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Attention-deficit/hyperactivity disorder (ADHD) is a common childhood psychiatric
disorder that often persists into adulthood. Extracting brain networks from functional
magnetic resonance imaging (fMRI) data can help explore neurocognitive disorders in
adult ADHD. However, there is still a lack of effective methods to extract large-scale
brain networks to identify disease-related brain network changes. Hence, this study
proposed a spatial constrained non-negative matrix factorization (SCNMF) method
based on the fMRI real reference signal. First, non-negative matrix factorization analysis
was carried out on each subject to select the brain network components of interest.
Subsequently, the available spatial prior information was mined by integrating the
interested components of all subjects. This prior constraint was then incorporated
into the NMF objective function to improve its efficiency. For the sake of verifying the
effectiveness and feasibility of the proposed method, we quantitatively compared the
SCNMF method with other classical algorithms and applied it to the dynamic functional
connectivity analysis framework. The algorithm successfully extracted ten resting-state
brain functional networks from fMRI data of adult ADHD and healthy controls and
found large-scale brain network changes in adult ADHD patients, such as enhanced
connectivity between executive control network and right frontoparietal network. In
addition, we found that older ADHD spent more time in the pattern of relatively weak
connectivity. These findings indicate that the method can effectively extract large-scale
functional networks and provide new insights into understanding the neurobiological
mechanisms of adult ADHD from the perspective of brain networks.

Keywords: attention deficit hyperactivity disorder, constrained non-negative matrix factorization, dynamic
functional connectivity, functional magnetic resonance imaging, intrinsic reference
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INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is a mental
disorder portrayed by inattention, hyperactivity, and impulsivity.
Studies had shown that approximately 5% of school-age children
have ADHD, and symptoms can last to adulthood (Kooij et al.,
2010). Considering that children with ADHD are not sensitive
to their mental state, it is easier to explore the mystery of
ADHD in adults than in children. At present, the etiology and
pathogenesis of adult ADHD are not well understood, but it is
certain that adult ADHD is inextricably related to the disorder
of brain cognitive neural network connectivity. Generally, a
healthy brain can be described as an optimized network
organization, which is composed of spatially separated brain
functional networks with dense functional connectivities (FCs)
within brain networks and sparse FCs between brain networks.
Brain functional networks play a crucial role in maintaining
the balance between functional specialization and integration,
supporting individual cognitive, and behavioral abilities (He
et al., 2009; Crossley et al., 2013; Bertolero et al., 2015; Sporns and
Betzel, 2016). For example, studies had confirmed that the intra-
network and inter-network FCs of the frontal parietal network
are disrupted in patients with ADHD (Cortese et al., 2012).
Accordingly, it is necessary to study ADHD’s brain dysfunction
network connection in order to identify biomarkers associated
with cognitive impairment in patients for clinical diagnosis and
optimization of disease treatment, while helping to understand
and identify the neurobiological mechanisms of ADHD.

Recent advances had manifested that the combination of
resting-state functional magnetic resonance imaging (fMRI)
technique and FC analysis framework can help elucidate the
disruption of internal brain functional networks in patients with
psychiatric disorders (Buckholtz and Meyer-Lindenberg, 2012;
Bertolero et al., 2015; Gong et al., 2017). The calculation of FC
from the fMRI time series, particularly in the course of the resting
state, has manifested a mountain of understanding and awareness
concerning the macroscopic spatiotemporal organization of
the brain. Moreover, FC within the brain probably varied by
psychotic disorders or in the course of evolutionary phases.
The secondary analysis of Castellanos et al. (2008) revealed
an ADHD-related FC descent pattern between the precuneus
and other default mode network components. In addition,
previous studies had proved that FC between brain networks
changed with increasing age (Allen et al., 2011; Qin et al.,
2015). The FC mentioned above is commonly referred to as
the static FC approach, assuming that neural activity between
brain regions remains stationary throughout the fMRI scan
(Calhoun et al., 2014). However, this assumption of stability may
not hold because there are no restrictions on brain activity in
resting states, and spontaneous fluctuations in brain activity are
significant. Taking this property into account, dynamic functional
connectivity approaches have been proposed, which can provide
unique temporal information (Allen et al., 2014). In addition,
brain networks have characteristics that change over time. Hence,
this study uses dynamic FC to delve into the interactions
within and between large-scale brain networks of ADHD over
a period of time, which facilitates the discovery of reproducible

patterns of brain functional network impairment and reveals
connectivity differences between ADHD patients and healthy
control (HC) subjects.

