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Chicks (Gallus gallus domesticus) make a repetitive, high energy ‘distress’ call
when stressed. Distress calls are a catch-all response to a range of environ-
mental stressors, and elicit food calling and brooding from hens.
Pharmacological and behavioural laboratory studies link expression of this
call with negative affective state. As such, there is an a priori expectation that
distress calls on farms indicate not only physical, but emotional welfare.
Using whole-house recordings on 12 commercial broiler flocks (12 =25 090-
26510/flock), we show that early life (day 14 of placement) distress call
rate can be simply and linearly estimated using a single acoustic parameter:
spectral entropy. After filtering to remove low-frequency machinery noise,
spectral entropy per minute of recording had a correlation of —0.88 with a
manual distress call count. In videos collected on days 1-3, age-specific behav-
ioural correlates of distress calling were identified: calling was prevalent
(spectral entropy low) when foraging/drinking were high on day 1, but
when chicks exhibited thermoregulatory behaviours or were behaviourally
asynchronous thereafter. Crucially, spectral entropy was predictive of impor-
tant commercial and welfare-relevant measures: low median daily spectral
entropy predicted low weight gain and high mortality, not only into the next
day, but towards the end of production. Further research is required to identify
what triggers, and thus could alleviate, distress calling in broiler chicks. How-
ever, within the field of precision livestock farming, this work shows the
potential for simple descriptors of the overall acoustic environment to be a
novel, tractable and real-time ‘iceberg indicator’ of current and future welfare.

1. Introduction

An ‘iceberg’ welfare indicator is a single marker that covaries with a range of
physical, behavioural and emotional welfare concerns [1]. The “distress call’ is a
repetitive, high energy vocalization made by young chickens (Gallus gallus domes-
ticus) when stressed [2], which could be a candidate iceberg indicator. Its
association with negative emotional (affective) states has been pharmacologically
validated in laboratory studies with anxiolytics and antidepressants [3]. Contexts
eliciting distress calling are found also to elevate physiological stress markers
including corticosterone and interleukin-6 [3,4], and negatively impact on cogni-
tive indicators of mood [5,6]. Distress calling is so reliably triggered by social
isolation that it has been proposed as a screening assay for drug development
[7]. In early life, chicks are dependent on the hen thermally and for foraging,
and the function of the call is to attract attention and elicit ‘food calls’ from the
hen [8]. As such, this communication with the absent hen may be a sensitive indi-
cator of emerging environmental concerns affecting commercially reared chicks.
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Distress calling appears not to be triggered directly by acute,
startling stimuli (loud noise or electric shock [9]; air puff
[10]), but rather discomfort or risky contexts: heat stress
[11,12], cold stress [13], maternal signalling of threat [14],
high density or food/water restriction (manipulated simul-
taneously [15]) or social isolation [2,9]. More generally, as
young chicks are moved from the hatchery to the unfamiliar
rearing environment, latency to settle and find resources and
comfort is of critical welfare consideration [16], and distress
calling is triggered by environmental unfamiliarity [9,13].
There is good a priori evidence from laboratory studies
therefore, that distress call monitoring may be a real-time
and animal-centred marker of both emotional state and
environmental stressors on poultry farms.

In chickens, early-life welfare constraints often predict
late-life welfare concerns [17]. One mechanism linking life
stages is that stress is energetically costly: altered scope to
invest in concurrent growth and immune function at critical
points in development has consequences for downstream phe-
notype and mortality risks [18]. In broilers for example,
elevating corticosterone to mimic stress exposure suppresses
weight gain and heart development, increases oxidative
damage and shifts investment from musculoskeletal growth
and into fat deposition and antioxidant production [19,20].
Stress-induced activation of the developing neuroendocrine
system in early life can also up- or downregulate later
life stress-responsiveness [21]. In some contexts, though, this
‘phenotypic programming’ may enable animals to cope
better when the same stressors are re-encountered (e.g. cold
stress [22]; social and resource deprivation [23]). To validate
distress calling as a welfare indicator therefore, it is important
to explore links to welfare in both current and future life stages.

