | RSC Adv., 2024, 14, 5665–5674
the noose at the back of the neck. Subsequently, the noose was
tightened by rotating the stick to induce asphyxiation in each
rat, maintaining constant pressure until death. In the SCD
group, acute myocardial ischemia was induced through coro-
nary ligation of the le anterior descending coronary artery to
simulate cardiac death.

In the immediate-aer-death subgroup, the rat lung was
collected and stored at −80 °C until use, while in the 24 h aer-
death subgroup, the rat cadavers were placed inside an incu-
bator (25 ± 3 °C; 50% ± 5% humidity) for 24 h. Then, the lung of
each rat, which had decomposed, was collected and stored at
−80 °C until use. Subsequently, all the lung samples were taken
from the freezer and sectioned into 10 mm-thick sections with
a cryo-microtome. The sections were placed on calcium uoride
(CaF2) slides (Raman grade) before the Raman spectra acquisition.
In addition, optical images of the hematoxylin-eosin (HE)-stained
lung tissues are shown in Fig. S1 in the ESI.†
Raman spectra acquisition and preprocessing

Raman spectra of the lung samples were acquired using an
inVia confocal micro-Raman spectrometer (Renishaw, Glou-
cestershire, UK) equipped with a 532 nm excitation laser and
a cooled charged-couple device (CCD) detector coupled to
a Leica microscope. Renishaw Wire (Windows-based Raman
Environment) 4.2 soware was used to operate the instrument.
Twenty points were randomly chosen in the lung tissue area to
acquire 20 spectra for each sample using a 100× objective over
a 10 s exposure time at 50 mW (50% of the total power). Three
scans were accumulated for each spectral acquisition for
a suitable signal-to-noise enhancement. The spectra were ob-
tained in the range of 400–4000 cm−1 with a resolution of
1 cm−1. The equipment was calibrated to ensure Raman signal
accuracy, setting the 520.5 cm−1 silicon line before the
detection.

Sharp spikes with narrow bandwidths resulting from cosmic
rays frequently occur in Raman spectra, signicantly distorting
the Raman spectra and impeding the accurate acquisition of
attribute data from the measured samples. Additionally, minor
alterations in the optical path of the instrument and the
measurement environment during detection can introduce data
noise. Furthermore, Raman spectra are susceptible to tissue
autouorescence, leading to the emergence of an additive
featureless background in the raw Raman spectra. Consequently,
the preprocessing procedures for the Raman raw spectra typically
include spectral cosmic ray removal, smoothing, and uorescence
background subtraction,30 performed using built-in functions in
the WiRE 4.2 soware. Moreover, the Raman spectra were
normalized (1-Norm, area = 1) to remove the inuence from the
excitation intensity uctuation or changes in the focusing. Finally,
the Raman spectra were truncated to the bio-ngerprint region
(600–1800 cm−1) and the high-wavenumber region (2800–
3100 cm−1) before the data analysis.

Per the experimental grouping, the Raman spectral data set
included fresh (immediate aer death) and decomposed
sample subsets (24 h aer death). Before establishing and
verifying the classication models, of each eight-rat group, ve
© 2024 The Author(s). Published by the Royal Society of Chemistry
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rats were randomly selected with their spectral data for the
training set, while the three other rats were assigned to the test
set.
Data analysis

Principal component analysis (PCA), a widely used dimension
reduction method,31 was applied to the fresh subset to project
the samples onto the two-dimensional PC space to visualize
a spectral dataset for exploring the spectral variations. More-
over, some spectra outliers were identied and removed based
on the leverage values and Q-residuals in the PCA before
subsequent analysis.32

