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Abstract Previously, we identified long repeat sequences that are frequently associated with

genome rearrangements, including copy number variation (CNV), in many diverse isolates of the

human fungal pathogen Candida albicans (Todd et al., 2019). Here, we describe the rapid

acquisition of novel, high copy number CNVs during adaptation to azole antifungal drugs. Single-

cell karyotype analysis indicates that these CNVs appear to arise via a dicentric chromosome

intermediate and breakage-fusion-bridge cycles that are repaired using multiple distinct long

inverted repeat sequences. Subsequent removal of the antifungal drug can lead to a dramatic loss

of the CNV and reversion to the progenitor genotype and drug susceptibility phenotype. These

findings support a novel mechanism for the rapid acquisition of antifungal drug resistance and

provide genomic evidence for the heterogeneity frequently observed in clinical settings.

Introduction
The evolution of antifungal drug resistance is an urgent threat to human health worldwide, particu-

larly for hospitalized and immune-compromised individuals (Perea and Patterson, 2002; Pfal-

ler, 2012; Vandeputte et al., 2012). Only three classes of antifungal drugs are currently available

and resistance to all three classes occurred for the first time in the emerging fungal pathogen Can-

dida auris (Chen and Sorrell, 2007; Ghannoum and Rice, 1999; Lockhart et al., 2017). Importantly,

the mechanisms and dynamics of acquired antifungal drug resistance, in vitro or in a patient under-

going antifungal drug therapy, are not fully understood.

The most common human fungal pathogen, Candida albicans, causes nearly 500,000 life-threat-

ening infections each year (Brown and Netea, 2012). Disseminated bloodstream infections of C.

albicans have a high mortality rate (15–50%) despite available antifungal therapies (Pfaller et al.,

2010; Pfaller et al., 2019). The failure of antifungal drug therapy is likely multifactorial and is com-

pounded by the fungistatic, not fungicidal, mechanisms of most antifungal drugs (Bicanic et al.,

2009; Roemer and Krysan, 2014). Additionally, antifungal drug tolerance, the fraction of growth

above an individual isolate’s minimum inhibitory concentration (MIC), can cause an inability to effec-

tively clear these fungal infections (Berman and Krysan, 2020). Mechanisms that cause antifungal

drug tolerance are not fully understood, but likely include the induction of cell growth and division,

core stress response regulators, and cell wall and cell membrane biosynthesis pathways

(Berman and Krysan, 2020; Mayer et al., 2013; Onyewu et al., 2004; Rosenberg et al., 2018;

Sanglard et al., 2003).

C. albicans and other fungal pathogens exhibit significant karyotype and genome plasticity

(Bravo Ruiz et al., 2019; Chibana et al., 2000; Croll and McDonald, 2012; Gerstein et al., 2015;

Magee and Magee, 2000; Selmecki et al., 2010; Shin et al., 2007; Sionov et al., 2010;

Suzuki et al., 1982; Zolan, 1995). The genome plasticity observed in C. albicans isolates is somatic

(asexual), based upon the absence of evidence for a meiotic cell cycle (Alby et al., 2009;
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Forche et al., 2008; Hull and Johnson, 1999; Magee and Magee, 2000; Tzung et al., 2001), and

includes whole genome duplication/reduction, aneuploidy, segmental aneuploidy, and loss of het-

erozygosity (LOH) (Abbey et al., 2014; Ene et al., 2018; Forche et al., 2008; Forche et al., 2019;

Ford et al., 2015; Gerstein et al., 2017; Hickman et al., 2013; Hirakawa et al., 2015;

Ropars et al., 2018; Rustchenko-Bulgac, 1991; Selmecki et al., 2006; Todd et al., 2017). From an

evolutionary prospective, the genome plasticity of C. albicans (and other fungal pathogens) may dra-

matically alter the frequency with which beneficial mutations are acquired within a population, result-

ing in both drug resistance and drug tolerance phenotypes.

Genome plasticity due to amplification or deletion of a chromosome segment, defined herein as

copy number variation (CNV), is found across all domains of life (Anderson and Roth, 1977;

Beroukhim et al., 2010; Chow et al., 2012; Dulmage et al., 2018; Elde et al., 2012; Riehle et al.,

2001; San Millan et al., 2017; Zarrei et al., 2015; Żmieńko et al., 2014). CNVs are highly prevalent

in human cancers, resulting in tumorigenesis, metastasis, and increased rates of mortality

(Beroukhim et al., 2010; Heitzer et al., 2016; Hieronymus et al., 2018; Shlien and Malkin, 2009;

Zack et al., 2013). In Saccharomyces cerevisiae, CNVs of membrane transporters (e.g. HXT6/7,

CUP1, GAP1, and SUL1) can provide a strong fitness benefit in nutrient limiting or high-copper envi-

ronments (Adamo et al., 2012; Brown et al., 1998; Gresham et al., 2008; Gresham et al., 2010;

Hull et al., 2017; Lauer et al., 2018; Lin and Li, 2011; Payen et al., 2014; Selmecki et al., 2015).

Many CNVs occur due non-allelic homologous recombination (NAHR) between repeat sequences

(Chow et al., 2012; Deng et al., 2015; Finn and Li, 2013; Haber and Debatisse, 2006;

Hastings et al., 2009; Lobachev et al., 2002; Mizuno et al., 2013; Narayanan et al., 2006;

Putnam et al., 2014; Ramocki et al., 2009; Zhao et al., 2014). Some of these CNVs are amplified

via a mechanism that relies on short repetitive sequences and aberrant base pairing during replica-

tion fork stalling (Brewer et al., 2015; Brewer et al., 2011) or DNA re-replication (Finn and Li,

2013; Green et al., 2010). In both S. cerevisiae and human cancers, extrachromosomal circular DNA

(eccDNA) can also yield high copy CNVs (Gresham et al., 2010; Hull et al., 2019; Libuda and Win-

ston, 2006; Møller et al., 2018; Møller et al., 2015; Paulsen et al., 2018; Singh and Wu, 2019).

Experimental evolution supports that CNVs can occur and spread rapidly within a population under

selection, and competition between distinct CNV lineages (clonal interference) is frequently

observed (Lauer et al., 2018; Payen et al., 2014). Additionally, CNVs can increase the rate in which

de novo mutations are acquired relative to the rest of the genome, and further alter the mutational

and adaptive landscape of viral, bacterial, and eukaryotic organisms (Bayer et al., 2018;

Cone et al., 2017; Elde et al., 2012; Otto, 2007; Pavelka et al., 2010; Sun et al., 2009;

Yona et al., 2012; Zhou et al., 2011). However, in the absence of selective pressure, CNVs are gen-

erally thought to confer a fitness defect to the cell and are removed from the population

(Adler et al., 2014; Tang and Amon, 2013). Therefore, the mechanism and dynamics of CNV gain

and loss are critical to our understanding of adaptive evolution and pathogenesis.

Antifungal drug stress selects for aneuploidy and CNV formation in diverse human fungal patho-

gens, including C. albicans, C. auris, and Cryptococcus neoformans (Gerstein et al., 2015;

Hwang et al., 2017; Muñoz et al., 2018; Selmecki et al., 2006; Selmecki et al., 2009;

Sionov et al., 2010). In C. albicans, a recurrent CNV that amplifies the entire left arm of Chr5 in an

isochromosome (i(5L)) is sufficient to cause resistance to azole antifungal drugs (Selmecki et al.,

2006; Selmecki et al., 2008). This resistance is due to copy number amplification of two genes on

Chr5L: TAC1, a transcriptional activator of the multidrug transporters (Cdr1 and Cdr2), and ERG11,

the target of the azole antifungal drugs. i(5L) is frequently identified in clinical isolates and is the only

CNV known to cause azole resistance in different genetic backgrounds (Ford et al., 2015;

Selmecki et al., 2006; Selmecki et al., 2008; Todd et al., 2019). In addition to copy number ampli-

fication, acquisition of non-synonymous, gain-of-function mutations in TAC1 and ERG11 can cause

resistance due to constitutive activation of drug efflux pumps and a decreased affinity to the azole

drug (Coste et al., 2004; Morio et al., 2010). LOH of these gain-of-function alleles can increase the

level of resistance even more dramatically (Coste et al., 2007; Coste et al., 2006; Ford et al.,

2015; Sanglard et al., 2003; Selmecki et al., 2008; White, 1997).
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Long repeat sequences (65 bp – ~6.5 kb) represent a significant source of genome plasticity in C.

albicans isolates obtained both in the presence and absence of antifungal drugs (Todd et al., 2019).

All CNV breakpoints and many LOH breakpoints occur at long repeat sequences (Todd et al.,

2019). Furthermore, CNV and LOH breakpoints frequently co-occur within the same long repeat

sequences. What is not clear is whether a conserved mechanism might link CNV and LOH events

during antifungal drug selection, given that both are important mechanisms of acquired antifungal

drug resistance.

Through the study of C. albicans isolates subjected to azole antifungal drugs, we have identified

a novel mechanism driving the rapid and recurrent formation of high copy CNVs. These CNVs

amplify large genomic regions to more than 12 copies per genome and decrease sensitivity to multi-

ple antifungal drugs. CNV formation appears to occur via a dicentric chromosome intermediate and

successive breakage-fusion-bridge cycles that are repaired using two distinct long repeat sequences.

This mechanism promotes rapid and amplifiable CNV formation during antifungal drug selection.

Once the selection is relaxed, cells with the CNV can rapidly return to the progenitor copy number,

leaving little evidence that the CNV ever occurred. The transient nature of these CNVs causes phe-

notypic and population-level heterogeneity that is often observed with clinical isolates in the pres-

ence of antifungal drug, including: heteroresistance, trailing growth, and tolerance (Berman and

Krysan, 2020; Colombo et al., 2014; Rueda et al., 2017). Ultimately, these CNVs represent a previ-

ously uncharacterized, complex mechanism of gene amplification and chromosome plasticity that is

exploited during adaptation to antifungal drug stress.

Results

Extensive copy number amplifications occur during adaptation to
antifungal stress
To identify mechanisms driving CNV formation during adaptation to antifungal drug stress, we con-

ducted 48 parallel in vitro evolution experiments with four drug-susceptible C. albicans clinical iso-

lates, each representing a distinct genetic background (SC5314, P75016, P75063, and P78042,

Supplementary file 1; Hirakawa et al., 2015). After 100 generations in physiological concentrations

of the most commonly prescribed antifungal drug, fluconazole (FLC, 1 mg/ml) (Felton et al., 2014),

the minimum inhibitory concentration (MIC) was determined (See Materials and methods). A sub-set

of the FLC-evolved isolates (14/48) that acquired at least a twofold increase in MIC50 relative to their

progenitor were selected for whole genome sequencing (WGS). WGS analysis revealed that all (14/

14) FLC-evolved isolates acquired one or more whole chromosome and/or segmental chromosome

aneuploidies (Figure 1A). Half of the isolates (7/14) acquired novel CNVs (referred to herein as ‘com-

plex CNVs’) that shared several key features: they had high copy numbers (up to 13 copies per

genome), occurred entirely within a single chromosome arm (e.g. within Chr1R in AMS4107 and

Chr4L in AMS4702), and were not associated with any centromere (CEN) sequence or the C. albicans

repetitive element known as the Major Repeat Sequence (MRS, found eight times within the C. albi-

cans genome) (Chibana et al., 1994; Chindamporn et al., 1998; Lephart and Magee, 2006). These

complex CNVs amplified chromosome segments that ranged in length from ~164 kb to ~1.02 MB

and contained 57–462 ORFs. The remaining isolates acquired either whole chromosome aneuploi-

dies and/or segmental aneuploidies (e.g. i(5L) in AMS4106 and Chr7R in AMS4444) that had typical

copy numbers (3–4 copies) and copy number breakpoints (e.g. CEN5 in AMS4106 and MRS7b in

AMS4444) that have been observed previously in drug-evolved isolates (Selmecki et al., 2006;

Todd et al., 2019), and were not analyzed further.