Precision livestock farming is the application of the prin-
ciples of process engineering to the management of livestock
[24]. Several recent studies propose automated acoustic
approaches for monitoring poultry welfare, health and pro-
ductivity in real time, in order to promote earlier husbandry
interventions [25]. For example, acoustic tools have been
proposed to monitor growth [26], feed intake [27], infectious
bronchitis [28,29], necrotic enteritis [30], thermal comfort
[31,32] and disturbance [32]. Most use machine learning
approaches for classification, with algorithms trained on
group-level recordings of flocks differing in health or stress
exposure. Typically, classification requires several combined
markers, but when a single acoustic feature shows a pro-
nounced, directional change with a welfare or productivity
concern, then statistical approaches are possible. For example,
the lowering in fundamental frequency that occurs with
increasing vocal tract length may be used to monitor growth
in broilers [26]. However, while these top-down approaches
have proven utility, regarding welfare there is often an
a priori reason to start with a specific type of vocalization.
Chickens have over 20 context-specific calls [33], thus ‘eaves-
dropping’ on the right sound could reveal functional (e.g.
vigilance [34]; feeding [35]) or emotional states (frustration
[36]; anticipation [37]). Moreover, specific sounds are linked
to thermal discomfort [31] and pain [38], and certain reflexive
sounds to respiratory diseases [29].

Automated detection of specific sounds is computation-
ally challenging in a commercial environment with often
thousands of overlapping calls and background machinery
noise. For rare and acoustically distinctive sounds, such as
coughing in calves, a bottom-up approach is possible, with

classification algorithms trained on the sound specifically
rather than the group disease status [39]. Distress calling
is not rare: thousands of chicks may call simultaneously.
However, it is distinctive: young (up to 6-day-old) chicks
have a relatively simple vocal repertoire with greater than
90% of calls one of 4 relatively quiet ‘contact calls’ and just
1 common, loud (up to 92dB) and repetitive distress call
[2]. We anticipated that simultaneous calling would
significantly alter the overall acoustic environment. As a
catch-all response to a range of environmental stressors, we
hypothesized that distress calling may be an iceberg welfare
indicator. As such, our objective was to test whether a simple,
statistical approach could be used to monitor this specific call
type in a commercial broiler farm.

Using recordings of the first 4 days of placement in
12 flocks, we explored (1) whether house-level acoustic par-
ameters changed in proportion to the intensity of flock-level
distress calling, as determined from a manual distress call
count. As a behavioural response to stress, we expected
(2) that distress calling should be sensitive to changes in flock
behaviour linked to welfare. As distress calls elicit food calling
and brooding from the hen, we expected chicks to distress call
more when using resources and when exhibiting tight
clustering as a behavioural sign of cold stress [13]. We also
expected distress calling to decline with age as chicks become
both thermally independent and more settled within their
environment [9,13]. Finally, lower than expected daily weight
gain and high intra-flock mortality can indicate suboptimal
environmental conditions or health in broilers [40]. To be an
iceberg indicator, we, therefore, hypothesized that (3) this
behavioural indicator of early-life stressor exposure would
also predict low weight gain and high mortality. These par-
ameters were measured at flock level on the day following
acoustic recording and again toward slaughter age to test the
short- and long-term predictive power of early-life distress
call monitoring.

2. Methods

See electronic supplementary material where indicated for
additional detail on datasets and methodological decisions.