At present, there are many methods to extract brain function
networks and their corresponding time series from resting-
state fMRI data, such as non-negative matrix decomposition
(NMF) and independent component analysis (ICA) (Calhoun
et al., 2003; Wang et al., 2004). ICA is a holistic decomposition,
where each base is statistically assumed to be independent (Shi
et al., 2017, 2018b). However, the presence of multiple zero
components in the fMRI data makes it difficult to handle higher-
order averages and cannot effectively extract sparse sources. NMF
can effectively solve this problem. NMF is a practicable data-
driven multi-analysis method that breaks down non-negative
data sets into sparse, partially based linear combinations of non-
negative features (Deng et al., 2018). In addition, NMF is a nimble
approach, which can be developed into a constrained NMF
method by adding different constraints to the estimation process.
Compared with the classic NMF method, constrained NMF only
extracts the expected components by adding prior information to
the algorithm, which is beneficial to the subsequent application
and reduces the calculation time and storage requirements in
the process of NMF analysis. However, the prior information
contained in the current constrained NMF method is mostly
some specific knowledge about the source signal, such as the
experimental paradigm in specific cognitive tasks (Ferdowsi
et al., 2010), which does not exist in most cases. Therefore,
it is worth considering how to pick up the available authentic
information from fMRI data. A recently published article by Shi
et al. (2015) put forward a method called group ICA with the
intrinsic reference, which extracts the procurable prior message
from the group data. Inspired by this method, we presented
a new spatial constrained non-negative matrix decomposition
(SCNMF) approach to obtain a priori information by extracting
available real information from the group fMRI data and
integrate this a priori information into the estimation process
of the NMF method.

Generally speaking, NMF is mostly used to analyze fMRI
data of a single subject, but in practical application, we
need to analyze multiple subjects’ fMRI data in more cases.
According to the different hypothesis conditions for multi-
subjects, there are different processing methods for multi-subject
fMRI data analysis, containing spatial concatenation, temporal
concatenation, and tensor concatenation. Supposing that total
subjects have the same temporal model message, and the fMRI
data of multiple subjects are connected according to the spatial
dimension, this method is called the spatial concatenation
method (Svensén et al., 2002). Supposing that all subjects have
the same spatial model message, and the fMRI data of multiple
subjects are connected according to the temporal dimension, this
method is called the temporal concatenation method (Calhoun
et al., 2002; Beckmann et al., 2009). Supposing that all subjects
have the same spatial and temporal pattern message except for the
different magnitude, and the fMRI data of multiple subjects are
connected according to a separate third dimension, this method
is called the tensor concatenation method (Beckmann and Smith,
2005; Lee et al., 2008). Previous studies have enunciated that the
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temporal concatenation method has a better fMRI group analysis
function in these three concatenation methods (Schmithorst
and Holland, 2004; Guo and Pagnoni, 2008). Therefore, this
manuscript applies the time concatenation way to fMRI data
on multiple subjects. At the level of multi-subject, it is simply
concatenation according to temporal, which has the problems of
a large amount of data sample and high time complexity. To solve
this problem, we first reduced the data, then conducted SCNMF
analysis on the reduced data, and then reversed reconstruction to
obtain the brain functional network information of each subject
and its corresponding time process.