Complex CNVs are flanked by distinct long inverted repeat sequences
To identify the mechanism driving the formation of the novel complex CNVs, we determined the

copy number breakpoints associated with each of the complex CNVs using a combination of read

depth and allele ratio analyses. All copy number breakpoints occurred within 2 kb of one of the

1974 long repeat sequences identified previously by Todd et al., 2019 (Supplementary file 2). How-

ever, unlike previous observations, these complex CNVs were comprised of a two-sided, stair-step

amplification pattern that involved at least two distinct long inverted repeat sequences

(Supplementary file 2). Accordingly, each long repeat sequence was associated with two distinct
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Figure 1. Complex CNVs are comprised of stair-step amplifications flanked by distinct long inverted repeat sequences. (A) Whole genome sequence

data of FLC-evolved isolates plotted as log2 ratio and converted to chromosome copy number (y-axis, 1–12 copies) and chromosome position (x-axis,

Chr1-R) using the Yeast Mapping Analysis Pipeline (YMAP). Complex CNVs amplify >12 copies of a chromosomal region ranging from 164 kb to 1.02

Mb in length. Centromeres indicated with a red arrowhead. Chromosomal positions of all MRS sequences (black dots) and the rDNA array (blue dot)

are indicated below AMS4702. The progenitor of each FLC-evolved isolate and the fold increase in FLC MIC50 at 48 hr between the progenitor and the

FLC-evolved isolate is indicated. The symmetric stair-step CNV breakpoints for two isolates: (B) Chr1R of AMS4107 and (C) Chr4L of AMS4702. The

relative genome sequence read depth is plotted according to chromosome position using R. The left and right side of each CNV (indicated with blue

and orange lines along the x-axis of each chromosome) are expanded for higher resolution (left and right lower panels). In both isolates (AMS4107 and

AMS4702), the CNV is flanked by two, distinct long inverted repeat sequences (blue and orange arrows) that do not share homology. The highest copy

number amplification occurs between the two, distinct inverted repeats. All copy number breakpoints and long inverted repeat sequence details are

found in Supplementary file 2. All genes found within the amplified regions are found in Supplementary file 4. Repeat numbers refer to

Supplementary file 2 from Todd et al., 2019.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Recurrent CNV breakpoints located on Chr3R amplify MRR1.

Figure 1 continued on next page
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copy number changes, generating regions with different degrees of amplification, with the highest

copy number always flanked by lower copy numbers (Figure 1B and C, Supplementary file 6). For

example, a complex CNV on Chr1R (in AMS4107) comprised a ~218 kb region amplified to nine cop-

ies, flanked on the left and right by a region of variable length (the intra-repeat spacer length) that

was amplified to six copies, that, in turn, was surrounded on both sides by a region of 2N copy num-

ber (the basal chromosome copy number). Surprisingly, the same symmetric stair-step copy number

pattern (2-6-9-6-2 copies) was observed on two different chromosomes (Chr1 and Chr4) in two dif-

ferent genetic backgrounds (AMS4107 and AMS4702), indicating that the mechanism is neither chro-

mosome-specific nor strain-specific (Figure 1B and C). Complex CNVs with asymmetric stair-step

copy numbers also occurred due to an additional breakpoint in a third distinct long inverted repeat

sequence (e.g. 2-4-6-5-3-3-2 copies in AMS4105 and 2-3-3-6-9-6-2 copies in AMS4397), that also

increased the length of the CNV (see Materials and methods for determination of copy number

intervals, Supplementary file 6). Of the eight complex CNVs, the highest copy number identified (2-

7-13-7-2 copies) occurred in AMS4104 on Chr3R. These findings indicate that the mechanism driving

the formation of these complex CNVs uses long repeat sequences, that the amplified number of

copies is variable, and that both odd and even numbers of amplified copies can be detected.

Amplification of the same chromosomal region also occurred in isolates with different genetic

backgrounds and from independent evolution experiments (Figure 1A). These recurrent CNVs high-

light genes that are likely under selection during adaptation to FLC. For example, recurrent CNV

breakpoints on Chr1R occurred at Repeats 57 and 58 in AMS4107 and AMS4105, and recurrent

breakpoints on Chr3R occurred at Repeats 134 and 136 in AMS4105, AMS4397, and AMS4104 (Fig-

ure 1—figure supplement 1, Supplementary file 2). Interestingly, while the CNV breakpoints on

Chr4L were not recurrent and instead occurred at different long repeat sequences, all three of the

CNVs amplified a common ~118 kb region in AMS4106, AMS4444, and AMS4702

(Supplementary file 2). Therefore, during FLC selection, complex CNV formation results in copy

number amplification of recurrent chromosomal regions.

All the long inverted repeat sequences associated with the complex CNVs were contained within

a single chromosome arm (intra-chromosome arm). The occurrence of intra-chromosome arm

inverted repeat sequences is relatively low (77/233) within the C. albicans genome (excluding MRSs

and ORFs which contain complex embedded tandem repeats, see Todd et al., 2019). The repeat

sequences found at these complex CNV breakpoints were among the longest (median 1513 bp)

repeats, and had among the highest median shared sequence identity (96.1%) of all long repeat

sequences found throughout the genome (median 516 bp, 95.1% median shared sequence identity),

which is similar to repeats associated with breakpoints resulting in CNV, LOH and large chromo-

somal inversions in C. albicans isolates obtained in the presence and absence of antifungal drugs

(Todd et al., 2019).

To ask if these complex CNVs were intra-chromosomal or extra-chromosomal amplifications (e.g.

eccDNA that appear in in budding yeast and cancer cells; Hull et al., 2019; Møller et al., 2018;

Møller et al., 2015; Paulsen et al., 2018; Wu et al., 2019), we used CHEF karyotype analyses. Sep-

aration of Chrs 4–7 identified a dramatic increase in Chr4 size in two isolates (AMS4702 and

AMS4444) with Chr4L CNVs relative to their progenitors and indicates that these CNVs are intra-

chromosomal, rather than extra-chromosomal, amplifications (Figure 1—figure supplement 2).

Because detection of CNVs on Chr1 and Chr3 was obviated by the large size of these chromosomes,

restriction digest was used to characterize these intra-chromosomal amplification events (see below,

e.g. Figure 3). Therefore, while we cannot completely rule out the possibility of eccDNA amplifica-

tions in some of the isolates, the increased chromosome sizes (Figure 1—figure supplement 2) sup-

port the idea that the complex CNVs are intra-chromosomal amplification events.

Surprisingly, these CNVs tended to occur within chromosomal regions that were homozygous in

the progenitor isolates, making it impossible to determine which haplotype was amplified in the

CNVs (Figure 1—figure supplement 3). Nonetheless, for the CNVs from heterozygous progenitor

Figure 1 continued

Figure supplement 2. Complex CNVs increase chromosome size.

Figure supplement 3. Complex CNVs are predominantly found in homozygous sequence.
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sequences, the amplifications derived from only one haplotype and the allele ratio scaled with copy

number (e.g. the percent majority allele was ~50–62–71–64–50 for a 2-3-4-3-2 copy CNV in

AMS4106). This supports that the complex CNVs arose via a stair-step mechanism that amplified just

one haplotype.

Complex CNVs increase multidrug fitness and tolerance
While bacteria usually exhibit a fitness tradeoff between drug resistance and fitness (Bagel et al.,

1999; Basra et al., 2018; Melnyk et al., 2015), the situation is far less clear in fungal pathogens. To

explore this issue comprehensively, we performed growth curve and MIC analyses across the geneti-

cally diverse isolates that had been evolved in vitro. In rich medium, the growth rate and maximum

OD600 was similar between all FLC-evolved isolates and their progenitors (Figure 2A–D, left panels),

with several notable increases in lag phase length (growth curve summary statistics provided in

Supplementary file 3). In the presence of FLC (1 mg/ml), the growth rate and maximum OD600 were

increased for all FLC-evolved isolates relative to their progenitors, and one isolate (AMS4444) grew

better in FLC than in rich medium (Figure 2A–D, right panels, Supplementary file 3). While each

progenitor and FLC-evolved isolate had unique growth trajectories, these observations support, in

general, that the complex CNVs provided increased fitness in the presence of drug without a major

cost to fitness in the absence of drug.

The sub-inhibitory concentrations of FLC used in our evolution experiment and the fungistatic

nature of azole antifungal drugs can select for mutants that exhibit drug tolerance: the ability to

grow at drug concentrations above the MIC50 after 24 hr (Berman and Krysan, 2020; Delarze and

Sanglard, 2015; Rosenberg et al., 2018; Sanglard et al., 2003). We measured tolerance to FLC

and four other azole drugs (miconazole, itraconazole, ketoconazole, and posaconazole) as supra-

MIC growth (SMG), which is calculated from the average growth (OD600) at 48 hr for all wells above

the MIC50 at 24 hr (Berman and Krysan, 2020; Rosenberg et al., 2018). Four of the seven isolates

with complex CNVs had higher SMG levels than their progenitors in FLC, and all seven had higher

SMG levels in miconazole (Figure 2E and F, Figure 2—figure supplement 1). AMS4444 and

AMS4105 had the highest SMG level in all azoles tested (0.53–0.73) and exhibited the highest

growth rates and maximum OD600 in 1 mg/ml FLC (Figure 2C–D). Therefore, all isolates that

acquired a complex CNV had increased fitness (growth rate and MIC50) and increased tolerance

(SMG) to one or more azole antifungal drugs, and several isolates had increased tolerance to all

azoles tested.

Genes involved in drug resistance and tolerance are amplified in
recurrent CNVs
To identify genes located within the CNVs that could be driving the increased fitness in azole drugs,

we first characterized genes known to cause drug resistance. We started by looking at genes with

the potential to encode efflux pumps. We found that MRR1, the transcriptional regulator of the mul-

tidrug efflux pump Mdr1, was amplified by up to 13 copies in the three isolates with a Chr3R CNV

(Figure 1—figure supplement 1). Gain-of-function mutations in MRR1 can cause constitutive upre-

gulation and multidrug resistance (Dunkel et al., 2008; Morschhäuser et al., 2007; Schubert et al.,

2008); copy number amplification alone was not previously shown to cause resistance. Additionally,

multidrug transporters CDR1 and CDR2 map to Chr3R near MRR1, and these genes were amplified

within the same CNV as MRR1 in two isolates (AMS4105 and AMS4397). MRR1 was always amplified

at the highest copy number of the CNVs, while CDR1 and CDR2 were amplified to lower copy num-

bers. Finally, two other genes within the complex CNVs, QDR2 (Chr3R) and orf19.4889 (Chr1L), both

encode predicted major facilitator superfamily (MFS) membrane transporters that may have a role in

antifungal drug efflux.

Next, we searched for genes that are required for membrane and cell wall integrity, calcium and

iron availability, and core stress response pathways which are likely to be important for antifungal

tolerance (Berman and Krysan, 2020; Garnaud et al., 2018; O’Meara et al., 2017; Onyewu et al.,

2004; Rosenberg et al., 2018; Sanglard et al., 2003; Taff et al., 2013). The calcineurin-regulated

transcription factor CRZ1, involved in maintenance of membrane integrity and antifungal drug toler-

ance (Onyewu et al., 2004; Sanglard et al., 2003), also maps to Chr3R and was amplified along

with MRR1, CDR1, and CDR2 in the same two isolates mentioned above, both of which had
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Figure 2. Complex CNVs increase multidrug fitness and tolerance. (A–D) 36 hr growth curve analysis in the

absence (YPAD, left) and presence of FLC (YPAD + 1 mg/ml FLC) for each progenitor (black) and FLC-evolved

isolate with a complex CNV. Average slope and standard error of the mean for three biological replicates is

indicated. (E–F) Heat map of isolate growth (OD600 at 24 and 48 hr) in two-fold increasing concentrations of the

Figure 2 continued on next page
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increased tolerance and resistance to multiple azole drugs (AMS4105 and AMS4397,

Supplementary file 4). Other genes that encode other stress response proteins (HSP70, CGR1,

ERO1, TPK1, ASR1, and PBS2) and proteins involved in membrane and cell wall integrity (CDR3,

NCP1, ECM21, MNN23, RHB1 and KRE6) were amplified in the CNVs (Supplementary file 4).