2.1. Field data collection
Data were collected from 12 commercial Ross 308 mixed-sex
flocks (25090-26 510 chicks placed per flock). These constituted
three consecutive placements into four houses (1314-1322 m?)
on one farm, between 3 November 2017 and 15 March 2018.
See figure 1 for the schedule of data collection. To capture
early-life distress calling, acoustic recorders ran for 4 days follow-
ing placement. ‘Day 1’ commenced with arrival from the hatchery
(10.00-16.00, mean 14.15, variation due to commercial constraints
on delivery time) and ended at midnight, and days 2—4 were 24 h
cycles thereafter. For each flock, a 9 mm diaphragm condenser
microphone was positioned centrally in the front right quadrant
of the house at 70 cm above ground height (beyond reach of
chicks), 40 cm from the end of a perch and 1 m equidistant to a
feeder line and drinker line. Recordings sampled at 44.1 kHz
were gathered at a 1 min/10 min interval throughout the day
(i.e. 144 recordings per flock per day) using an Arbimon
Acoustic™ recorder (Sieve Analytics, San Juan, Puerto Rico).
To explore within-house consistency in acoustic parameters, a
second recorder was installed above the same arrangement of fea-
tures centrally in the rear left quadrant of two houses (1 = 6 flocks).
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Figure 1. Schematic of acoustic, video and weight/mortality data collection days per flock.

To analyse correlations between behaviour and distress calling,
chicks were videoed from day 1 to 3. For each flock, a GoPro 5™
camera with Blink™ time-lapse controller (Camdo Solutions,
California, USA) was positioned at 240 cm above the ground
over the microphone (parallel with lighting rigs). Videos were col-
lected at a 1 min h™! interval. Two video feeds were lost at 13 h,
with the remainder running 30-49 h (mean 40.6 h), generating
493 videos in total. All equipment was installed prior to placement
and retrieved at house clearance.

2.2. Automated acoustic data extraction

One-minute recordings were characterized using R v. 3.5.1 [41]
using the packages TuneR [42] (function: readWave) and
Seewave [43] (functions: ffilter, meanspec and specprop). The
mean frequency spectrum was obtained using short-time Fourier
transform with a 512 sample, non-overlapping Hanning window.
Three datasets were produced with different band-pass filters
applied to the same files: (1) ‘unfiltered’; (2) ‘high-pass’ filtered
above 2750 Hz to remove low frequency fan and heater noise with-
out encroaching on frequency ranges where most energy in distress
vocalizations is distributed for 1- to 5-day-old chicks (above
2756 Hz [44]); (3) additionally low-pass filtered above 5000 Hz to
encompass the frequency range where most energy in distress
calls is distributed (2756-4307 Hz [44]; “call region’). For each record-
ing in each dataset, 12 parameters were extracted. Nine describe
average frequency: mean, median, standard deviation and standard
error of the mean, dominant frequency (frequency of maximum
amplitude), 25th and 75th quartiles (below/above which 25% of
energy in the spectrum is found) and the interquartile range
(75th-25th quartile). Four describe the shape of the power spectrum
(where x = frequencies, y = relative amplitude of the i frequency,
N =number of frequencies): centroid (sum(x xy)), skewness
(sum((x-mean(x))®)/(N —1)/sd®), kurtosis (sum((x-mean(x))*)/
(N=1)/sd* and spectral entropy (—sum(ylogy)/log(N)) [43].

2.3. Manual acoustic data extraction

To validate the automated acoustic parameters as measures of
distress calling, distress calls were manually counted in 283
1-min acoustic recordings using Praat [45] (see electronic sup-
plementary material methods). A distinctive shape (brief
ascending then prolonged descending frequency modulation,
100-250 ms [2]) allowed distress calls to be identified in spectro-
grams. To capture any acoustic differences in distress calls that
may occur with welfare status or age in the validation set, 23-26
files were selected per flock from day 1 to 4, at 2 h intervals on
day 1 and 4 h intervals thereafter.

2.4. Video data extraction

Video data were used to analyse correlations between distress call-
ing and flock-level behaviour. To explore the effects of behaviour at
different distances to the microphone on acoustic recordings, three
2 m? square areas were identified per video: a ‘Microphone’ square
with the microphone in the centre, and two adjacent ‘Surrounding’
squares. Each encompassed 2 (1 full and 2 half) feeder pans and
10 nipple drinkers, where the feeder and drinker line demarcated
the opposing sides. We could not reliably follow individuals,
so to avoid psuedoreplication within videos, a count of chicks
(‘Total chicks’, see electronic supplementary material methods)