In conclusion, in order to better study brain network disorders
in adult ADHD patients, we developed a new SCNMF method
to extract large-scale functional networks. The proposed SCNMF
method was quantitatively compared with two classical methods,
including NMF and FastICA. Subsequently, we presented a
new analysis framework to evaluate the variations of large-scale
functional networks in adult ADHD and HCs. Specifically, the
SCNMF method proposed in this manuscript is used to extract
the brain function network information of each subject and its
corresponding time process, and then dynamic FC and clustering
were performed on the time series of all subjects to get the
dynamic functional states. The framework calculates group-level
connection states by analyzing the dynamic FCs of subjects
within a group and then estimates mutually independent subject-
specific connection states accordingly, guided by the group-level
states. Thus, the resulting subject-specific states capture both
inter-subject variability and intra-group similarity. In addition,
we used univariate analysis to explore the effect of age on dynamic
functional states in adult ADHD and HCs.

MATERIALS AND METHODS

Participants
In this study, the resting fMRI data of 25 adult ADHD and
24 age-matched HCs were obtained from the open database.1

Demographic characteristics are shown in Table 1. The patients
and HCs were recruited by the adult ADHD program of
the University of New York School of Medicine, whose data
collection process and parameters were described as follows: the
patient lay flat in the MRI, opened his eyes, remained relaxed,
and awoke. The scanning repetition time TR was 2,000 ms, echo
time TE was 25 ms, the scanning resolution was 64× 64, the chip
resolution was 3 mm × 3 mm, the slice thickness was 3 mm, the
number of slices was 39 slices, covering the whole brain area, and
the acquisition consists of 192 time points.

1http://www.nitrc.org/projects/fcon_1000/

TABLE 1 | Demographic characteristics.

ADHD HC

Age (mean ± SD) 34.75 ± 9.71 34.8 ± 7.99

Sex (male/female) 19/5 15/9

Data Preprocessing
To stabilize the magnetic field of the scanning machine and adapt
the subjects to the scanning environment, the first ten time points
of the fMRI image were abandoned. The next preprocessing
procedures were slice timing and head motion realign. During
head motion realign, one ADHD subject was excluded due to
excessive head movement, based on a criterion of 3 mm or 3◦.
Next, the images were registered to the standard template of the
Montreal Institute of Neurology (MNI) and then resampled to
2 mm isotropic resolution. Spatial smoothing with a full-width
Gaussian core at half-maximum (FWHM) of 6 mm was used
to improve the signal-to-noise ratio (SNR) of fMRI data. To
reduce noise caused by head movements, the covariate Friston-
24 head movement parameter was regressed from the BOLD time
series of all voxels.

Non-negative Matrix Factorization
Given the matrix X ∈ RT×M

+ , find the non-negative matrix W ∈
RT×K
+ and the non-negative matrix H ∈ RK×M

+ , so that:

XT×M ≈WT×KHK×M (1)

It is approximate because the current solution is not an exact
solution, but only a numerical approximation. K is the number
of components in the decomposition. The inequality (T +
M)K < T ×M represents that only a small number of bases is
used to describe a large amount of data. Therefore, it is possible
to make X =WH only if W contains the intrinsic characteristics
of the random variable.

In addition, NMF is often interpreted by scholars with the
background of blind signal separation as a generation model with
noise-containing items (Cichocki et al., 2006), which is defined
as:

X =WH + ε (2)

ε is the noise matrix of T ×M. The different NMF algorithms
are interpreted as complying with the maximum likelihood
algorithm under different ε distribution hypotheses. The process
of realizing NMF is a process of optimization solution. Donoho
and Stodden (2004) analyzed the requirements for the presence
of a unique solution to NMF theoretically. The harshness of
this condition revealed that it is a feasible method to construct
a reasonable objective function and then optimize W and H
alternately to obtain a local optimal solution of NMF. The classic
method to seek W and H is by minimizing the discrepancy
among X and WH, which is defined as:

min
W∈RS×K

+ ,H∈RK×M
+

J (W, H) = ||X–WH||2F (3)

where || · ||F is the Frobenius norm. The matrices W and H are
randomly initialized, and then the Euclidean distance function is
minimized by updating W and H alternately. The multiplication
update rules [30] for W and H are as follows:

Wij ←Wij

(
XHT)

ij

(WHHT)ij
(4)

Hij ← Hij

(
WTX

)
ij

(WTWH)ij
(5)
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Extraction of Intrinsic Prior Information
Inspired by the group ICA with intrinsic reference proposed by
Shi et al. (2015), we presented an NMF with intrinsic reference
method based on the intrinsic reference signal to guide the NMF
analysis of fMRI data by mining the available prior information
from multiple subject fMRI data. The general process framework
for this method is shown in Figure 1A.

Assume that there are N subjects in a group fMRI data set, and
each subject after normalization has T time points and M voxels.
First, NMF analysis is performed separately for each subject, and
for subject i, NMF is expressed as:

Xi =WiHi (i = 1, 2, . . . , N) (6)

Where Xi represents the T ×M fMRI observation data,
Wi represents the T × Ki mixing matrix, and each row

of Hi =
(

H1
i , H2

i , . . . , Hki
i

)T
represents a component of

subject i after NMF.
We selected ten resting-state functional network templates

extracted from the BrainMap database (Smith et al., 2009) as
the region of interest (ROI), including the medial visual network
(MVISN), occipital pole visual network (OVISN), lateral visual
network (LVISN), default mode network (DMN), cerebellum
network (CBN), sensorimotor network (SMN), auditory network
(AUDN), executive control network (ECN), right frontoparietal
network (RFPN), and left frontoparietal network (LFPN). The
visualization of the ten resting-state functional networks is shown
in Figure 2. According to the correlation coefficient between
the network template and the components of each subject,
the component with the maximum correlation coefficient was
selected and denoted as Hki

i (i = 1, 2, . . . , N) (6)
Subsequently, we extracted the spatial prior information from

Hki
i (i = 1, 2, . . . , N) by principal component analysis method to

reduce the impact of noise (Langley et al., 2010). All Hki
i (i =

1, 2, . . . , N) can form a matrix of N ×M, namely,

H =
(

Hk1
1 , Hk2

2 , . . . , HkN
N

)T
(7)

Whereafter, the eigenvalues and eigenvectors of the covariance
matrices of H can be calculated. The eigenvector of H is
expressed as en(n = 1, 2, . . . , N). Furthermore, the first principal
component R = eT

1 H can be obtained, which is the implicit
spatial prior information related to the component of interest in
the fMRI data of the subjects in the group, where e1 represents
the feature vector corresponding to the maximum eigenvalue.

Spatial Constrained Non-negative Matrix
Factorization
When the prior information is obtained by the above method, we
formulate a spatial constrained NMF method containing spatial
prior information grounded on the multi-objective optimization
framework as follows:

Minimize
{

J (W, H) = ||X–WH||2F
ε (H) = ||H–R||2F

Subject to W ≥ 0, H ≥ 0
(8)

where R represents the spatial prior signal and ε (H) = ||H-R||2F
is used to measure the similarity between H and R.

Therefore, the objective function f (W, H) can be redefined as
follows:

f (W, H) = a · J (W, H)+ b · ε (H) (9)

where a and b are the weighting parameters.

J (W, H) = tr
(
XTX

)
− 2tr

(
HTWTX

)
++tr

(
HTWTWH

)
(10)

ε (H) = tr
(
HTH

)
− 2tr

(
RTH

)
+ tr

(
RTR

)
(11)

Let ψij and ϕij be constrained Lagrange multipliers of Wij ≥

0 and Hij ≥ 0:

L (W, H) = f (W, H)+ tr
(
9WT)

+ tr
(
8HT) (12)

where 9 =
[
ψij
]
, 8 =

[
ϕij
]

The partial derivatives of L(W, H) with respect to W and H
are:

∂L
∂W = −2a · XHT

+ 2a ·WHHT
+ 9 (13)

∂L
∂H = −2a ·WTX + 2a ·WTWH + 2b ·H − 2b · R+8 (14)