No correlation between the copy number of specific genes and the MIC50 or SMG observed was

evident. However, since these CNVs occurred in different genetic backgrounds, that differ

by ~100,000 unique SNVs, the amplification of certain alleles is likely to affect fitness differently in

each isolate. For isolates from the same genetic background, the copy number of each CNV and

presence of additional chromosome aneuploidies may further impact fitness. The most striking

increase in FLC tolerance (SMG 0.54) was observed for an isolate (AMS4105) that acquired two dif-

ferent CNVs: amplification of Chr3R (containing MRR1, CDR1, CDR2, QDR2, CRZ1, etc.) and Chr1L

(containing ORF19.4889, etc). A different isolate (AMS4104) from the same genetic background had

the same MIC50 at 24 hr (as AMS4105), but no increase in tolerance (SMG = 0.13) relative to the pro-

genitor (SMG = 0.16). AMS4104 acquired only a Chr3R CNV containing MRR1, but no amplification

of CDR1, CDR2, QDR2, CRZ1, or the Chr1L CNV. Therefore, amplification of the MRR1-containing

CNV correlates with an increase in the MIC50, while amplification of additional genes in AMS4105 on

Chr3R and Chr1L (including CDR1, CDR2, and CRZ1) appear to have a greater impact on tolerance.

To ask if any gene functions were enriched within the complex CNVs, we performed gene ontol-

ogy (GO) analysis (Supplementary file 4). The cellular component ‘nuclear microtubule’ was the only

GO term significantly enriched for all genes located within the complex CNVs (p<0.008, Bonferroni

correction for multiple comparisons). The ‘nuclear microtubule’ term included genes that encode

microtubule-binding proteins involved in spindle elongation, organization, and stabilization (ASE1,

KIP3, and BIM1), chromatin remodeling (ISW2), and ribosome biogenesis (NEP1) (Côte et al., 2009;

Enjalbert et al., 2006; Eschrich et al., 2002; McCoy et al., 2015; Nobile et al., 2003;

Nobile et al., 2012; Singh et al., 2011; Tuch et al., 2008; Supplementary file 4). In summary, the

complex CNVs amplified genes known to have a direct role in drug resistance (MRR1, CDR1, and

CDR2) and drug tolerance (CZR1), as well as other roles that may be under selection during adapta-

tion to antifungal drug stress, including maintenance of mitotic spindle function.

Expandable CNVs generated through a step-wise amplification of a
dicentric chromosome
The identification of recurrent CNV breakpoints in different genetic backgrounds raised the possibil-

ity that a common mechanism was driving the formation of these complex CNVs. To further address

the mechanism of formation and to understand the impact of copy number on fitness, we used a set

of isogenic isolates obtained from an agar plate instead of liquid cultures. These four single colony

isolates (AMS3051, AMS3052, AMS3053, and AMS3054) were obtained from the same progenitor

(AMS3050) after 120 hr growth on a single miconazole (20 mg/ml) agar plate (Mount et al., 2018).

Prior whole genome sequencing analysis of these colonies identified a shared CNV of Chr3L

(Mount et al., 2018). To test the hypothesis that these single colonies represented different out-

comes from the same recombination event, due to the short exposure to miconazole and similarity

in karyotypes, we first performed read depth analysis to characterize the CNV breakpoints. All four

colonies were monosomic from the Chr3L left telomere to a shared CNV breakpoint at a long

inverted repeat (Repeat 124 [blue lines], Figure 3A). Strikingly, the major difference between the

four colonies was the maximum number of copies (3–14 copies) of the adjacent ~146 kb region on

Figure 2 continued

azole antifungal drugs (E) fluconazole (FLC) and (F) miconazole. The drug concentration at which 50% of growth is

inhibited (MIC50) is denoted with a yellow line on the heat map. Each heat map represents the average of three

independent MIC50 assays. Supra-MIC growth (SMG), a measurement of tolerance, was calculated as the average

growth at 48 hr above the MIC50 at 24 hr divided by the growth at 48 hr in no drug (see Materials and methods,

Figure 2—source data 1).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Minimum inhibitory concentration raw data.

Figure supplement 1. Complex CNVs increase tolerance and reduce susceptibility to multiple azole drugs.
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Figure 3. Complex CNVs are rapidly expandable in the presence of antifungal drug. (A) Whole genome sequence

data of progenitor isolate (AMS3050) and miconazole-evolved single colonies (AMS3053, AMS3054, AMS3052, and

AMS3051) plotted as in Figure 1A. All four colonies are monosomic from the Chr3L telomere to a CNV breakpoint

at Repeat 124 (blue lines). Stair-step complex CNVs (3 to 14 copies per genome) occur on Chr3L between two

distinct long inverted repeat sequences: Repeat 124 (blue lines) and Repeat 127 (orange lines) (detailed in

Figure 3—figure supplement 1). All four colonies are trisomic for the Chr3 centromere (CEN3, black circle) and

all of Chr3R. (B) The MIC50 increases with the copy number of the complex CNV. Heat map of isolate growth

(OD600 at 48 hr) in twofold increasing concentrations of miconazole. The MIC50 is denoted with a yellow line. Each

heat map represents the average of three independent MIC50 assays (Figure 2—source data 1). (C) Schematic of

the homologous chromosomes in AMS3051. The full length (gray) and dicentric CNV-containing (black) homologs

with the positions indicated for CEN3 (circle), the long repeat sequences (blue and orange lines), and SacII cut

sites (dashed lines). Four regions (I–IV) that support a breakage-fusion-bridge mechanism for the formation of

complex CNVs (see main text for details). (D) Allele ratio plot of all heterozygous loci located within and flanking

the complex CNV for AMS3050 and AMS3051. Allele ratio plots for all isolates are in Figure 3—figure

supplement 2. (E) SacII-digested CHEF karyotype of the progenitor and miconazole-evolved isolates (first lane of

undigested AMS3050 is shown for relative size). The SacII digest isolates the region with variable copy number and

CEN3 (schematic at far right). CHEF gel stained with ethidium bromide (left panel) and analyzed by Southern blot

using a DIG-labeled probe to orf19.344, located within the complex CNV (middle panel), and CEN3 (right panel).

Both Southern blot probes detect a novel band that increases in size as the complex CNV increases in copy

number.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The Chr3L CNV is flanked by two, distinct inverted repeat sequences.

Figure supplement 2. CNVs are intra-chromosomal amplifications between two distinct inverted repeat

sequences.
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Chr3L. This region (as in Figure 1) was flanked by two distinct long inverted repeat sequences result-

ing in a stair-step amplification in AMS3051 and AMS3054 (Repeats 124 [blue lines] and Repeats 127

[orange lines], Figure 3A, Figure 3—figure supplement 1). In one isolate (AMS3052), the region of

variable amplification extended beyond Repeat 127 to the centromere of Chr3 (CEN3). Importantly,

the MIC50 of the miconazole-evolved colonies increased as the maximum copy number of this com-

plex CNV increased (Figure 3B), supporting that in an isogenic background the increase in copy

number directly correlates with an increase in MIC.

The isogenic isolates contained five genomic features that provide clues concerning the mecha-

nism of complex CNV formation on Chr3L (Figure 3C): I) Monosomy (and thus LOH) extending from

Repeat 124 to the telomere; II) Complex CNVs with a maximum copy number that varies between

the individual colonies and amplifies unique sequences between two distinct long inverted repeats

(Repeats 124 and 127); III) Trisomy of sequences extending from Repeat 127 to CEN3; IV) Trisomy of

CEN3 and all of Chr3R; and V) Amplification of a single haplotype in the complex CNV of Chr3L and

throughout the trisomic region of Chr3R (Figure 3D, Figure 3—figure supplement 2) (although this

is not detectable in the region distal to Chr3R position 896,538, because this region is already homo-

zygous in the progenitor). From these observations, we hypothesized that one homolog of Chr3 was

intact and includes the monosomic portion of Chr3L, while the other homolog has formed a dicentric

molecule that promotes breakage-fusion-bridge (BFB) cycles that result in the complex, stair-step

amplifications between and within the long inverted repeats (Figure 3C).

If this hypothesis is correct, we should be able to detect dicentric chromosome intermediates by

CHEF gel karyotype analysis. Because an intact dicentric Chr3 would be too large to resolve, we ana-

lyzed SacII-digested chromosomal DNA. SacII sites fall to the left of the complex CNV of Chr3L

(within the monosomy) and to the right of CEN3 yielding a fragment that should be ~480 kb in the

AMS3050 progenitor (Figure 3C and E). Indeed, the progenitor and all four evolved isolates had a

band of ~480 kb (Figure 3E). In addition, the four evolved isolates had an additional band of

increased size (~854 kb to ~2.16 Mb) consistent with the level of amplification in these isolates. This

high-molecular-weight band hybridized to two different probes: an ORF found within the most

amplified region of the Chr3L CNV (orf19.344) and CEN3. Thus, the size and content of the SacII-

digested region including CEN3 is consistent with the idea that the fragment includes a dicentric

chromosome that is linked via the region containing the different-sized complex CNVs found among

the AMS3050 derivatives (Figure 3C and E).

Recombination occurs between long inverted repeats leading to CNV
formation
Models of BFB in both fungal and human cells support that dicentric chromosomes form via non-alle-

lic homologous recombination (NAHR) between inverted repeat sequences (Croll et al., 2013;

Hermetz et al., 2014; Notta et al., 2016). We used Oxford Nanopore Technology long-read

sequencing to test the hypothesis that NAHR between repeat sequences was involved in the forma-

tion of the complex CNV on Chr3L in AMS3051 (Figure 4A–C) . Structural variants, indicators of

recombination products not identified in the reference genome, were identified in AMS3051 using

split-read alignments, read mismatching, and read depth analyses (see Materials and methods). One

structural variant was detected at Repeat 124 (e.g. Figure 4B), and the other structural variant was

detected at Repeat 127 (e.g. Figure 4C). Each structural variant combined unique (non-repeat)

sequences, that were located up to ~100 kb apart in the reference genome, into a single long-read

of only 8 kb – 10 kb in length. Approximately 50 unique long-reads supported these structural var-

iants and each long-read included a single copy of either Repeat 124 or Repeat 127. The individual

long-reads switched between the complement and reverse complement orientation (relative to the

reference) within the long repeat sequence (Repeats 124 and 127, Figure 4B and C). These long-

reads represent fold-back inversions that were presumably mediated by NAHR between distant cop-

ies of the long repeat sequences. These observations, together with the intra-chromosomal CNV

expansions detected by CHEF (Figure 3E), suggest that the complex CNV located on Chr3L occurs

via an accordion-like expansion.
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Figure 4. Long-read sequencing reveals recombination products involved in the formation of complex CNVs. (A) Relative Illumina read depth for the

miconazole-evolved isolate AMS3051 plotted by chromosome position (data as in Figure 3—figure supplement 1) indicating the presence of two

inverted repeats (Repeat 124 (blue line) and Repeat 127 (orange line)) flanking a complex CNV on Chr3L. Repeat numbers refer to Supplementary file

2 from Todd et al., 2019. In the reference genome, Repeat 124 (B), consists of two inverted copies (~99% sequence identity) that are ~3 kb in length

that are ~11 kb apart and Repeat 127 (C) consists of two inverted copies (~99% sequence identity) that are ~4 kb in length and located ~100 kb apart.