and spatial distribution were recorded once per video, at time 0,
and activity, foraging and drinking behaviour were recorded in
the first 10s. ‘Distribution’ was categorized: 1 (spaced apart,
chicks had 0 or 1 chick within 1 body-length), 2 (2+ chicks within
1 body-length, forming small clusters), 3 (large clusters in physical
contact and the central chick greater than 2 body-lengths from the
cluster edge). Category 3 is analogous to distributions used by
stockpersons to identify cold stress [16]. ‘Activity’ was categorized
from 0-3 as follows: 0 (0-5% of chicks moving), 1 (less than 50% of
chicks moving), 2 (greater than 50% of chicks moving). The occur-
rence of ‘Large-scale movements’ (greater than 50% of chicks
moving between rather than within squares) was a binary variable
scored for the whole minute (yes/no). ‘Drinking” was a count of
chicks observed using nipple drinkers. As feed was scattered on
the litter as well as available in hoppers, ‘foraging” was a count of
chicks observed either with heads down/scratching or directly
pecking at feeder pans (see electronic supplementary material
methods). Numeric variables: foraging (Pearson’s ¥ =0.32, t =7.42,
p <0.0001), drinking (r=0.43, t =10.64, p <0.0001) and total chicks
(r=0.27, t=6.10, p <0.0001), were significantly correlated across
and averaged for the two Surrounding squares. Distribution and
Activity were classified across the two Surrounding squares com-
bined: classifications which correlated also with behaviour in the
broader field of view (see electronic supplementary material
methods). Due to the overhead view, individuals distress calling
could not be identified in videos to explore their behaviour
specifically.

2.5. Welfare and productivity data

To test whether early-life distress calling predicted immediate and
future weight or mortality, farm productivity data were collated for
the days following acoustic measurements (days 2-5 of placement)
and day 32. Mortality (birds found dead, excluding culls) was
collated from stockperson records. Average bird weight was pro-
vided by the producer, from a commercial algorithm that used
data collected continuously from two platform balances (Fancom
Automatic Poultry Weighing System; Leuven, Belgium) in each
house. Because data were collected on a commercial farm, ages
for house thinning (25-30% flock slaughtered, 33-34 days) and
clearance (36-39 days) varied as required to optimize productivity.
For consistency, endpoint data were therefore gathered at 32 days.

2.6. Statistical methods

The best automated proxy of manual distress call counts was
assessed (1) by correlation coefficient. Spearman’s correlations
were used due to skew towards low manual call counts. And (2),
using a random forest approach for parameter selection (R random
Forest [46]). The model compared 2000 trees, each composed of sub-
sets of 12 variables to reduce impacts of collinearity in parameter
selection. Parameter ‘importance’ in this approach is the difference
in mean squared error with random permutation of each variable,
normalized by the standard deviation in those differences.

For the parameters with the strongest correlation, (3) a linear
mixed model (LME) was fitted for each with manual call count as
the dependent, flock as a random effect to account for repeated
measurements, and the interaction of (day of placement (factor, 1-
4)x the acoustic predictor) as independent variables. A likelihood
ratio test (LRT) between models with and without the interaction
was used to assess whether the slope of the relationship between
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the acoustic predictor and manual call count was age dependent.
From these three approaches, the strongest single parameter
(termed the ‘acoustic predictor’ for the remainder of the methods)
was identified.

Distribution was markedly more variable and distress calling
more prevalent on day 1 (see electronic supplementary material
methods), so separate models investigated correlations between
the acoustic predictor and day 1 (115 time-matched videos, 12
flocks) versus day 2-3 behaviour (378 videos, 10 flocks). In both
analyses, an LME fitted with maximum-likelihood controlled for
repeated measurements per flock as a random effect. Total chicks,
distribution, foraging, drinking and activity for microphone and
surrounding squares and the parameter large-scale movements
were independent variables. In the day 1 model, hours from place-
ment was also included as a covariate. On day 1, activity in
surrounding squares was predominantly category 2 (106 of 115
records), thus captured by the large-scale movement parameter
(effectively activity category 2 versus large-scale movements), so
was omitted from the model. The day 2-3 model included day of
placement as a factor (2 or 3, categorical). Microphone and
surrounding square total chick counts were retained in models
to control for numbers near the microphone, but models were
otherwise simplified by backwards stepwise regression, using
LRT to compare consecutive models (threshold p<0.05) until
only significant variables and chick counts remained.