Partial least-squares discriminant analysis (PLS-DA), a clas-
sical supervised pattern recognition algorithm, was performed
to further analyze the spectral differences aer the preliminary
exploration by PCA. A PLS-DA classication model was estab-
lished using a 10-fold cross-validation to discriminate the
spectra of the fresh lung tissues of rats that had died from
asphyxia and SCD. The differential spectral variables contrib-
uting to the distinction were shown according to the regression
coefficients. Subsequently, the relative peak intensities of the
main differential spectral variables were compared at different
postmortem intervals (PMIs) aer overall normalization.
Statistical signicance differences were assessed by the Mann–
Whitney U test (a nonparametric method) since the data did not
pass the normality test and the homogeneity test of variance.
Statistical analysis was performed using IBM SPSS Statistics
Version 20 (IBM corporation, NY, USA). P < 0.05 indicated
a signicant difference. Consequently, the differential spectral
variables that remained signicantly different throughout the
24 h aer-death period were selected to build classication
models to determine the cause of death preliminarily.

Seven conventional machine learning algorithms, including
support vector machine (SVM), K-nearest neighbor (KNN),
articial neural network (ANN), logistic regression (LR), random
forest (RF), extreme gradient boosting (XGB), and PLS-DA, were
adopted to construct the models based on the training set. The
proper classication approach was determined by accessing ve
evaluation metrics based on the confusion matrix (TP: true
positive; TN: true negative; FP: false positive; FN: false negative)
during the prediction/test process, including the accuracy ((TP +
TN)/(TP + TN + FP + FN)), precision (TP (TP + FP)), recall/
sensitivity (TP/(TP + FN)), specicity (TN/(FP + TN)), and the
area under the curve (AUC) in the receiver operating charac-
teristics (ROC) curve analysis. Data preprocessing and chemo-
metric methods were performed using MATLAB R2017b
(MathWorks, MA, USA) equipped with the MIA Toolbox 1.0
(Eigenvector Research, WA, USA) and Python 3.10.11 (Python
Soware Foundation), with the third-party packages including
scikit-learn,33 numpy,34 pandas,35 and matplotlib.36
Results
Preliminary Raman spectral analysis

Fig. 1a shows the Raman spectra of the fresh sample subset in
the asphyxia and SCD groups aer preprocessing. The solid
© 2024 The Author(s). Published by the Royal Society of Chemistry
lines indicate the average spectra, and the shaded lines repre-
sent one standard deviation. The spectra showed signicant
Raman peaks in the regions of 600–1800 cm−1 and 2800–
3100 cm−1. The peaks spanning from 2800 to 3100 cm−1 orig-
inated from CH, CH2, and CH3 symmetric and antisymmetric
stretching of lipids and/or proteins.37 The region of 1630–
1700 cm−1 corresponded to the amide I peak, which was due to
carbonyl group stretching.38 The peak centered at 1585 cm−1

was attributed to the C]C stretching vibration in proteins,
while the peak at 1558 cm−1 was due to the N–H bending and
C–N stretching modes of amide II in proteins.38 The peaks
ranging from 1050 to 1500 cm−1 originated from various
vibration modes of biological macromolecules, such as the
amide III in proteins, the C–H bending and C–C stretching
vibrations in lipids and proteins, the ring breathing modes of
the DNA/RNA bases, and phosphates vibrations in nucleic
acids.38 The peaks in the region of 600–900 cm−1 were mainly
attributed to nucleic acids.38

The overall variances in the spectra between asphyxia and
SCD were revealed by PCA. Fig. 1b presents the PCA score
results: each point in the two-dimensional space represents
a single spectrum containing rich biochemical information.
Although there was a slight overlap, a signicant separation
tendency of the spectra between the two groups could be seen in
the PC-1 direction, which accounted for 14.75% of the total
variances.
Screening of the spectral features for determining the cause of
death

A binary PLS-DA model was further established to distinguish
the spectra in the fresh sample subset between asphyxia and
SCD. A venetian blind cross-validation procedure was applied to
select an optimal number of latent variables (LVs), which was
necessary for the model establishment and is a key step in
determining the discrimination performance. Fig. S2a† illus-
trates the classication error rate plot versus the LV number.
Four LVs were ultimately used to build the PLS-DA model;
Fig. 2a presents the calibration score plot: the red dotted line
represents the model threshold that decides each spectrum
class. All the asphyxia group spectra were split entirely from that
of the SCD group. Additionally, a distinction close to exactly
correct was achieved in the external validation (Fig. 2b). Fig. S2b
and c in the ESI† depict the corresponding ROC curve analysis
results (AUC: 0.9903) and confusion matrix (accuracy: 0.9469).