Analysis of long-read sequences from AMS3051 identified structural variants relative to the reference genome at both Repeats 124 and 127. A single

representative long-read (bottom purple line) aligned to the reference genome (top black line) is shown for Repeat 124 (B) and Repeat 127 (C). The

long-read contains unique sequences that are separated by up to ~100 kb in the reference genome. Green-colored areas indicate alignment to the

complement strand and gray-colored areas indicate alignment to the reverse complement strand of the reference genome. The transition between

complement/reverse complement occurs within the repeat sequence. Schematics of both Repeat 124 and Repeat 127 indicate the formation of a fold-

back inversion and non-allelic homologous recombination (NAHR, black and purple dashed lines) between repeat copies on sister chromatids, which

could generate a dicentric chromosome. Alignment of the recombination product is inferred to produce the long-read that was detected (purple bar

Figure 4 continued on next page
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Loss of the CNVs and subsequent LOH in the absence of antifungal
drug selection
Highly amplified CNVs are expected to be subject to recombination events that reduce copy num-

ber, especially if selection for the extra gene copies is relaxed. To determine the stability of the

Chr3L CNV in the absence of antifungal drug, we isolated single colonies on rich medium after 72

hr. Heterogeneous populations of large and small colonies were observed for each of the four

miconazole-evolved isolates (Figure 5A and B). Both a large and small colony isolated from

AMS3051 were plated for single colonies on rich medium: the large colony gave rise to similarly

large colonies (AMS3092), while the small colony continued to give rise to a heterogeneous popula-

tion of large (AMS3093) and small (AMS3094) colonies (Figure 5A and B). WGS and read depth

analysis supported that the small colony phenotype in the absence of miconazole was due to a fit-

ness defect associated with the dicentric chromosome and/or the monosomic portion of Chr3L. In

contrast, both large colonies (AMS3092 and AMS3093) had resolved the dicentric chromosome and

regained the disomic portion of Chr3L (Figure 5A, Figure 5—figure supplement 1). In one case

(AMS3092), the dicentric chromosome underwent a recombination event that maintained the com-

plex CNV and heterozygosity across CEN3 and Chr3R. In the other case (AMS3093), the dicentric

chromosome underwent a recombination event at CEN3 that returned this isolate to a euploid geno-

type (Figure 5—figure supplement 1) and homozygosed all of Chr3L (Figure 5—figure supple-

ment 2). In both examples, the dicentric chromosome was never completely lost, but had

recombined to resolve the dicentric.

The impact of CNV loss on fitness was determined for the three single colonies derived from

AMS3051 (Figure 5C). The highest MIC50 (4 mg/ml miconazole) was observed for both isolates with

the CNV on a dicentric chromosome (AMS3051 and AMS3094). Surprisingly, the MIC50 decreased (2

mg/ml miconazole) for the isolate that retained the complex CNV (AMS3092) but had become

euploid for all other regions on Chr3. One possibility is that, loss of the extra copy of Chr3R (which

contains the multidrug resistance and tolerance genes described above: MRR1, CDR1, CDR2, and

CRZ1) reduced the MIC50 of this strain. Therefore, the decrease in MIC50 (between AMS3051 and

AMS3092) may be due to reduced copy number of these genes.

As expected, the MIC50 was lowest (1 mg/ml miconazole) for the isolate that returned to the

euploid genotype (AMS3093). This MIC50 was still above the MIC50 of the euploid progenitor

AMS3050 (0.5 mg/ml miconazole) despite the lack of de novo SNVs between the two isolates (see

Materials and methods). The difference in MIC50 (between AMS3050 and AMS3093) may be due to

the additional LOH of Chr3L that occurred during the resolution of the dicentric chromosome in

AMS3093 (Figure 5D, Figure 5—figure supplement 2).

Finally, under constant antifungal drug selection (20 mg/ml miconazole), the dicentric chromo-

some appeared to be highly stable by both colony morphology and karyotype analysis (Figure 5—

figure supplement 3). Thus, under continued antifungal drug selection the dicentric chromosome is

maintained at the population and single-cell level. In contrast, removal from the selection pressure

promotes the loss/resolution of the dicentric chromosome.

Discussion
This study identifies a novel mechanism for generating beneficial CNVs during adaptation to physio-

logically relevant concentrations of azole antifungal drugs. The formation of these complex CNVs is

rapid, expandable, and reversible. Recurrent CNV breakpoints occur in clinical isolates with diverse

genetic backgrounds that are exposed to azole antifungal drugs and can increase fitness across mul-

tiple azole drugs. The heterozygous diploid genome of C. albicans has enabled us to determine the

mechanism of CNV formation from population-level and single-cell karyotype analyses. Ultimately,

the expansion and contraction of these CNVs affects the rate and dynamics in which antifungal drug

resistance and tolerance is acquired, and provides a plausible explanation, independent of whole

Figure 4 continued

within the dicentric chromosomes). Each structural variant was supported by ~50 long-read sequences (see Materials and methods). All features of the

CNV breakpoints are detailed in Supplementary file 2.
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chromosome aneuploidy, for the phenotypic heterogeneity frequently reported during antifungal

drug susceptibility testing (e.g., tolerance or trailing growth and heteroresistance) (Ben-Ami et al.,

2016; Qiao et al., 2017; Sionov et al., 2009).

Figure 5. Complex CNVs resolve in the absence of antifungal drug by eliminating the dicentric chromosome. (A) Representative images of the

progenitor (AMS3050) and the four miconazole-evolved isolates (AMS3053, AMS3054, AMS3052, and AMS3051) containing the Chr3L CNV grown on

YPAD. Copy number of Chr3 (from Figure 3) shown to the right of the plate images. The notch in Chr3 is CEN3. Representative images below

AMS3051 of single colonies derived from either a small (blue) or large (black) colony of AMS3051 on rich medium: The small colony gave rise to

AMS3094 and AMS3093 and the large colony gave rise to AMS3092. Copy number of Chr3 shown below the plate images. Whole genome sequencing

data are provided in Figure 5—figure supplement 1. (B) Colony size analysis using ImageJ (see Materials and methods), n > 113 (up to n = 300) single

colonies, three biological replicates. (C) Heat map of OD600 values taken at 48 hr in twofold increasing concentrations of miconazole. The MIC50 is

denoted with a yellow line. Each heat map represents the average of three independent MIC50 assays (Figure 2—source data 1). (D) CHEF of the

parental strain and miconazole-evolved isolates. Whole genomic DNA was digested with SacII to isolate the region containing the CNV and CEN3

(schematic to right). CHEF gel stained with ethidium bromide (left panel) and analyzed by Southern blot with DIG-labeled probes to orf19.344 within

the CNV (middle panel) and CEN3 (right panel).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Loss of Chr3 CNV correlates with reduction of MIC50 to miconazole.

Figure supplement 2. Additional loss of heterozygosity can occur during resolution of complex CNVs.

Figure supplement 3. Dicentric Chr3 is stable in the presence of antifungal drug.
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Model for complex CNV formation
The complex CNVs amplified recurrent chromosome regions and were associated with increased fit-

ness in azole antifungals. Short-read and long-read whole genome sequencing revealed that all of

the complex CNVs have copy number breakpoints that occur within distinct long inverted repeat

sequences; in other words, the amplified regions reside between sets of different inverted repeat

sequences. Based on these breakpoint sequences, we propose a model of NAHR and breakage-

fusion-bridge (BFB) cycles for the formation and resolution of complex CNVs in C. albicans (Figure 6).

For example, to generate the Chr3L complex CNV, a DNA double-strand break (DSB) occurs (the

exact location of the DSB is not known) between the telomere and the telomere-proximal inverted

repeat (Figure 6A and B, Repeat 124, blue arrows). This DSB generates a telomere proximal acen-

tric fragment that is lost during future cell divisions. After DNA replication, NAHR between the long

inverted repeat sequences (Figure 6A and B, Repeat 124, blue arrows) located on sister chromatids

generates a dicentric chromosome and amplification of all sequence from the site of NAHR to the

telomere on Chr3R (Croll et al., 2013; Lang et al., 2013; Ramakrishnan et al., 2018;

Stimpson et al., 2012). Alternatively, the dicentric chromosome could be formed via an intra-chro-

mosomal fold-back-like mechanism between repeat copies that primes break induced replication

(BIR) (Narayanan et al., 2006; Rattray et al., 2005). During cytokinesis, the dicentric chromosome

bridge is broken preferentially at a centromere-proximal location due to closure of the actomyosin

ring (Lopez et al., 2015); the longer, monocentric chromosome fragment is followed in the model.

During the next cell cycle, DNA replication generates two sister chromatids that again undergo

NAHR, this time between the two copies of the centromere-proximal long inverted repeat sequence

(Figure 6A and B, Repeat 127, orange arrows), which generates a second dicentric chromosome

and an amplification of all sequence from the site of the second NAHR event to the telomere on

Chr3R. These dicentric BFB cycles can result in heterogeneous outcomes that are beneficial in the

presence or absence of antifungal drug selection including: further amplification of the repeat and

unique sequences (Figure 6C); NAHR with a repeat on the other homolog, resulting in resolution of

the dicentric and isolation of the CNV on a monocentric chromosome (Figure 6D, top); and recom-

bination (likely BIR) that occurs with the other homolog at a position centromere proximal to the

CNV and continues to the Chr3L telomere, resulting in loss of the complex CNV and homozygosis of

Chr3L (Figure 6D, bottom). Example symmetric stair-step copy number amplifications generated by

these recombination events and the presence of fold-back inversions that arise during NAHR

between repeat sequences are proposed in the model (Figure 6C and D). We propose a similar

model for asymmetric stair-step copy number amplifications that can form due to recombination

events involving three (instead of two) distinct inverted repeat sequences (Figure 6—figure supple-

ment 1). Finally, the Chr3L CNV expansions (Figure 3, during antifungal selection) and contractions

(Figure 5, when selection is relaxed) were detected after formation of a single colony and under-

score the dynamic potential of these CNVs. Accordingly, we propose that a dicentric chromosome

intermediate is driving the rapid generation of copy number amplifications and sub-clonal heteroge-

neity observed in C. albicans clinical isolates.

A limitation of this study is that the rate of complex CNV formation is not known, and it is also

unclear whether these CNVs occur in the context of a host infection. Dicentric chromosomes have

been identified in FLC-resistant clinical isolates of C. albicans (Selmecki et al., 2006), and suggest

that BFB cycles may be possible in vivo. Additionally, CNVs with breakpoints at long-repeat sequen-

ces have been identified after passage of C. albicans through a mouse model of oropharyngeal can-

didiasis (in the absence of antifungal drugs) (Todd et al., 2019), and suggest that complex CNVs

could occur in vivo. Importantly, there was very little fitness cost associated with maintaining a com-

plex CNV on a monocentric chromosome (Figure 2), which underscores that these CNVs are well-

tolerated in C. albicans. Ultimately, future studies using single-cell analyses (e.g. Lauer et al., 2018)

are needed to determine the rate of complex CNV formation both in vitro and in vivo in the pres-

ence and absence of antifungal drugs.

Stair-step amplifications and fold-back inversions generated via BFB cycles are also observed in

human cancers and developmental diseases (Cheng et al., 2016; Hermetz et al., 2014;

Marotta et al., 2017). For example, amplification of oncogenes (EFGR, ERBB2, and MYC) occurs via

BFB in up to ~70% of diverse tumor types (including breast, colorectal, lung, and liver cancers)

(Marotta et al., 2017; Venkataram et al., 2016). While the exact molecular mechanisms of DNA
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repair during BFB in human cells remain under investigation (Cheng et al., 2016;

Maciejowski et al., 2015; Marotta et al., 2012; Tanaka et al., 2007), fold-back inversions causing

CNVs occur more frequently (13/21 vs. 3/21) at breakpoints of microhomology (2–8 bp) than at

regions of longer homology (296–330 bp, 82–95%), such as LINE, SINE, and Alu elements that are

present in thousands of copies per genome (Hermetz et al., 2014; Rodić and Burns, 2013). In

Figure 6. Breakage-fusion-bridge model for the formation and resolution of complex CNVs. DNA double-strand

breaks (DSBs), recombination, and dicentric chromosome formation can drive complex CNV formation through

successive breakage-fusion-bridge (BFB) cycles. (A) Two distinct long-repeat sequences, Repeat 124 (blue/dark

blue arrows) and Repeat 127 (orange/dark orange arrows), are located on both Chr3 homologs (black and gray).

Heterozygous SNVs indicated with an X on Chr3 homolog 2. (B) A DSB occurs telomere proximal to the left copy

of Repeat 124 on homolog 1 of Chr3, resulting in the formation of a telomere-proximal acentric DNA fragment.