Finally, we tested whether the acoustic predictor, expressed as
an average of the recordings collected per flock per day, was pre-
dictive of future mortality and weight gain. On days 24, this
was an average of 144 recordings over 24 h, and on day 1, due to
variation in placement time, of 42 recordings collected over h 1-8
of placement (see electronic supplementary material methods).
In the first pair of models, the response variables were average
bird weight and proportion flock mortality in the next day.
There were four datapoints per flock (day 2, 3, 4 and 5 mortality
or weight), thus LMEs were used to control for repeated measure-
ments. The main effects and interaction of (acoustic parameter x
age) were independent variables. Mortality was logged to improve
model fit. In the second pair of models, linear models were con-
structed with the response variable of either average bird weight
or % flock mortality of the starting flock by 32 days. In these
models, there were 12 data points (one end-point measure per
flock), and four independent variables: the average of the acoustic
predictor for day 1, 2, 3 and 4. Models were simplified by stepwise
backward regression until only significant variables remained.

Sound was off during video data extraction, and acoustic, video
and welfare data were compiled separately so that the researchers
would remain blind to outcomes during manual data extraction.

3. Results
3.1. Validation of house-level acoustic parameters

Across both correlation (p: —0.88) and random forest
approaches, spectral entropy proved the best acoustic predictor
of manual distress call count, where negative values indicate
high distress call counts (table 1 and figure 2). Paired T-tests
of Spearman’s p values (made positive) between unfiltered
and filtered data indicate that strength of correlation was sig-
nificantly improved by high-pass filtering (t =2.29, p =0.043),
but only marginally by additional low-pass filtering (unfiltered
compared to call region data: t=1.80, p =0.06). While high-
pass filtered spectral entropy (henceforth spectral entropy)
ranked highest, four other parameters shared an equivalent
Spearman’s p and were selected next in random forest
models: interquartile range, 75% quartile, the centroid and
the mean of the frequency distribution.

Spectral entropy extracted from time-matched recordings
was slightly higher at the front than rear of houses (paired
T-test: +=2.29, d.f.=2584, p=0.023). The difference was
small (mean difference 0.002 + C.I. 0.0002-0.0003) and time-
matched data were strongly correlated (Pearson’s correlation:
t=821, d.f.=2583, p<0.0001, R=0.85+C.I 0.84-0.86;
electronic supplementary material, figure S1).

While as expected, distress call rate declined significantly
with age, the slope of spectral entropy with manual distress
call count was age-independent (table 2a). By contrast, the
slopes of the next highest ranked parameters, high-pass
filtered interquartile range and 75th quartile, and manual dis-
tress call count were age dependent (electronic supplementary
material, table S1 and figure S2).

3.2. Behaviour

On day 1, low spectral entropy (high distress calling) was corre-
lated with parameters describing resource access and the
number or activity of chicks (table 2b). Low spectral entropy
occurred when levels of foraging and drinking in Surrounding
squares were high. Spectral entropy was lower when birds
were more active in the Microphone square, which may simply
reflect that birds were awake thus able to call. It was also low
when total chicks in Surrounding squares was low, though unre-
lated to total chicks in the Microphone square. Other variables
were non-significant and removed from the day 1 model.

On days 2-3, low spectral entropy (high distress calling)
instead correlated with parameters describing chick spatial
distribution (table 2c), and behaviour in Microphone versus Sur-
rounding squares had contrasting affects. Spectral entropy was
lower when distribution in Surrounding squares occurred in
large (category 3) clusters rather than spread out (category 1).
However, spectral entropy was higher when the chicks in the
Microphone square were distributed in intermediate (category
2) clusters. Like the day 1 model, spectral entropy was relatively
low when chicks in the Microphone square were active. How-
ever, spectral entropy was also lower when some but not all
chicks (5-50%) were active in Surrounding squares. Neither
Microphone nor Surrounding total chick counts predicted spec-
tral entropy on days 2-3, which may reflect a more even
distribution in the house than on day 1.