Based on the Karush–Kuhn–Tucker (KKT) condition, 9ijWij =

0 and 8ijHij = 0. We can obtain the equation of Wij and Hij:(
XHT)

ij Wij +
(
WHHT)

ij Wij = 0 (15)

a ·
(
−WTX +WTWH

)
ij Hij + b · (H − R)ij Hij = 0 (16)

Whereafter, the update rules of W and H are as follows,

Wij ←Wij

(
XHT)

ij

(WHHT)ij
(17)

Hij ← Hij

(
a·WTX+b·R

)
ij

(a·WTWH+b·H)ij
(18)

Consequently, W and H are constantly updated to meet the
convergence rule, that is, to reach the comparative error of the
set number or the iteration number of the set value.

When the SCNMF algorithm proposed above extracts fMRI
data of multiple subjects, there are problems of large data sample
size and time redundancy. Therefore, in this study, the fMRI data
of a group of subjects were first downscaled, and then SCNMF
analysis was performed on the downscaled data, followed by
inverse reconstruction to obtain the brain functional network
information of each subject and its corresponding time series, as
shown in Figure 1A.

Data reduction is to cut down the temporal dimensionality of
fMRI data for the benefit of subsequent applications. Two data
reduction steps are used for multiple subjects. Supposing that
there are N subjects in the aggregate, Xi is the T ×M data matrix
from subject i, T is the number of fMRI time points, and M is
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FIGURE 1 | Graphical description of the analysis approach. (A) Xi (i = 1, 2, . . . , N) denotes the functional magnetic resonance imaging (fMRI) data of subject i. Wi

and Hi denote the temporal and spatial components of subject i gained by non-negative matrix decomposition (NMF). R denotes the spatial prior information
obtained from H by the proposed NMF with the intrinsic reference method and incorporates this prior information into the new constrained NMF method. The
proposed SCNMF method for the group fMRI analysis is composed of data reduction, constrained NMF calculation, and back reconstruction. (B) The sliding
window approach is adopted to construct a dynamic FC matrix between each of the selected subject’s component. (C) K-means clustering is applied to identify
dynamic FC states. (D) Summary measures of dynamic states, such as the mean dwell time (MDT) and the fraction of time (FT).

the number of voxels. K is the number of estimated components
in the temporal dimension. The first step is to perform a PCA
descending dimension for each subject, as follows:

Yi = F−1
i Xi (19)

where F−1
i is the L× T reducing matrix. After the fMRI data

of each subject is reduced, they are concatenated into a matrix
according to the temporal dimension and then used in the
next data reduction step. Let Y denote the S×M reduced data

matrix, where S is the temporal dimension after the second
dimensionality reduction. Then, the concatenated matrix for N
subjects can be obtained as follows:

Y = G−1

 F−1
1 X1
· · ·

F−1
N XN

 (20)

where G−1 is a reducing matrix S× LN.
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FIGURE 2 | Functional network maps. The functional network z-score maps defined by the ten resting-state functional networks.

Subsequently, constrained NMF is carried out to obtain the
S× K non-negative matrix W and K ×M non-negative matrix
H, which is denoted as:

Y =WH (21)

Then, to calculate the decomposition components of each subject,
back reconstruction needs the results of NMF decomposition and
data reduction. Subject-specific spatial maps Hi and time courses
Wi are gained employing the spatiotemporal regression back
reconstruction approach (Erhardt et al., 2011), namely,

Wi = XiH−1 (22)

Hi =W−1
i Xi (23)

The matrix Hi contains the K spatial maps and the matrix Wi is
the time series matrix of subject i, which consists of the time point
corresponding to K components.

In addition, to evaluate the decomposition performance of the
SCNMF method, SCNMF was quantitatively compared with two
traditional methods, including NMF and FastICA. Specifically,
the brain networks of interest were obtained from fMRI data
using the SCNMF, NMF, and FastICA methods, respectively.
Subsequently, the correlation analysis of the brain network of
interest with ten resting-state network templates was carried out,
and the experiment was repeated 20 times.