However, the results were unsatisfactory when we tried to
put the decomposed samples spectra into the PLS-DA model
as the external validation (Fig. S3†). The classication model
failed to distinguish the decomposed samples spectra
collected at 24 h aer death between the asphyxia and SCD
groups. Therefore, we tried to screen the potential spectral
features whose signicant differences could be maintained
during aer-death autolysis and decomposition to achieve the
postmortem determination of asphyxia from SCD. The
regression coefficient plot demonstrates the degree to which
the spectral features contribute to the discrimination
(Fig. 2c). The higher the Raman peak coefficient absolute
RSC Adv., 2024, 14, 5665–5674 | 5667



Fig. 1 Average spectra (a) and PCA score plot (b) of the lung tissues of rats died from asphyxia (red) or SCD (green). SCD: sudden cardiac death.
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value, the more important their contribution to the classi-
cation model. The Raman peaks with positive and negative
coefficients, marked red and green, mean that their relative
Fig. 2 Results of the PLS-DA model of the rat lung tissues (collected imm
threshold is presented by the red dotted line. (b) External validation score
model. SCD: sudden cardiac death.

5668 | RSC Adv., 2024, 14, 5665–5674
intensities were higher in the asphyxia and SCD groups,
respectively. The negatively correlated peaks for the SCD
group were mainly at 1637, 1585, 1307, and 1168 cm−1, while
ediately after death). (a) Cross-validation score plot. The classification
plot of six independent rats. (c) Regression coefficients for the PLS-DA

© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 1 Tentative biomolecular assignments of the main differential Raman peaks38–47a

Peak (cm−1) Assignment

1637 n(C]O) of amide I
1620 Tryptophan, n(C–C) of porphyrin or hemoglobin
1610 Cytosine
1585 Hydroxyproline, n(C]C) of aromatic amino acids (including

phenylalanine, tyrosine, and tryptophan), porphyrin or hemoglobin,
cytochrome c

1307 d(CH2/CH3) of collagens
1177 Cytosine, guanine
1168 Amino acids, carbohydrates
1128 n(C–N) of proteins, n(C–O) of carbohydrates, cytochrome c
1004 Phenylalanine
748 Red blood cell or hemoglobin, cytochrome c, DNA
666 Guanine, thymine

a n = stretching vibration; d = bending vibration.

Paper RSC Advances
the positively correlated peaks for the asphyxia group were
mainly at 1620, 1610, 1177, 1128, 1004, 748, and 666 cm−1.
The chemical signatures of these main Raman peaks were
assigned, and are listed in Table 1.38–47

Next, the relative peak intensities of these 11 potential
spectral features in fresh and decomposed samples (training
set) were further compared (Fig. 3). The relative peak intensities
of these spectral features varied with aer-death autolysis and
decomposition. Among them, three spectral features, although
still signicantly different 24 h aer death, showed an opposite
quantitative relationship between the asphyxia and SCD groups.
Eight spectral features maintained the signicance and direc-
tion of their differences 24 h aer death. Therefore, excluding
the peaks at 1177, 748, and 666 cm−1, the other eight spectral
features could be used to distinguish the spectra between the
asphyxia and SCD groups within 24 h aer death.
Establishment and evaluation of classication models

Seven conventional machine learning classication algorithms,
namely SVM, KNN, ANN, LR, RF, XGB, and PLS-DA, were used to
build classication models with the selected eight spectral
features on the training set of the decomposed sample subset.
Each model was validated in the test set. Fig. 4 displays a heat-
map of the external validation results with ve evaluation
metrics. The SVM method showed the highest accuracy, preci-
sion, specicity, and AUC value but barely satisfactory sensi-
tivity. The LR approach had the highest sensitivity, but its
precision and specicity were insufficient. The overall classi-
cation performances of the ANN and XGB methods were
unsatisfactory. KNN, RF, and PLS-DA performed well but
slightly worse than SVM.