3.3. Predictive models of weight and mortality
Spectral entropy was right-skewed, thus a median value per
flock per day was calculated to test correlations with weight
and mortality. The relationship of spectral entropy and aver-
age bird weight in the next day was age-dependent: positive
on day 1 (high distress calling: low weight), flat on day 2,
then increasingly positive through days 3 and 4 (table 3).
The relationship with log(% flock mortality) in the next day
was independent of age: low spectral entropy (high distress
calling) predicted high mortality (table 3).

Both a low average bird weight (slope 2.32+1.00, ¢t =2.31,
p=0.043) and high % flock mortality (slope —0.171 +0.067,
t=-2.57, p=0.028) on day 32 were predicted by low median
spectral entropy (high distress calling) on day 4 (figure 3).

4. Discussion

Automated monitoring of livestock has great potential to pro-
vide real-time warnings of emerging welfare concerns [47].
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Table 1. Correlations between manual call count and acoustic parameters ranked by Spearman’s correlation and importance in random forest model, where i

importance of a variable is expressed as the % increase in mean squared error if a variable is randomly permuted.

parameter

spectral entropy high pass
Interquartile range - highpass
75th quartile

high pass
| Mmean |

high pass
ey h|ghpass e
i
25thquart|le S egion
e

centroid unfiltered

median

Standarddewat,on ST High pase

” standard deviation S unfiltered -
S
25thquart|le O

25thquart|le SO
S
S igh pas
e

kurtosis high pass

s .
i
e T
e
e
S
i
A
e
e

mean call region

skewness R
75th quartile unfiltered
75th quartile

Here, spectral entropy, high-pass filtered to remove low fre-
quency machinery noise, proved a simple, linear correlate of
manual distress call count in the first 4 days of placement
(Spearman’s p: —0.88). Consistent with expectation, distress
calling decreased with age, and this was captured by increases
in spectral entropy. Ecologically, distress calling is a catch-all
response to a range of acute stressors and interestingly, it was
linked to different behaviours with age: feed/water use on
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day 1 versus distribution and activity patterns on days 2-3.
Most importantly, it predicted future weight and mortality,
not only into the next day but toward the end of produc-
tion (day 32). Together, this is strong evidence that it is both
possible and relevant to monitor chick distress calling using a
whole-house measurement of this single acoustic parameter.
Spectral entropy describes the complexity of a system; in
acoustic data, low values reflect tonal sounds while high
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Figure 2. Relationship between spectral entropy extracted from high-pass
filtered recordings and manual count of distress calls per minute; point
colour indicates day of placement, shaded area indicates confidence interval.

values approach white noise. Compared to other call types,
distress calls are loud (up to 98 dB) and expressed in repetitive
series [2], thus it is unsurprising that shifts in overall acoustic
environment reflect changes predominantly in this call. On
day 1, the low spectral entropy reflects hundreds or thousands
of similarly sized and hence pitched chicks calling in unison.
However, on day 2-3, changes in spectral entropy that occurred
with changes in flock-level behaviour were consistent with
relatively few additional birds calling. That the relationship
with manual distress call count was linear across ages
and counts suggests that this approach is scalable to the
decline in call rates with age. Moreover, sensitivity to low
numbers may allow ‘first responders’ to welfare concerns to
be detected, where individual chickens are expected to differ
in both environmental sensitivity and physiological stress
responsiveness [48].