Immediately afterward, the generalized estimating equation
method was used to explore whether the correlation coefficients
between brain functional templates and brain network
components obtained by the three methods (i.e., SCNMF,
NMF, and FastICA) were statistically different. Paired post hoc

analyses were performed for the three methods with Bonferroni
correction for multiple comparisons.

Dynamic Functional Connectivity
Analysis
To verify that the proposed method SCNMF in this manuscript
can effectively extract large-scale functional networks associated
with cognitive deficits, we applied the SCNMF method to fMRI
data of adult ADHD and HCs, and mainly analyzed the dynamic
FC between the large-scale networks of the two groups of
subjects. The sliding window approach was adopted to construct
a dynamic FC matrix between ten networks (see Figure 1B).
Starting from the first time point, the time series of brain
networks were intercepted with a certain window length in steps
of 1 TR. Then Pearson correlation coefficients were calculated for
the time series within each window length.

After obtaining the dynamic FC matrices of adult ADHD
and HCs, respectively, the combination of these dynamics FC
of the two groups was regarded as the cluster samples, and then
they were used for k-means clustering (see Figure 1C). However,
the traditional k-means algorithm has randomness in centroid
initialization. Yao et al. (2013) indicated that automatic target
generation processing (ATGP) could effectively obtain the initial
mixing matrix in the ATGP-ICA algorithm so that ATGP-ICA
has better performance than the traditional random initialization
FastICA algorithm in the analysis of fMRI signal. Besides, the
sparse dictionary learning separation (SDLS) model proposed
by Wang et al. (2016) also manifested that ATGP initialization
can promote the convergence speed and correctness of SDLS in
the process of sparse dictionary learning. Accordingly, the ATGP
algorithm was applied to seek effective initial centroid from
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dynamic FC matrix to assist the k-means algorithm in achieving
stable clustering results. Furthermore, the optimum value of
centroid states was taken stock of, applying the elbow criterion
defined as the proportion of internal to among cluster distance.

Then, we used the dynamic state summary metrics mean dwell
time (MDT) and time fraction (FT) to investigate the time spent
by each subject in different states, as shown in Figure 1D (Shi
et al., 2018a). Furthermore, while multiple aspects of functional
connectivity show potential for clinical application, the utility of
brain network status assessment as a reliable tool depends on
the ability to interpret abnormal outcomes. Underlying factors,
such as age, are expected to have a large impact on functional
connectivity (Allen et al., 2011; Rashid et al., 2018). Therefore, we
performed the univariate analysis of MDT and FT in each state to
investigate the relevance between FC and age in different states.
The univariate model was defined as follows:

K̃ = Dβ (24)

where β is the linear regression coefficient and D represents the
age matrix for all subjects. Here, age is log-transformed.

RESULTS

Algorithm Decomposition Performance
Analysis
In this study, W and H are initialized by assigning values to
uniform distributions ranging from 0 to 1. By way of verifying the
repeatability of the model, the algorithm model was repeatedly
run 20 times in this study to calculate the overlap rate of all
results. All the elements of the ten brain network components
obtained from the decomposition were to do a union operation
to obtain a one-dimensional eigenvector.

The overlap rate is defined as:

O = length(union(Qi,Qj))
min(length(Qi), length(Qj))

(25)

where Qi and Qj, respectively, represent the eigenvectors of the
ith and jth results, length() represents the number of eigenvectors,
and union() represents the union of the ith and jth results.

As displayed in Figure 3A, the relative error of the objective
function only changes slightly after multiple runs of the
algorithm. Moreover, in Figure 3B, each scatter represents the
overlap rate of two results, and it can be found that the overlap
rate of features repeated 20 times is more than 0.85. Hence, these
pieces of evidence prove the robustness and repeatability of the
SCNMF algorithm.