DNA replication generates two sister chromatids with a truncated arm. Non-allelic homologous recombination

(NAHR) between Repeat 124 on sister chromatids generates a dicentric chromosome. During cytokinesis, the

dicentric chromosome undergoes bridge formation and breaks near the centromere due to the closure of the

actomyosin ring, generating two asymmetric chromosome fragments, each with only one centromere. The longer,

monocentric chromosome fragment is followed in this model. During the next cell cycle, DNA replication

generates two sister chromatids that undergo NAHR between a distinct long inverted repeat (Repeat 127, orange

arrows) on sister chromatids that generates a second dicentric chromosome. Subsequent BFB cycles can result in

different outcomes depending on the environmental selection: (C) Complex CNV expansion in which successive

rounds of the BFB cycle generate CNVs with higher copy numbers, or (D) NAHR with a repeat on the other

homolog results in the resolution of the dicentric chromosome and isolates the CNV on a monocentric

chromosome (top, e.g. AMS3092). Alternatively, break induced replication (BIR) could prime near CEN3 and

continue to the Chr3L telomere, resulting in the loss of the complex CNV and homozygosis of Chr3L (bottom, e.g.

AMS3093). Example stair-step copy numbers of genomic segments indicated below each schematic.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Breakage-fusion-bridge model for the formation of asymmetric complex CNVs.
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comparison, the copy number breakpoints identified in C. albicans only occurred at long-repeat

sequences (median 1513 bp) that shared high sequence identity (median 96.1%) that were predomi-

nantly present (10/12 repeats) in only two copies per genome and were always located on the same

chromosome arm. Therefore, while C. albicans appears to have a strong preference for a BFB repair

mechanism that involves homologous recombination within long-repeat sequences, the relatively

low copy number of these repeat sequences in the C. albicans genome has enabled more precise

mapping of the CNV breakpoints and fold-back inversions, whereas similar events remain challeng-

ing to resolve in the human genome.

Impact of CNVs on the mutational landscape
CNVs can dramatically alter population dynamics and mutational landscapes. The rate with which

CNVs occur (~1.3�10�6 to ~1.5�10�6 per gene per cell division) is several orders of magnitude

higher than the rate of SNVs (~0.33�10�9 per site per cell division) in the absence of selection

(Lynch et al., 2008). In the presence of strong selection, for example nutrient limitation, the rate of

CNV formation can be much higher and can rapidly drive clonal interference between unique CNV-

containing lineages within the population (Lauer et al., 2018; Payen et al., 2014). Our single colony

analyses support that formation of a dicentric chromosome can generate continuous cycles of

genome instability and can increase population heterogeneity, which is likely to contribute to high

rates of clonal interference.

We hypothesize that the complex CNVs identified here were selected due to the presence of

genes that, when amplified, provide a fitness benefit in the presence of azole antifungal drugs

(Selmecki et al., 2008). In support of this hypothesis, NPR2 (within the Chr3L CNV) results in

increased azole resistance similar to acquisition of the CNV (Mount et al., 2018). Other genes like

ERG11 and TAC1 (both within the i(5L) CNV) can confer copy number dependent increases in azole

resistance (Selmecki et al., 2008).

In addition to the direct effect of gene amplification (i.e. more copies of the gene and its prod-

ucts), every cell that acquires a complex CNV also has an increased target size for the acquisition of

rare, single nucleotide variants (Cone et al., 2017; Elde et al., 2012). CNVs therefore provide a

potential for an increased likelihood of beneficial, drug-resistant point mutations during antifungal

drug selection. This provides a good explanation for the utility of CNVs and aneuploidy as intermedi-

ates in the acquisition of more stable mutations (e.g. single nucleotide variants) (Elde et al., 2012;

Ford et al., 2015; Roth and Andersson, 2004; Sun et al., 2009; Yona et al., 2012).

Importantly, many of the genes that are known to cause azole resistance contain SNVs that are

recurrently found in drug-resistant isolates. For example, recurrent SNVs in MRR1, ERG11, FUR1,

and FKS1 are found in drug-resistant isolates of C. albicans and interestingly, are recurrent in dis-

tantly related Candida species as well, including C. glabrata and C. auris (Flowers et al., 2015; Gar-

cia-Effron et al., 2009; Hope et al., 2004; Morschhäuser et al., 2007; Muñoz et al., 2018;

Perlin, 2011). Both MRR1 (Chr3R) and ERG11 (Chr5L), genes with recurrent SNVs known to cause

azole resistance, were amplified in CNVs in this study, supporting the idea these CNVs can amplify

genes that confer increased fitness in the presence of antifungal drugs and simultaneously increase

the probability that a bona fide drug resistance allele will occur in those same genes.

LOH is also an important mechanism of acquired antifungal drug resistance, and exposure to

azole antifungal drugs can increase the frequency of LOH in C. albicans (Bouchonville et al., 2009;

Dunkel et al., 2008; Forche et al., 2011; Niimi et al., 2010). Heterozygous mutations in both MRR1

and FKS1 also can undergo LOH in the presence of antifungal drug selection for homozygosis of the

beneficial allele (Dunkel et al., 2008; Niimi et al., 2010). Here, we obtained direct evidence that

LOH can arise via dicentric chromosome formation and telomere-proximal chromosome loss, the

same mechanism that yields complex CNVs. For example, new regions of LOH were identified dur-

ing dicentric chromosome resolution (e.g. AMS4702 in Figure 1—figure supplement 3, and

AMS3093 in Figure 5—figure supplement 2). These data further support that the long repeat

sequences associated with CNV and LOH breakpoints are a major source of genome plasticity in the

presence and absence of antifungal drug (Todd et al., 2019), and may underlie the variable muta-

tion rates (hotspots) observed across an individual chromosome in other fungi as well (Lang and

Murray, 2011).

Finally, we found that complex CNVs frequently occurred in regions of the genome that were

already homozygous in the euploid progenitors (Figure 1—figure supplement 3). We propose that

Todd and Selmecki. eLife 2020;9:e58349. DOI: https://doi.org/10.7554/eLife.58349 16 of 33

Research advance Genetics and Genomics Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.58349


such homozygous regions are the result of prior rounds of complex CNV formation and subsequent

LOH in some of these isolates. Other regions of long-track homozygous sequence are frequently

observed in diverse clinical isolates of C. albicans (Ene et al., 2018; Ford et al., 2015;

Hirakawa et al., 2015; Ropars et al., 2018; Todd et al., 2019) and may provide evidence that other

complex CNVs resulting in LOH are occurring in some of these isolates as well, supporting the idea

that these CNVs are transient in nature.

CNVs promote antifungal drug tolerance
Antifungal drug tolerance is the ability of a subpopulation of cells within a susceptible isolate to

grow slowly at drug concentrations above the MIC50 (Berman and Krysan, 2020; Rosenberg et al.,

2018). Mechanisms that contribute to the tolerance phenotype remain to be identified; however,

genes involved in core stress pathways and cell wall/cell membrane biosynthesis appear to have an

important role (Berman and Krysan, 2020; Cowen et al., 2015; Rosenberg et al., 2018). The com-

plex CNVs detected here, together with what is known about drug responses in general, make it

tempting to speculate on the specific genes that may be involved in the tolerance phenotype. These

include genes encoding proteins involved in stress responses (CRZ1, HSP70, CGR1, ERO1, TPK1,

ASR1, and PBS2) and cell wall/cell membrane integrity (CDR3, NCP1, ECM21, MNN23, RHB1 and

KRE6). We propose that amplification of these genes within transient CNVs is one major route to

increase cellular fitness and generate the population heterogeneity that underlies antifungal drug

tolerance.

Impact of azole antifungals on centromere function and CNV formation
Whole chromosome missegregation resulting in aneuploidy is well-documented in C. albicans and

other fungal pathogens (Forche et al., 2009; Forche et al., 2019; Gerstein et al., 2015;

Janbon et al., 1998; Ngamskulrungroj et al., 2012; Poláková et al., 2009; Reedy et al., 2009;

Rustchenko-Bulgac, 1991; Selmecki et al., 2006; Selmecki et al., 2009; Sionov et al., 2013;

Yang et al., 2019). Many of these aneuploidies provide a selective benefit in vitro and in vivo, and in

the presence and absence of antifungal drugs. Importantly, whole chromosome aneuploidy is likely

to be induced (as well as selected) by drug exposure (Harrison et al., 2014); however, the mecha-

nisms driving chromosome mis-segregation are not well characterized.

We find that the acquisition of complex CNVs involves the formation of a dicentric chromosome

intermediate. The dicentric chromosomes are maintained in the presence of drug (Figure 5—figure

supplement 3), whereas elimination of drug selection results in a ~13% increase in colonies that

have lost the dicentric chromosome via subsequent recombination events that either isolate the

complex CNV on a chromosome arm or revert to the euploid progenitor genotype (Figure 5A and

B). Stabilization of dicentric chromosomes has been observed in humans, Drosophila melanogaster,

Zea mays, and Schizosaccharomyces pombe due to centromere inactivation (Agudo et al., 2000;

Earnshaw and Migeon, 1985; Han et al., 2006; Sato et al., 2012; Stimpson et al., 2012;

Sullivan and Schwartz, 1995). Therefore, in addition to selection, we propose that the dicentric

chromosome can be stabilized in the presence of azole drugs due to the depletion of Cse4/CENP-A,

the centromere-specific histone H3. Importantly, Cse4/CENP-A, which is normally enriched at cen-

tromeric DNA, is depleted from the centromeres of C. albicans cells exposed to FLC (10 mg/ml), and

contributes to an increased rate of chromosome mis-segregation (Brimacombe et al., 2019).

Whether Cse4/CENP-A is actively removed from centromeric DNA in the presence of azole drugs is

not known, but mammalian models suggest that CENP-A can be recruited away from the centro-

mere to sites of DNA damage (Zeitlin et al., 2009). The presence of azole drugs may increase the

likelihood that a dicentric chromosome is maintained and further increase the likelihood of recombi-

nation events that result in complex CNV formation. Therefore, determining the mechanistic link

between antifungal drug treatment and centromere function is critical to understanding the genome

instability that occurs during acquisition of drug resistance, including whole-chromosome aneu-

ploidy, dicentric chromosome intermediates, and complex CNVs.

Conclusion
Complex CNVs are acquired rapidly during adaptation to azole antifungal drugs and cause an

increase in drug resistance and tolerance. These CNVs are found across the genome, occur in
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diverse genetic backgrounds, and are all formed between a set of two distinct inverted repeat

sequences that flank the amplified region. Evidence here provides support for a mechanism of CNV

generation and resolution back to euploidy that is driven by successive BFB cycles involving a dicen-

tric chromosome that repairs via homologous recombination between the repeat sequences. Fur-

thermore, the cell-to-cell variability observed for clinical isolates during drug susceptibility assays

may be due to the heterogeneity in the copy number of CNVs present within individual cells in a

population as well as continued BFB cycles. Identification of CNVs in other pathogenic fungi, includ-

ing the emerging multi-drug-resistant pathogen C. auris, further suggests that this mechanism of

CNV formation may occur in diverse species. Together, these findings suggest a novel mechanism

for transient CNV formation that increases the adaptive potential of fungal pathogens to antifungal

drugs.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Candida albicans)

SC5314 Hirakawa et al., 2015
(DOI: 10.1101/gr.174623.114)

RRID:SCR_013437

Strain, strain
background
(C. albicans)

P75016 Hirakawa et al., 2015
(DOI: 10.1101/gr.174623.114)

Strain, strain
background
(C. albicans)

P75063 Hirakawa et al., 2015
(DOI: 10.1101/gr.174623.114)

Strain, strain
background
(C. albicans)

P78042 Hirakawa et al., 2015
(DOI: 10.1101/gr.174623.114)

Antibody Anti-Digoxigenin-AP
Fab Fragments
(Polycolonal
from sheep)

Roche 11093274910
RRID:AB_2734716

(1:5000)