Fig. 5a presents the visual prediction results of the SVM
classier. Each point represents a single spectrum, and
different colors represent different groups. The classication
results were represented through different colors of the spaces
in which the points were located. Most spectra were correctly
classied. Seven spectra in the asphyxia group were mis-
classied as SCD, and one in the SCD group wasmisclassied as
asphyxia, as the confusion matrix also shows in Fig. 5c. The
© 2024 The Author(s). Published by the Royal Society of Chemistry
model accuracy was 0.9223 in the test process. Fig. 5b shows the
ROC curve with an AUC of 0.9851. The SVM classier gave
a sensitivity of 0.8409 and a specicity of 0.9831 at the optimal
threshold. Fig. 5d illustrates the overall correct prediction
percentages for each rat in the test set when we set the classi-
cation criterion as “the class/group to which more than 50% of
the spectrum belongs”. The cause of death of each rat in the test
set was determined correctly.

Discussion

This study detected the Raman spectra of lung tissues, collected
at 0 h and 24 h aer death, of rats that had died from asphyxia
and SCD. The spectral differences in the Raman proles were
analyzed and the spectral features that maintained their
signicant differences during the 24 h aer-death period were
screened. Seven machine learning algorithms were employed to
build classication models to distinguish between the two
complex causes of death.

The mean preprocessed Raman spectra showed that the uo-
rescence background was eliminated from the baseline and the
random signal noises and cosmic ray spikes were successfully
reduced. The Raman spectra provided comprehensive biochem-
ical information of the lung tissues, including nucleic acids,
proteins, and lipids. However, the spectral shape and the char-
acteristic spectral positions between the asphyxia and SCD groups
were similar, making the visual discrimination challenging.
Nevertheless, a clear discrimination trend emerged between the
spectra of the two groups in the PCA score plot. These results
demonstrate subtle yet detectable biochemical differences in the
lung tissues of rats that had died from asphyxia and SCD, ob-
tained by Raman spectroscopy combined with chemometrics.

The supervised pattern recognition method PLS-DA was
further utilized to differentiate the spectra between the asphyxia
and SCD groups. The spectra of the two groups in the training
set were completely distinguished, and most spectra in the test
set were correctly classied, yielding an AUC value of 0.9903.
This indicates that the classication model was effectively
constructed to determine the cause of death by classifying the
Raman spectra.
RSC Adv., 2024, 14, 5665–5674 | 5669



Fig. 3 Comparison of the relative peak intensities of assigned biomolecular constituents in rats between the two causes of death at 0 and 24 h
after death. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05. SCD: sudden cardiac death, n: stretching vibration, and d: bending vibration.

Fig. 4 Heatmap showing the external validation performances of
SVM, KNN, ANN, LR, RF, XGB, and PLS-DA classifiers built with the
selected differential spectral features on the decomposed sample
subset. SVM, support vector machine; KNN, K-nearest neighbor; ANN,
artificial neural network; LR, logistic regression; RF, random forest;
XGB, extreme gradient boosting; PLS-DA, partial least-squares
discriminant analysis; AUC, area under the curve.

5670 | RSC Adv., 2024, 14, 5665–5674
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By examining the regression coefficients, the primary spec-
tral features that contributed to the discrimination could be
analyzed and the underlying biochemical changes explored.
The Raman peak with the highest absolute regression coeffi-
cient was the negatively correlated peak at 1637 cm−1; this peak
may be assigned to the amide I band, which was due to the
C]O stretching vibrations of proteins (both a-helix and b-sheet
structure).38,39 The sum of intensities of the peaks at 1637, 1558
(C–N stretching and N–H bending vibrations of amide II), and
1230 cm−1 (amide III) were compared in the two groups, rep-
resenting the protein content level (Fig. S4†). These results may
indicate that the lung tissues of SCD rats, compared with those
of asphyxiated rat, had a higher total protein content, with
a difference in protein composition or conformation.