Several other parameters were almost equally well corre-
lated to manual distress call count: frequency centroid, mean
frequency and the upper and interquartile ranges of frequency
all had a Spearman'’s p of 0.88. Spectral entropy proved more
tractable than parameters ranked next by the random forest
approach, as the slope of the correlation with manual call
count was independent of age. This is likely because low
spectral entropy captures the presence rather than specific
frequency of a peak in the power distribution, where call
frequency is expected to shift as chicks grow [26]. Monitoring
a specific call type in adult chickens, which have a complex
vocal repertoire (greater than 20 context-specific calls [33]),
requires a combination of acoustic parameters for accurate
classification. This capacity to use single parameters to capture
distress calling in chicks, and redundancy between them, offers
scope to select parameters to either generalize across or special-
ize within ages. Or indeed commercial contexts, where
acoustics may vary among strains with different vocalization
rate [49], flocks with different health status [50], or houses
with different machinery noise [51].

For most of the acoustic parameters, high-pass filtering to
remove low frequency machinery noise significantly improved
strength of correlation with manual distress call count (e.g. for

spectral entropy, high-pass p=-0.88, unfiltered p=-0.42). [ 6 |

Conversely, while most power in distress calls occurs between
2756 and 4307 Hz [44], additionally low-pass filtering above
5000 Hz weakened correlations (e.g. for spectral entropy
p =—0.45). We conclude that it is more important to retain rela-
tively low power, higher frequency components of distress calls
than to filter out high frequency background noise such as rus-
tling or pecking that may be equivalent when chicks are and
are not calling. As background noise may vary between
farms, more sensitive filtering approaches that quantify and
subtract it could be beneficial (e.g. [12,52]).

On day 1, chick distribution varied markedly. That spectral
entropy was low (distress calling high) when there were low
counts of chicks in the surrounding area suggests that the
amplitude of distress calls may allow responses, potentially
to social or thermal isolation, of even widely dispersed chicks
to be captured. Consistency in behaviour within different
areas in the videos and moreover between time-matched
acoustic data collected in the front and rear of houses
suggests behavioural synchrony within flocks. Therefore, a
single Microphone appears sufficient to monitor house distress
calls. However, there was a subtly higher rate of distress calling
at the rear than front of the houses. Even within relatively
homogeneous farm environments, individual chickens show
distinct and consistent patterns of space use [53]. This raises
the possibility that rear-of-house Microphones captured differ-
ent ‘types’ of chick, either in microhabitats with different
exposure to welfare concerns or subpopulations with different
sensitivity to them. Future work is required to explore this
spatial heterogeneity.

Early life adversity has profound consequences for late life
phenotype and fitness [18]. Here, low distress calling on day 4
predicted high average bird weight and low cumulative mor-
tality at 32 days (close to slaughter age). While in early life
spectral entropy predicted next-day mortality independently
of age, a strengthening in the predictive relationship with
next-day weight occurred through days 1-4. Part of the call
function is to elicit hen behaviour to help chicks locate resources
[8]. The association between calling and feed and water use on
day 1, therefore, may be explained by hunger or thirst, from
deprivation during transport, unfamiliarity with resource
distribution, and/or stress, which may increase these motiv-
ations [19,20,54]. However, distress calling should then reduce
as chicks become familiar with and imprint on a context
[9,13]. We suggest that continued distress calling on day 4
thus reflects either persistent or cumulative stress exposure or
failure to settle. As such, day 4 may be a particularly sensitive
period for predicting future welfare outcomes.

Different behaviours were associated with distress calling
on days 2-3 than day 1. On days 2-3, spectral entropy was
low (distress calling high) when chicks were spread out,
where social and thermal isolation are expected to trigger dis-
tress calling [2,13]. However, it was also higher when chicks
occurred in large, tightly packed clusters. This result mirrors
an experimental study that found a correlation between
‘swarming’ behaviour that is associated with cold stress
[16] and overall vocalization amplitude [11]. Thus, cold
stress may be one trigger of calling. Interestingly, distress call-
ing on days 2-3 was also high when only some (5-50%)
chicks were active, compared to none or all. It was also low
when chicks occurred in small groups near the microphone,
rather than singly or in dense clusters. In nature, behavioural
synchrony allows siblings to optimize brooding and foraging
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Table 2. Linear mixed models of the relationship between spectral entropy and (a) manual distress call count (N = 283/12 flocks), and (b) day 1 (n=115/12 -
flocks) and (c) days 2-3 (N =378/10 flocks) behaviour and distribution in the 2 m? around the microphone versus the surrounding area. In model (a), a
likelihood ratio test indicates no significant difference in slope with day, thus an estimate of —0.0003 = 0.00001 change in spectral entropy per additional
distress call can be applied across the age range sampled to describe the changes in distress calling with 1 unit change in significant parameters of models (b)
and (c). Flock was a random effect in all models.
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Table 3. Minimum adequate linear mixed models explaining variation in (a) proportion of flock mortality and (b) average bird weight on the day following
acoustic recording. Flock ID (n =12) was included as a random effect.