Sequence-based reagent PCR Primers This study Supplementary file 5

Commercial
assay or kit

Illumina Nextera
XT Library Kit

Illumina 105032350

Commercial
assay or kit

Illumina Nextera
XT Index Kit

Illumina 105055294

Commercial
assay or kit

Illumina Nextera
Flex DNA Kit

Illumina 20018704

Commercial
assay or kit

Illumina Nextera
DNA CN Index kit

Illumina 20018707

Commercial
assay or kit

Blue Pippin 1.5%
agarose gel
dye-free cassette

Sage Science 250 bp - 1.5 kb
DNA size range
collections,
Marker R2

Target of 900 bp

Commercial
assay or kit Illumina MiSeq

v2 Reagent Kit

Illumina
15033625

2 � 250 bp

Commercial
assay or kit

1D Ligation
Sequencing Kit

Oxford Nanopore
Technologies

SQK-LSK108

Commercial
assay or kit

R9 FLO-Min106
spot-on flow cell

Oxford Nanopore
Technologies

R9.4.1

Commercial
assay or kit

Ultra II End
Repair/dA-
Tailing Module

New England Biolabs E7546S

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Commercial
assay or kit

Qubit dsDNA HS kit
Life Technologies

Q32854

Commercial
assay or kit

PCR DIG Probe
Synthesis Kit

Roche 11636090910

Commercial
assay or kit

Agilent 2100
Bioanalyzer
High Sensitivity
DNA Reagents

Agilent
Technologies

5067–4626

Commercial
assay or kit

SacII
restriction enzyme

New England
Biolabs

R0157S

Chemical
compound, drug

Fluconazole (FLC) Alfa Aesar J62015

Chemical
compound, drug

Miconazole Alfa Aesar AAJ6087206

Chemical
compound, drug

Itraconazole Alfa Aesar AAJ6639003

Chemical
compound, drug

Posaconazole MilliporeSigma 11-101-3331

Chemical
compound, drug

Ketoconazole Fisher Scientific AC455470010

Chemical
compound, drug

PMSF Milipore Sigma 10837091001

Software, algorithm Trimmomatic Bolger et al., 2014
(DOI: 10.1093/bioinformatics/btu170)

v0.33
RRID:SCR_011848

Software, algorithm BWA Li, 2013
(DOI: 10.1093/bioinformatics/btp324)

v0.7.12
RRID:SCR_010910

Software, algorithm Samtools Li et al., 2009
(DOI: 10.1093/bioinformatics/btp352)

v0.1.19
RRID:SCR_002105

Software, algorithm Genome
Analysis Toolkit

McKenna et al., 2010
(DOI: 10.1101/gr.107524.110)

v3.4–46
RRID:SCR_001876

Software, algorithm Yeast Analysis
Mapping Pipeline

Abbey et al., 2014
(DOI: 10.1186/s13073-014-0100-8)

V1.0

Software, algorithm JMP Pro https://www.jmp.com V14.2.0

Software, algorithm ImageJ https://imagej.nih.gov/ij/? v2.0.0-rc-30/
1.49 s
RRID:SCR_003070

Software, algorithm Integrative
Genomics Viewer

Thorvaldsdóttir et al., 2013
(DOI: 10.1093/bib/bbs017)

v2.3.92
RRID:SCR_011793

Software, algorithm R https://www.r-project.org v3.5.2
RRID:SCR_001905

Software, algorithm Candida
Genome Database

http://Candidagenome.org RRID:SCR_002036

Software, algorithm NGMLR Sedlazeck et al., 2018
(DOI: 10.1038/s41592-018-0001-7)

V0.2.7

Software, algorithm Sniffles Sedlazeck et al., 2018
(DOI: 10.1038/s41592-018-0001-7)

v1.0.11

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software, algorithm SplitThreader Nattestad et al., 2016
(DOI: 10.1101/087981)
http://splitthreader.com

Software, algorithm Ribbon http://genomeribbon.com

Yeast isolates and culture conditions
All isolates used in this study are described in Supplementary file 1. Isolates were stored at �80˚C

in 20% glycerol. Isolates were cultured at 30˚C in YPAD medium (yeast extract, peptone, and 2%

dextrose) supplemented with 40 mg/ml adenine and 80 mg/ml uridine. For Figure 5, isolates

(AMS3050, AMS3053, AMS3054, AMS3052, and AMS3051) were grown at 30˚C on YPAD agar

plates (yeast extract, peptone, 2% dextrose, and 2% agar) for 48 hr. One single large and one single

small colony (See ImageJ colony size analysis in Materials and methods) were selected and were re-

plated for single colonies on YPAD agar plates for 48 hr at 30˚C. From the large colony, a single

large colony (AMS3092) was selected for WGS, antifungal drug susceptibility assays (MIC50), colony

size analysis, and CHEF analysis. From the single small colony, both a small (AMS3094) and large

(AMS3093) colony were selected for WGS, antifungal drug susceptibility assays (MIC50), colony size

analysis, and CHEF analysis.

In vitro evolution experiment
FLC susceptible progenitor isolates were plated for single colonies onto YPAD medium and incu-

bated for 48 hr at 30˚C. Twelve single colonies were isolated from each progenitor (SC5314,

P75016, P75063, and P78042) and grown to stationary phase in 5 ml liquid YPAD to generate 48

independent lineages. A 1:1000 cell dilution was made in YPAD medium containing 1 mg/ml FLC in

deep-well 96-well plates. Plates were sealed with Breathe EASIER tape (Electron Microscopy Scien-

ces) and placed in a humidified chamber for 72 hr at 30˚C. Every 72 hr, cells were resuspended and

transferred into fresh medium containing 1 mg/ml FLC to a final cell dilution of 1:1000. In total, 10

transfers were conducted. After the final transfer, cells were collected for storage at �80˚C, genomic

DNA isolation, and MIC analysis.

Microdilution minimum inhibitory concentration (MIC)
The MIC50 for each isolate was measured using a microwell broth dilution. Isolates were inoculated

from frozen stocks into YPAD medium and grown for 16 hr at 30˚C. Cells were diluted in fresh YPAD

medium to a final OD600 of 0.01, and 10 ml of this dilution was inoculated into a 96-well plate con-

taining 190 ml of a 0.5X dextrose YPAD medium with a twofold serial dilution of the antifungal drug

or a no-drug control. Cells were incubated at 30˚C in a humidified chamber and OD600 readings

were taken at both 24 and 48 hr post inoculation. The MIC50 of each of the isolates was determined

as the concentration of antifungal drug that decreased the OD600 by �50% of the no-drug control.

Supra-MIC Growth (SMG) was calculated by taking the average 48 hr growth of the wells above the

24 hr MIC50 and dividing by the control well containing no drug (Rosenberg et al., 2018).

Growth curve analysis
Isolates were inoculated from frozen stocks into YPAD medium and grown for 16 hr at 30˚C. Cells

were diluted in fresh YPAD medium to a final OD600 of 0.01, and 10 ml of this dilution was inoculated

into a 96-well plate containing 190 ml of a 1x dextrose YPAD medium with or without 1 mg/ml FLC.

Cells were grown at 30˚C in the BioTek Epoch with dual-orbital shaking (256 rpm) for 36 hr. OD600

readings were taken every 15 min and plotted in R (v3.5.2) using ggplot2. Each growth curve was

conducted in biological triplicate in three separate experiments. Calculation of summary statistics of

each growth curve was conducted using the R package Growthcurver using standard parameters

(Supplementary file 3; Sprouffske and Wagner, 2016).
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Contour-clamped homogenous electric field (CHEF) electrophoresis
Sample plugs were prepared as previously described (Selmecki et al., 2005). Briefly, cells were sus-

pended in 300 mL 1.5% low-melt agarose (Bio-Rad) and digested with 1.2 mg Zymolyase (US Biologi-

cal) at 37˚C for 16 hr. Plugs were washed twice in 50 mM EDTA and treated with 0.2 mg/ml

proteinase K (Alpha Azar) at 50˚C for 48 hr. For samples digested with SacII, plugs were washed

twice with 1x TE and incubated in 1 mM PMSF (Milipore Sigma) at room temperature for 30 min,

washed twice with 1X TE and suspended in 1X CutSmart Buffer (New England Biolabs), and digested

with 30 units of SacII (New England Biolabs) at 37˚C for 24 hr. Chromosomes were separated in a 1%

Megabase agarose gel (BioRad) in 0.5X TBE using the CHEF DRIII Pulsed Field Electrophoresis Sys-

tem. For whole chromosome separation, run conditions as follows: 60 s to 120 s switch, 6 V/cm, 120˚

angle for 36 hr followed by 120 s to 300 s switch, 4.5 V/cm, 120˚ angle for 12 hr. SacII digested chro-

mosomes were separated as follows: 7 s to 100 s switch, 4.5 V/cm, 120˚ angle for 21 hr followed by

80 s to 400 s switch, 3.5 V/cm, 120˚ angle for 21 hr. CHEF gels were stained with ethidium bromide

and imaged with the GelDock XR Imaging system (BioRad).

Southern blot hybridization
Chromosomes from CHEF gels were transferred to a BrightStar Plus nylon membrane (Invitrogen).

Hybridization and detection of the DNA was conducted as previously described (Selmecki et al.,

2005; Selmecki et al., 2008; Selmecki et al., 2009; Todd et al., 2019). Probes were generated

through PCR incorporation of DIG-11-dUTP into target sequences following the manufacturer’s

instructions (Roche). Primers used in this study are located in Supplementary file 5.

Gene Ontology (GO) analysis
GO analysis was conducted for all terms (process, function, and component) using the GO Term

Finder from the Candida Genome Database (CGD accessed 03/03/2020, http://www.candidage-

nome.org/cgi-bin/GO/goTermFinder). All genes located within the complex CNVs were included in

the analysis. Genes located in other aneuploid chromosomes (AMS4104 - Chr7; AMS4106 - Chr3, i

(5L); AMS4444 - Chr3, Chr4R, Chr7R) were not included in the GO analysis. Terms were considered

significantly enriched if p<0.05. GO enrichment was determined for all genes included in the com-

plex CNVs, as well as for each CNV individually (Supplementary file 4).

ImageJ colony size analysis
All agar plates were imaged using the GelDock XR Imaging system (Bio-rad) using the same zoom

and focal length. Images were exported as .png files, converted to eight-bit, and analyzed with Fiji

(v2.0.0-rc-30/1.49 s) (Schindelin et al., 2012). An automatic threshold was set using the RenyiEn-

tropy algorithm and the area of each particle was measured (Sezgin and Sankur, 2004). Colonies

were considered small if their total area was less than two standard deviations below the mean col-

ony size of the progenitor isolate, AMS3050 in the absence of miconazole. Colony size of each iso-

late, in the absence or presence of 20 mg/ml miconazole, was obtained from three individual agar

plates (n > 113).

Illumina whole genome sequencing
Genomic DNA was isolated using a phenol-chloroform extraction as described previously

(Selmecki et al., 2006). Libraries were prepared using either the Illumina Nextera XT DNA Library

Preparation Kit or the Nextera DNA Flex Library Preparation Kit. Adaptor sequences and low-quality

reads were trimmed using Trimmomatic (v0.33 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:36 TOPHRED33) (Bolger et al., 2014). Trimmed reads were mapped to the C. albicans ref-

erence genome (A21-s02-m09-r08) from the Candida Genome Database (http://www.candidage-

nome.org/download/sequence/C_albicans_SC5314/Assembly21/archive/C_albicans_SC5314_ver-

sion_A21-s02-m09-r08_chromosomes.fasta.gz). Reads were mapped using BWA-MEM (v0.7.12) with

default parameters (Li, 2013). PCR duplicated reads were removed using Samtools (v0.1.19)

(Li et al., 2009), and realigned around predicted indels using the Genome Analysis Toolkit (Realign-

erTargetCreator and IndelRealigner, v3.4–46) (McKenna et al., 2010). All Illumina data have been

deposited in the National Center for Biotechnology Information Sequence Read Archive database

under PRJNA613282.
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Visualization of aneuploid chromosomes
Aneuploid chromosomes were visualized using the Yeast Analysis Mapping Pipeline (YMAP v1.0)

(Abbey et al., 2014). Fastq files were uploaded to YMAP and read depth was determined and plot-

ted as a function of chromosome position. Read depth was corrected for both GC-content and chro-

mosome-end bias.

Read depth analysis plots
For each isolate, read depth for each position within the genome was calculated using samtools

depth (–aa) (v0.1.19) (Li et al., 2009). A sliding window of 500 bp was used to calculate the average

read depth over a given genome segment and normalized to the average read depth of the nuclear

genome. Read depth analysis was visualized in R (v3.5.2) using ggplot2. Compiled read depth analy-

sis found in Supplementary file 6.