Another negatively correlated peak at 1585 cm−1 with a high
absolute regression coefficient may be attributed to hydrox-
yproline.38 Hydroxyproline is a main component of collagen,
and the connective tissues mainly contained in the lung inter-
stitium have a lot of collagen bers. This was consistent with
the high relative intensity of the 1585 cm−1 peak in Fig. 1a.
Senavirathna et al.40 found that hypoxia induces pulmonary
broblast proliferation, and combined with our results, this
may suggest that the lung tissue of asphyxiated rats tended to
take up more hydroxyproline to synthesize collagen tissue.
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Results of the SVM classifier. (a) Two-dimensional scatter plot showing the external validation results of the SVM classifier. (b) Results of
ROC curve analysis, where the AUC was 0.9851. (c) Confusion matrix. (d) Bar plot showing correct prediction percentages for each rat in the
external validation set. AUC, area under the curve; SCD, sudden cardiac death.
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Besides, the Raman peak at 1585 cm−1 may also represent the
C]C stretching of aromatic amino acids, including phenylal-
anine, tyrosine, and tryptophan.38,41 Another two positively
correlated peak at 1004 and 1620 cm−1 could be assigned to
phenylalanine38 and tryptophan,42 respectively. It was reported
that the amount of these aromatic amino acids in the lung
tissue was changed during asphyxia.48 Moreover, phenylalanine
and tyrosine are precursors to dopamine, a precursor to
epinephrine and norepinephrine. Also, tryptophan is
a precursor to 5-hydroxytryptamine (5-HT). The chemical
structure of these substances is similar in having a benzene ring
structure, which may also show the C]C stretching vibration
peak on a Raman spectrum. Epinephrine has a contractile effect
on small pulmonary vessels and a strong bronchial dilation
effect. In addition, during hypoxia, the increase in vaso-
constricting substances is one of the mechanisms leading to
pulmonary vasoconstriction, and 5-HT may be one of these.49 It
was also reported that dopamine receptors are expressed in
broblasts in lung tissue, and even lung tissue itself can
produce dopamine.50 Therefore, the difference in these peaks in
the Raman spectra between the two groupsmay be related to the
different dopamine, epinephrine, or 5-HT levels with their
different physiological effects in lung tissue during the process
of asphyxia and myocardial infarction affecting the body and
the body response.
© 2024 The Author(s). Published by the Royal Society of Chemistry
In addition to being attributed to tryptophan, the 1620 cm−1

peak may also be derived from porphyrin42 or haemoglobin.43

Besides, the 1585 cm−1 peak may also be related to porphyrin or
hemoglobin due to having a C]C structure (Neugebauer et al.43

assigned the peak at 1584 cm−1 to hemoglobin). Furthermore, it
was reported that the 750 and 752 cm−1 peaks may be derived
from CH2,6 out-of-plane bending of red blood cells (RBCs) and
the porphyrin breathing mode in the heme groups of hemo-
globin, respectively.38 This suggests that our positively corre-
lated peak at 748 cm−1 may originate from RBC or hemoglobin.
Moreover, blood spectral data from some Raman spectroscopy
studies based on time since deposition,51 gender,52 and
species53 of bloodstains also support that some of the differ-
ential peaks (such as 1004, 1128, and 1168 cm−1) may be related
to hemoglobin or RBCs. Small vein congestion, enhanced
vascular permeability, and elevated blood pressure caused by
asphyxia may lead to capillary rupture and bleeding. Therefore,
the differences in the Raman spectra may suggest more RBC or
hemoglobin in lung tissues of asphyxiated rats, which could be
related to pulmonary petechial hemorrhage.