parameter value s.e. df. t-value p-value
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Figure 3. Relationship between median spectral entropy extracted from high-pass filtered recordings on day 4 of placement and (a) average bird weight (kilogram)
and (b) % flock mortality by day 32 of placement. Shaded area indicates confidence interval.

opportunities, thus an asynchronously active chick that
either disturbs resting individuals or is seeking others may
be another source of distress calls. By contrast, large-scale
movements that may indicate stockperson or other disturb-
ance in the barn were not associated with distress calling.
These events may be more analogous to predation events,
where calling poses a detection risk, and previous studies
report no link between distress call rate and acute, startling
events [9,10]. Importantly, that chicks may not distress call
during stockperson checks indicates a need for automated,
background monitoring.

As part of a precision livestock farming system, automated
detection of welfare concerns should trigger interventions [25].
The short lifespan and high density of most commercial broiler
flocks mean that early life warnings of any health or welfare
compromise would be particularly advantageous. To date,
much automated monitoring has focused on the use of video
data. In chickens, movement patterns are intuitively sensitive
to lameness and foot health (e.g. [55]), but also subtle, flock-
level behavioural patterns that indicate either infection with
or susceptibility to bacterial diseases [56]. While image analysis
is undoubtedly valuable, where acoustic correlates are ident-
ified, audio files are smaller and thus easier, cheaper and
quicker to transfer, process and store. Moreover, they may be
preferable for farmers due to security and anonymity concerns,
but particularly if parameter extraction occurs in sensors to
avoid storing raw recordings. To validate this potential iceberg
indicator fully, future work is required to integrate spectral
entropy into routine commercial data collection, to determine
how well it generalizes across contexts and what sensitivity
it offers for early warning within existing husbandry,
productivity and welfare data collection. Here, 98 h of data
were generated from 12 flocks on one farm. In more
acoustically complex, natural environments, 120 h of continu-
ous recording is recommended to capture a representative
sample of sounds [57]. It will be important therefore to explore
the generalizability of these findings across farms, and to
establish baselines that incorporate age and time of day effects.
Second, shifts in growth and mortality are an indicative but
relatively crude measure of welfare that sum together many
different concerns [40]. A wider array of welfare markers

should be explored to understand the mechanisms linking
distress calling to growth and mortality. Finally, triggers of dis-
tress calling must be identified. In one sense, the simplicity
of the chick ‘vocabulary’ is a strength for automation: one
call type acts as a catch-all for a range of social and environ-
mental parameters [2]. However, this generality may mean
that distress calling serves better as a real-time warning that
‘something’ is wrong rather than as a guide for directing
specific interventions.

Distress calls are not unique to chickens. Lingle et al. [58]
reviewed neonate calls triggered by isolation or capture in a
diverse taxonomic array. They note the following recurrent
features: a tonal sound with a chevron followed by a flat or
(here) descending note, emitted in bouts, and with a higher
fundamental frequency and amplitude than contact calls.
This ubiquity may reflect conserved sensory processing
pathways that underly parental separation among vertebrates
[59]. Intriguingly, across species, exposure to distress calls
can influence the emotional state of receivers [60], suggesting
that distress calling may be not only a welfare indicator
but a welfare concern. By developing and validating this
simple approach for distress call monitoring, this study
opens new avenues into welfare research within commercially
relevant contexts.
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