CNV breakpoint detection
Chromosomes containing CNVs were detected using the Yeast Mapping Analysis Pipeline (YMAP

v1.0 [Abbey et al., 2014]). Fastq files were uploaded and mapped to the SC5314 reference genome

(A21-s02-m08-r09) with correction for GC-content and chromosome end bias. Estimated copy num-

ber breakpoints were detected using Aneufinder (v1.10.2), with a bin width of 42.5 kb

(Bakker et al., 2016). The bins containing estimated breakpoints were identified for further analysis.

Estimated breakpoints located at the MRSs were not analyzed due to the repetitive nature and poor

mapping of these genomic regions. To further refine copy number breaks, fastq files were aligned

to the SC5314 reference genome (see above) and read depth was determined for each nucleotide in

the genome (samtools depth –aa, v0.1.19). Read depth was normalized to the mean read depth of

the nuclear genome using R (v3.5.2). The 42.5 kb windows containing estimated copy number break-

points as determined by Aneufinder were further subdivided into 500 bp windows. The mean nor-

malized read depth was determined for these 500 bp windows and a rolling mean of every two

consecutive 500 bp windows was determined using R. Copy number breakpoints were identified if

75% of four consecutive 500 bp windows had a mean normalized read depth that deviated from the

mean nuclear genome read depth by more than 25% (Ford et al., 2015). Boundaries were further

confirmed by visual inspection in Integrative Genomics Viewer (IGV v2.3.92) (Thorvaldsdóttir et al.,

2013). CNV breakpoint positions were compared to the list of long repeat sequences found across

the C. albicans genome described in Supplementary file 2 of Todd et al., 2019 and breakpoints

were assigned a repeat name if they fell within 2 kb of a long repeat sequence (Todd et al., 2019).

Copy number detection of complex CNVs
For each isolate, read depth for each position within the genome was calculated using samtools

depth (–aa) (v0.1.19) (Li et al., 2009). A sliding window of 500 bp was used to calculate the average

read depth over a given genome segment and normalized to the average read depth of the nuclear

genome. Each segment of the chromosome containing a complex CNV (high copy number central

region and all lower copy number flanking sequences, including the disomic regions) was then

assigned a copy number using the average normalized read depth of the 500 bp windows located

within that given CNV segment multiplied by two for the diploid genome. If a 500 bp window con-

tained a known repeat sequence (including those associated with copy number breakpoints) that

window was excluded from analysis due to read mapping errors that occur in repetitive sequences.

Likewise, telomere proximal regions were excluded from analysis. Telomere proximal regions were

determined as the start or end of each chromosome to the first confirmed, non-repetitive genome

feature as previously described (Ene et al., 2018; Hirakawa et al., 2015; Todd et al., 2019). The

read depth for each segment was then normalized to the average read depth of the disomic seg-

ments of the chromosome to normalize for chromosome copy number, and rounded to the nearest

integer for the final copy number. The copy number data, as well as read depth summary statistics

for each chromosome segment are found in Supplementary file 6. Data were analyzed and sum-

mary statistics were generated using JMP Pro (v14.2.0).
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Allele ratio analysis
Heterozygous positions were determined using the Genomics Analysis Toolkit’s HaplotypeCaller

(v3.7–0-gcfed67) with a standard minimum confidence threshold of phred30 (-stand_call_conf 30)

(McKenna et al., 2010). Variants were analyzed if the read depth was >2 and the variant was

sequenced on both the forward and reverse strand. Additional filtering of SNVs included the

removal of ancestral homozygous positions, homozygous SNVs that were maintained within the pro-

genitor and all evolved isolates and not the reference SC5314. SNVs contained within long-repeat

sequences were also removed due to the mapping errors with short read sequencing in repetitive

regions.

Variant calling
De novo variant detection was conducted using aligned, sorted BAM files that were converted to

mpileup files using Samtools (samtools mpileup) (Li et al., 2009). VCFs were generated using Var-

scan (V2.3) (Koboldt et al., 2012). Called variants were filtered under the following conditions: 1) All

SNVs shared by all progeny are removed and are assumed to be parentally derived, 2) a read depth

of <5, and 3) a percent alternative allele of <0.2.

Oxford Nanopore Technology MinION sequencing and de novo
alignment
Two identical libraries of AMS3051 were constructed using the 1D Ligation Sequencing Kit (SQK-

LSK108) from Oxford Nanopore following manufacturers protocol with slight modification. Briefly,

end repair and dA-tailing was performed following New England Biolabs protocol for the Ultra II

End-prep reaction (NEB E7546S) with a 30 min incubation at 20˚C followed by a 30 min incubation at

65˚C. The DNA was then purified using 1.8x Ampure beads (Agencourt). Adapter ligation was

allowed to incubate at room temperature for 30 min followed by a 0.6x Ampure (Agencourt) bead

cleanup. Data was generated using the R9 FLO-MIN106 spot-on flow cell. Calibration of the flow cell

indicated 1171 active pores across the four mux groups. The library was loaded following manufac-

turers recommendation and sequencing was allowed to proceed for 24 hr before loading with the

second library. Sequencing continued for another 24 hr before the sequencing run was terminated.

A total of 910753 reads were obtained with a mean read length of 2210 bp (minimum 5 bp and max-

imum 352979 bp). Average theoretical coverage was 129.9x assuming a haploid genome size of

15.5 Mb.

Visualization of Oxford Nanopore Technology MinION sequencing data
Oxford Nanopore minion Fastq files from AMS3051 were aligned to the SC5314 reference genome

(A21-s02-m09-r08) using NGMLR (-x ont, v0.2.7) (Sedlazeck et al., 2018). The resulting SAM file was

converted to a BAM file using samtools view (-S –b) and was sorted and indexed using samtools sort

and samtools index, respectively (v0.1.19) (Li et al., 2009). Structural variant detection was con-

ducted using Sniffles (v1.0.11) (Sedlazeck et al., 2018) and the average binned (10 kb) read cover-

age was determined using Copycat (https://github.com/MariaNattestad/copycat). Structural variants

were identified using SplitThreader (http://splitthreader.com). Individual discordant reads were iden-

tified and visualized using Ribbon with a minimum alignment length of 1 kb (Nattestad et al.,

2016).
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Muñoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, Farrer RA, Litvintseva AP, Cuomo CA. 2018.
Genomic insights into multidrug-resistance, mating and virulence in Candida Auris and related emerging
species. Nature Communications 9:5346. DOI: https://doi.org/10.1038/s41467-018-07779-6, PMID: 30559369

Narayanan V, Mieczkowski PA, Kim HM, Petes TD, Lobachev KS. 2006. The pattern of gene amplification is
determined by the chromosomal location of hairpin-capped breaks. Cell 125:1283–1296. DOI: https://doi.org/
10.1016/j.cell.2006.04.042, PMID: 16814715

Todd and Selmecki. eLife 2020;9:e58349. DOI: https://doi.org/10.7554/eLife.58349 29 of 33

Research advance Genetics and Genomics Microbiology and Infectious Disease

https://doi.org/10.1038/nature05205
http://www.ncbi.nlm.nih.gov/pubmed/17066037
https://doi.org/10.1093/molbev/msq184
https://doi.org/10.1093/molbev/msq184
http://www.ncbi.nlm.nih.gov/pubmed/20660490
https://doi.org/10.1016/S0092-8674(02)00614-1
https://doi.org/10.1016/S0092-8674(02)00614-1
http://www.ncbi.nlm.nih.gov/pubmed/11832209
https://doi.org/10.1093/cid/ciw691
http://www.ncbi.nlm.nih.gov/pubmed/27988485
https://doi.org/10.1101/gad.254664.114
http://www.ncbi.nlm.nih.gov/pubmed/25644606
https://doi.org/10.1073/pnas.0803466105
http://www.ncbi.nlm.nih.gov/pubmed/18583475
https://doi.org/10.1016/j.cell.2015.11.054
http://www.ncbi.nlm.nih.gov/pubmed/26687355
https://doi.org/10.1126/science.289.5477.310
http://www.ncbi.nlm.nih.gov/pubmed/10894781
https://doi.org/10.1186/bcr3362
http://www.ncbi.nlm.nih.gov/pubmed/23181561
https://doi.org/10.1038/srep41921
http://www.ncbi.nlm.nih.gov/pubmed/28211519
https://doi.org/10.1371/journal.pone.0060417
http://www.ncbi.nlm.nih.gov/pubmed/23533680
https://doi.org/10.1091/mbc.E14-10-1454
http://www.ncbi.nlm.nih.gov/pubmed/26354423
https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1111/eva.12196
http://www.ncbi.nlm.nih.gov/pubmed/25861385
https://doi.org/10.1038/nature11676
https://doi.org/10.1038/nature11676
http://www.ncbi.nlm.nih.gov/pubmed/23178809
https://doi.org/10.1073/pnas.1508825112
http://www.ncbi.nlm.nih.gov/pubmed/26038577
https://doi.org/10.1038/s41467-018-03369-8
https://doi.org/10.1038/s41467-018-03369-8
http://www.ncbi.nlm.nih.gov/pubmed/29540679
https://doi.org/10.1016/j.diagmicrobio.2009.11.006
https://doi.org/10.1016/j.diagmicrobio.2009.11.006
http://www.ncbi.nlm.nih.gov/pubmed/20226328
https://doi.org/10.1371/journal.ppat.0030164
http://www.ncbi.nlm.nih.gov/pubmed/17983269
https://doi.org/10.1371/journal.pgen.1007319
http://www.ncbi.nlm.nih.gov/pubmed/29702647
https://doi.org/10.1038/s41467-018-07779-6
http://www.ncbi.nlm.nih.gov/pubmed/30559369
https://doi.org/10.1016/j.cell.2006.04.042
https://doi.org/10.1016/j.cell.2006.04.042
http://www.ncbi.nlm.nih.gov/pubmed/16814715
https://doi.org/10.7554/eLife.58349


Nattestad M, Alford MC, Sedlazeck FJ, Schatz MC. 2016. SplitThreader: exploration and analysis of
rearrangements in Cancer genomes. bioRxiv. DOI: https://doi.org/10.1101/087981

Ngamskulrungroj P, Chang Y, Hansen B, Bugge C, Fischer E, Kwon-Chung KJ. 2012. Characterization of the
chromosome 4 genes that affect fluconazole-induced disomy formation in cryptococcus neoformans. PLOS
ONE 7:e33022. DOI: https://doi.org/10.1371/journal.pone.0033022, PMID: 22412978

Niimi K, Monk BC, Hirai A, Hatakenaka K, Umeyama T, Lamping E, Maki K, Tanabe K, Kamimura T, Ikeda F,
Uehara Y, Kano R, Hasegawa A, Cannon RD, Niimi M. 2010. Clinically significant micafungin resistance in
Candida Albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by
loss of heterozygosity. Journal of Antimicrobial Chemotherapy 65:842–852. DOI: https://doi.org/10.1093/jac/
dkq073, PMID: 20233776

Nobile CJ, Bruno VM, Richard ML, Davis DA, Mitchell AP. 2003. Genetic control of chlamydospore formation in
candida albicans. Microbiology 149:3629–3637. DOI: https://doi.org/10.1099/mic.0.26640-0, PMID: 14663094

Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD. 2012. A
recently evolved transcriptional network controls biofilm development in candida albicans. Cell 148:126–138.
DOI: https://doi.org/10.1016/j.cell.2011.10.048

Notta F, Chan-Seng-Yue M, Lemire M, Li Y, Wilson GW, Connor AA, Denroche RE, Liang SB, Brown AM, Kim JC,
Wang T, Simpson JT, Beck T, Borgida A, Buchner N, Chadwick D, Hafezi-Bakhtiari S, Dick JE, Heisler L,
Hollingsworth MA, et al. 2016. A renewed model of pancreatic Cancer evolution based on genomic
rearrangement patterns. Nature 538:378–382. DOI: https://doi.org/10.1038/nature19823, PMID: 27732578