Moreover, a 2020 Raman spectroscopy study of lung cancer
tissues assigned three Raman peaks at 748, 1129, and
1586 cm−1 to cytochrome c. These three are also Raman peaks
with high regression coefficients in our results (the latter two
displayed a small deviation in the Raman shi, which was
acceptable). Cytochrome c is a heme protein involved in the
RSC Adv., 2024, 14, 5665–5674 | 5671
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respiratory chain of mitochondria as an electron carrier.54

Hypoxia causes oxidative respiratory chain dysfunction, and
exogenous cytochrome c can play a rst aid or auxiliary treat-
ment role in tissue hypoxia. Therefore, the three differential
Raman peaks in our results may suggest the differences in the
effects of the two causes of death on oxidation–reduction
processes in energy metabolism.

The positively correlated peak at 1610 cm−1 was located in
the region dominated mainly by the amide I band of proteins.
However, this peak was insignicant in Fig. 1a and the
1637 cm−1 peak was assigned to the C]O stretching vibration
of amide I, as mentioned above. Therefore, the difference in the
1610 cm−1 peak may be due to other substances. By searching
the literature, the 1610 cm−1 peak and another three positively
correlated peaks at 1177, 748 (besides RBCs or hemoglobin),
and 666 cm−1 may be attributed to nucleic acid.38 Therefore,
these results may indicate different nucleic acid metabolisms in
the lung tissues of the two groups during the process of
asphyxia and myocardial infarction, affecting the body and the
body response and causing a higher nucleic acid content in the
lung tissues of asphyxiated rats compared with SCD rats.

The lipid peaks in the range of 3100–2800 cm−1 showed high
relative intensities (Fig. 1a) but low regression coefficients
(Fig. 2c), indicating that the lipid metabolism difference was
not very large and was not an important aspect to distinguish
the lung tissues of the two groups. The negatively correlated
peak at 1307 cm−1 may be attributed to the CH2/CH3 bending
vibration of lipids and/or collagens.38 Due to its higher regres-
sion coefficient than lipid peaks, the 1307 cm−1 peak may be
related to collagen tissues, as was the 1585 cm−1 peak in this
study. Moreover, the 1168 cm−1 peak may be attributed to
amino acids or carbohydrates45–47 and the 1128 cm−1 peak may
be derived from proteins or carbohydrates.38 The results suggest
that in addition to differences in the protein type and content
shown also by the 1637 cm−1 peak in the lung tissues of the two
groups, there may also be differences in carbohydrates, such as
glucose (energy supply or consumption), or substances con-
taining carbohydrates, such as glycolipids or glycoproteins (cell
function or structure).

Notably, it is not realistic to make a clear assignment for
these Raman peaks due to the simultaneous contribution of
various biomolecules to a particular Raman peak and the
complex nature of lung tissue as a biological sample containing
a wide variety of biomolecules. However, we tried to search
previous literature for peak assignments. Moreover, screening
the differential spectral features and building classication
models to distinguish the causes of death is more important
than interpreting the biomolecular differences in this study.

A PLS-DA classication model that can distinguish fresh
lung tissues spectra was successfully constructed. However, our
attempt to determine the cause of death using this model in the
24 h aer-death sample data failed (Fig. S3†). This is because
autolysis and putrefaction signicantly alter all biomolecular
content aer death; therefore, some subtle biochemical differ-
ences between asphyxia and SCD may be masked. However, we
do not intend to develop another model to distinguish the
spectra of lung tissue collected 24 h aer death because, in
5672 | RSC Adv., 2024, 14, 5665–5674
practice, postmortem time points are innite, and it is impos-
sible to build models for every postmortem time point. There-
fore, the spectral features that maintained signicant
differences aer death were screened subsequently.

The height of a Raman peak is directly related to the relative
content of the corresponding chemical signatures.55 We
compared the relative intensity changes of the primary differ-
ential spectral features; nding that with aer-death autolysis
and decomposition, the relative contents of some substances
that these spectral features may represent were increased and
some were decreased, which might be due to bio-
macromolecular degradation and microbial behaviors. Impor-
tantly, 8 of the 11 spectral features maintained a signicant
difference up to 24 h aer death (the other three, although
signicant at 24 h aer death, had opposite quantitative rela-
tionships between the two groups). Therefore, the eight differ-
ential spectral features were further used to build classication
models.

In preprocessing in some literature, spectral data obtained
from various animal individuals were randomly allocated into
training and test data sets at a ratio of 7 : 3. However, it is
hypothesized that this may overlook the individual variations,
as certain spectra employed for external validation could origi-
nate from the same individuals as those utilized for modeling,
leading to improved yet inaccurate prediction performance in
the classication model. Therefore, a random selection process
was employed to assign ve rats from each group as the training
set, while the remaining three rats were designated as the test
set during the data preprocessing stage to enhance the reli-
ability of the ndings. The classication model evaluation was
solely based on the outcomes of the independent test set,
ensuring complete separation from the training set.

Classication is a fundamental task in machine learning
with numerous algorithms; diverse classication algorithms
can be explored experimentally to ascertain the most suitable
one for a given task or dataset. This study calculated ve
conventional evaluation metrics for the classication task:
accuracy, precision, recall/sensitivity, specicity, and AUC. The
rst four indicators can only offer a partial assessment of
a model's performance, and each has its own limitations, while
the AUC indicator exhibits a relatively balanced evaluation. In
short, the higher the overall value of these indicators, the better
the classication model performance. The SVM classication
algorithm has the advantages of good classication perfor-
mance and high capacity for generalization.56 Meanwhile, its
disadvantages are the difficulty handling large-scale samples,
solving multi-class problems, and sensitivity to missing data,56

but these problems did not exist in our classication task. These
are probably why the SVM classier performed best here. The
classication model, constructed using chosen differential
spectral features, displayed exceptional performance, with an
AUC value of 0.9851. This result indicates that the most spectra
of the decomposed lung tissue from the asphyxia and SCD
groups could be accurately differentiated by the model.
Furthermore, the biochemical information of each rat's lung
tissue was actually represented by more than a dozen spectra
rather than a single one. The cause of death in a rat should not
© 2024 The Author(s). Published by the Royal Society of Chemistry
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be determined by a single spectrum. Therefore, if we set the
classication criterion as “the class/group to which more than
50% of the spectrum belongs”, the cause of death of each rat in
the test set would be determined correctly, as shown in Fig. 5c.

As previously stated in the Introduction, in most previous
studies employing molecular biological techniques to screen
biomarkers, asphyxia or SCD were studied separately (the rats
sacriced by cervical dislocation were set as the control group),
which lacked investigation of the specicity. Furthermore, the
potential impact of aer-death autolysis and decomposition on
the identied biomarkers was not considered. Herein, we
directly took asphyxia and myocardial infarction, which oen
affect each other's accurate cause of death determination in
practical settings, as the experimental group to improve the
specicity and practicality of the results. Additionally, our
method was designed to determine the causes of death in the
presence of aer-death autolysis and decomposition. Although
we only examined the differences and diagnostic abilities of
certain spectral features at 24 h aer death, the encouraging
positive outcomes inspire and present a novel approach to
solving or avoiding the effect aer death. Although the Raman
spectroscopy technology incomprehensively elucidated the
precise biomolecular alterations occurring in various death
processes, it offers global biochemical information and could
prove highly advantageous for forensic applications as a conve-
nient, rapid, non-destructive, and inexpensive tool. In subse-
quent investigations, it is imperative to explore a wider PMI
range and collect human samples to assess the feasibility and
practical signicance of this research idea.

Conclusions

Different biochemical alterations in the lung tissues of rats that
had died from asphyxia and SCD could be detected and
preliminary analyzed using Raman spectroscopy. The differen-
tial spectral features representing these subtle biochemical
differences were employed to build a classication model to
distinguish asphyxia from SCD. Eight out of eleven main
differential spectral features maintained their signicant
differences at 24 h aer death and could be utilized to deter-
mine the cause of death under decomposition and autolysis.
Among the seven frequently used machine learning classica-
tion algorithms, SVM performed superior with these given data,
achieving an AUC value of 0.9851 in external validation. This
study demonstrated the potential of Raman spectroscopy with
machine learning algorithms to investigate differential
biochemical alterations derived from different death processes
to aid determining the cause of death.
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