O’Meara TR, Robbins N, Cowen LE. 2017. The Hsp90 chaperone network modulates candida virulence traits.
Trends in Microbiology 25:809–819. DOI: https://doi.org/10.1016/j.tim.2017.05.003, PMID: 28549824

Onyewu C, Wormley FL, Perfect JR, Heitman J. 2004. The calcineurin target, Crz1, functions in azole tolerance
but is not required for virulence of candida albicans. Infection and Immunity 72:7330–7333. DOI: https://doi.
org/10.1128/IAI.72.12.7330-7333.2004, PMID: 15557662

Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131:452–462. DOI: https://doi.org/10.1016/j.
cell.2007.10.022, PMID: 17981114

Paulsen T, Kumar P, Koseoglu MM, Dutta A. 2018. Discoveries of extrachromosomal circles of DNA in normal
and tumor cells. Trends in Genetics 34:270–278. DOI: https://doi.org/10.1016/j.tig.2017.12.010, PMID: 2932
9720

Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R. 2010. Aneuploidy
confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468:321–325.
DOI: https://doi.org/10.1038/nature09529, PMID: 20962780

Payen C, Di Rienzi SC, Ong GT, Pogachar JL, Sanchez JC, Sunshine AB, Raghuraman MK, Brewer BJ, Dunham
MJ. 2014. The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae
adapting to strong selection. G3: Genes, Genomes, Genetics 4:399–409. DOI: https://doi.org/10.1534/g3.113.
009365, PMID: 24368781

Perea S, Patterson TF. 2002. Antifungal resistance in pathogenic fungi. Clinical Infectious Diseases 35:1073–
1080. DOI: https://doi.org/10.1086/344058, PMID: 12384841

Perlin DS. 2011. Current perspectives on echinocandin class drugs. Future Microbiology 6:441–457. DOI: https://
doi.org/10.2217/fmb.11.19, PMID: 21526945

Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN. 2010. Variation in candida spp distribution and
antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY
antimicrobial surveillance program (2008-2009). Diagnostic Microbiology and Infectious Disease 68:278–283.
DOI: https://doi.org/10.1016/j.diagmicrobio.2010.06.015, PMID: 20846808

Pfaller MA. 2012. Antifungal drug resistance mechanisms, epidemiology, and consequences for treatment. The
American Journal of Medicine 125:S3–S13. DOI: https://doi.org/10.1016/j.amjmed.2011.11.001, PMID: 221
96207

Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. 2019. Twenty years of the SENTRY antifungal
surveillance program results for Candida Species From 1997-2016. Open Forum Infectious Diseases 6:S79–S94.
DOI: https://doi.org/10.1093/ofid/ofy358, PMID: 30895218
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Rodić N, Burns KH. 2013. Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms? PLOS
Genetics 9:e1003402. DOI: https://doi.org/10.1371/journal.pgen.1003402, PMID: 23555307

Roemer T, Krysan DJ. 2014. Antifungal drug development: challenges, unmet clinical needs, and new
approaches. Cold Spring Harbor Perspectives in Medicine 4:a019703. DOI: https://doi.org/10.1101/
cshperspect.a019703, PMID: 24789878

Ropars J, Maufrais C, Diogo D, Marcet-Houben M, Perin A, Sertour N, Mosca K, Permal E, Laval G, Bouchier C,
Ma L, Schwartz K, Voelz K, May RC, Poulain J, Battail C, Wincker P, Borman AM, Chowdhary A, Fan S, et al.
2018. Gene flow contributes to diversification of the major fungal pathogen candida albicans. Nature
Communications 9:2253. DOI: https://doi.org/10.1038/s41467-018-04787-4, PMID: 29884848

Rosenberg A, Ene IV, Bibi M, Zakin S, Segal ES, Ziv N, Dahan AM, Colombo AL, Bennett RJ, Berman J. 2018.
Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent
candidemia. Nature Communications 9:2470. DOI: https://doi.org/10.1038/s41467-018-04926-x, PMID: 29941
885

Roth JR, Andersson DI. 2004. Adaptive mutation: how growth under selection stimulates lac(+) reversion by
increasing target copy number. Journal of Bacteriology 186:4855–4860. DOI: https://doi.org/10.1128/JB.186.
15.4855-4860.2004, PMID: 15262920

Rueda C, Puig-Asensio M, Guinea J, Almirante B, Cuenca-Estrella M, Zaragoza O, Padilla B, Muñoz P, Guinea J,
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Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative genomics viewer (IGV): high-performance
genomics data visualization and exploration. Briefings in Bioinformatics 14:178–192. DOI: https://doi.org/10.
1093/bib/bbs017, PMID: 22517427

Todd RT, Forche A, Selmecki A. 2017. Ploidy variation in fungi: polyploidy, aneuploidy, and genome evolution.
Microbiology Spectrum 5:2016. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0051-2016

Todd RT, Wikoff TD, Forche A, Selmecki A. 2019. Genome plasticity in Candida Albicans is driven by long repeat
sequences. eLife 8:e45954. DOI: https://doi.org/10.7554/eLife.45954, PMID: 31172944

Tuch BB, Galgoczy DJ, Hernday AD, Li H, Johnson AD. 2008. The evolution of combinatorial gene regulation in
fungi. PLOS Biology 6:e38. DOI: https://doi.org/10.1371/journal.pbio.0060038, PMID: 18303948

Tzung KW, Williams RM, Scherer S, Federspiel N, Jones T, Hansen N, Bivolarevic V, Huizar L, Komp C, Surzycki
R, Tamse R, Davis RW, Agabian N. 2001. Genomic evidence for a complete sexual cycle in candida albicans.
PNAS 98:3249–3253. DOI: https://doi.org/10.1073/pnas.061628798, PMID: 11248064

Vandeputte P, Ferrari S, Coste AT. 2012. Antifungal resistance and new strategies to control fungal infections.
International Journal of Microbiology 2012::1–26. DOI: https://doi.org/10.1155/2012/713687, PMID: 22187560

Venkataram S, Dunn B, Li Y, Agarwala A, Chang J, Ebel ER, Geiler-Samerotte K, Hérissant L, Blundell JR, Levy
SF, Fisher DS, Sherlock G, Petrov DA. 2016. Development of a comprehensive Genotype-to-Fitness map of
Adaptation-Driving mutations in yeast. Cell 166:1585–1596. DOI: https://doi.org/10.1016/j.cell.2016.08.002,
PMID: 27594428

White TC. 1997. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an
azole-resistant lanosterol 14alpha demethylase in Candida Albicans. Antimicrobial Agents and Chemotherapy
41:1488–1494. DOI: https://doi.org/10.1128/AAC.41.7.1488

Wu S, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, Luebeck J, Rajkumar U, Diao Y, Li B, Zhang W,
Jameson N, Corces MR, Granja JM, Chen X, Coruh C, Abnousi A, Houston J, Ye Z, Hu R, et al. 2019. Circular

Todd and Selmecki. eLife 2020;9:e58349. DOI: https://doi.org/10.7554/eLife.58349 32 of 33

Research advance Genetics and Genomics Microbiology and Infectious Disease

https://doi.org/10.1117/1.1631315
https://doi.org/10.1128/JCM.00381-07
http://www.ncbi.nlm.nih.gov/pubmed/17581937
https://doi.org/10.1186/gm62
https://doi.org/10.1186/gm62
http://www.ncbi.nlm.nih.gov/pubmed/19566914
https://doi.org/10.1074/jbc.M111.233569
http://www.ncbi.nlm.nih.gov/pubmed/21592964
https://doi.org/10.1007/s00294-018-0923-8
http://www.ncbi.nlm.nih.gov/pubmed/30600398
https://doi.org/10.1128/AAC.00295-09
https://doi.org/10.1371/journal.ppat.1000848
https://doi.org/10.1371/journal.ppat.1000848
http://www.ncbi.nlm.nih.gov/pubmed/20368972
https://doi.org/10.1128/AAC.00694-13
https://doi.org/10.1186/s12859-016-1016-7
http://www.ncbi.nlm.nih.gov/pubmed/27094401
https://doi.org/10.1007/s10577-012-9302-3
https://doi.org/10.1007/s10577-012-9302-3
http://www.ncbi.nlm.nih.gov/pubmed/22801777
https://doi.org/10.1093/hmg/4.12.2189
https://doi.org/10.1534/genetics.109.103028
https://doi.org/10.1534/genetics.109.103028
http://www.ncbi.nlm.nih.gov/pubmed/19474201
http://www.ncbi.nlm.nih.gov/pubmed/6752122
https://doi.org/10.2217/fmb.13.101
http://www.ncbi.nlm.nih.gov/pubmed/24059922
https://doi.org/10.1128/MCB.01313-06
http://www.ncbi.nlm.nih.gov/pubmed/17242211
https://doi.org/10.1016/j.cell.2012.11.043
https://doi.org/10.1016/j.cell.2012.11.043
http://www.ncbi.nlm.nih.gov/pubmed/23374337
https://doi.org/10.1093/bib/bbs017
https://doi.org/10.1093/bib/bbs017
http://www.ncbi.nlm.nih.gov/pubmed/22517427
https://doi.org/10.1128/microbiolspec.FUNK-0051-2016
https://doi.org/10.7554/eLife.45954
http://www.ncbi.nlm.nih.gov/pubmed/31172944
https://doi.org/10.1371/journal.pbio.0060038
http://www.ncbi.nlm.nih.gov/pubmed/18303948
https://doi.org/10.1073/pnas.061628798
http://www.ncbi.nlm.nih.gov/pubmed/11248064
https://doi.org/10.1155/2012/713687
http://www.ncbi.nlm.nih.gov/pubmed/22187560
https://doi.org/10.1016/j.cell.2016.08.002
http://www.ncbi.nlm.nih.gov/pubmed/27594428
https://doi.org/10.1128/AAC.41.7.1488
https://doi.org/10.7554/eLife.58349


ecDNA promotes accessible chromatin and high oncogene expression. Nature 575:699–703. DOI: https://doi.
org/10.1038/s41586-019-1763-5, PMID: 31748743

Yang F, Teoh F, Tan ASM, Cao Y, Pavelka N, Berman J. 2019. Aneuploidy enables Cross-Adaptation to unrelated
drugs. Molecular Biology and Evolution 36:1768–1782. DOI: https://doi.org/10.1093/molbev/msz104,
PMID: 31028698

Yona AH, Manor YS, Herbst RH, Romano GH, Mitchell A, Kupiec M, Pilpel Y, Dahan O. 2012. Chromosomal
duplication is a transient evolutionary solution to stress. PNAS 109:21010–21015. DOI: https://doi.org/10.1073/
pnas.1211150109, PMID: 23197825

Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhsng CZ, Wala J, Mermel
CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW, Getz G, Meyerson M, Beroukhim R. 2013. Pan-
cancer patterns of somatic copy number alteration. Nature Genetics 45:1134–1140. DOI: https://doi.org/10.
1038/ng.2760, PMID: 24071852

Zarrei M, MacDonald JR, Merico D, Scherer SW. 2015. A copy number variation map of the human genome.
Nature Reviews Genetics 16:172–183. DOI: https://doi.org/10.1038/nrg3871, PMID: 25645873

Zeitlin SG, Baker NM, Chapados BR, Soutoglou E, Wang JY, Berns MW, Cleveland DW. 2009. Double-strand
DNA breaks recruit the centromeric histone CENP-A. PNAS 106:15762–15767. DOI: https://doi.org/10.1073/
pnas.0908233106, PMID: 19717431

Zhao Y, Strope PK, Kozmin SG, McCusker JH, Dietrich FS, Kokoska RJ, Petes TD. 2014. Structures of naturally
evolved CUP1 tandem arrays in yeast indicate that these arrays are generated by unequal nonhomologous
recombination. G3: Genes, Genomes, Genetics 4:2259–2269. DOI: https://doi.org/10.1534/g3.114.012922,
PMID: 25236733

Zhou J, Lemos B, Dopman EB, Hartl DL. 2011. Copy-number variation: the balance between gene dosage and
expression in Drosophila melanogaster. Genome Biology and Evolution 3:1014–1024. DOI: https://doi.org/10.
1093/gbe/evr023, PMID: 21979154
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