Comparison With Classical Methods
To further verify the effectiveness of the SCNMF method
proposed in this manuscript, the correlation analysis between
the components obtained by the SCNMF, NMF, and FastICA
methods and the ten resting-state network templates obtained by
Smith was performed in this study. The experiment was repeated
20 times. Figure 4 shows the histograms of the correlation
coefficients between the components calculated by SCNMF,

NMF, and FastICA methods and the ten network templates,
respectively. From Figure 4, it can be seen that among the
ten brain networks, the correlations between the components
obtained by SCNMF and the brain network templates were
higher than those obtained by NMF and FastICA.

The generalized estimating equation method was used to
investigate whether there was a statistical difference in the
correlation coefficients between the brain network templates and
brain network components obtained by the three methods. The
results showed that there was a significant difference between
the three methods (p < 0.001). Subsequently, paired post hoc
analyses were performed for the three methods with Bonferroni
correction for multiple comparisons, and the results are shown
in Table 2. As can be seen from the table, there were significant
differences between any two of the three methods. This indicates
that the SCNMF method proposed by this study does help to
improve the spatial source signal recovery in fMRI data analysis
and better extract the region of interest from fMRI data compared
with the classical NMF and FastICA methods.

Selection of Window Width and Step
Length
At present, there is no uniform regulation on the selection of
time window length when using the sliding window method.
According to previous studies, when using the sliding window
for dynamic FC analysis, the cognitive state can be correctly
identified when the window size is 30–60 s (Shirer et al., 2012). To
more validly capture the dynamic pattern of psychiatric disorders
and HCs, we conducted softmax classification for these four
groups of subjects and determined the optimal window width
through the highest classification rate. First, we calculated the
correlation matrix of each subject between 15TR and 30TR, and
the step size was 1TR. Each correlation matrix was triangulated
to form a one-dimensional vector (45 × 1) as a classification
feature. Repeat the above two steps to calculate the classification
characteristics of all the subjects. Whereafter, the characteristics
of these four subjects were classified by softmax. The ratio
of training samples and test samples was 7:3. As displayed in
Figure 5A, when the window width was 22TR, the classification
rate was the highest. Therefore, we chose the optimal window
width of 29TR for the dynamic FC of all subjects.

Meanwhile, we used the same softmax classification algorithm
to determine the step size of the sliding time window and
calculated the classification rate for step sizes from 1TR to 10TR.
From Figure 5B, it can be seen that the classification rate was
high when the step size is 5TR, 7TR, 8TR, 9TR, and 10TR, while
referring to the results of existing studies, 5TR was chosen as the
step size in this study.

Dynamic Connectivity States
In this study, the k-means clustering method was used to
cluster the dynamic connectivity matrix of all subjects defined
as input samples. In addition, the elbow criterion was used to
determine the optimal clustering performance, i.e., the number
of clusters was set to 4. By k-means clustering on account of
the dynamic FC window, four states that appear repeatedly in
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FIGURE 3 | (A) The relative error of the results repeated running 20 times. Each time, the result is indicated by a different color. (B) The overlap rate of the results
was repeated 20 times.

FIGURE 4 | The proposed algorithm is compared with NMF and FastICA. SCNMF, NMF, and FastICA are used to extract large-scale brain network components,
and the correlation coefficients between components and network templates were calculated, respectively.

the whole scanning process and across subjects were obtained.
The specific distribution of adult ADHD and HCs dynamic
windows in different states is shown in Figure 6. As can be seen
from Figure 6, adult ADHD was mainly distributed in state 2
and state 4, and HC subjects were concentrated in state 1 and
state 3. Interestingly, each state had a representative subject that
accounted for a large proportion of subjects, with 84.47% of HC
subjects in state 1, 26.13% of ADHD subjects in state 2, 13.38% of
HC subjects in state 3, and 73.36% of ADHD subjects in state 4.

What is more, Figure 7A shows the four dynamic FC states
for adult ADHD and HCs. Each state represented the centroid of

TABLE 2 | Multiple comparisons.

95% confidence interval

Method Method df Sig Lower bound Upper Bound

SCNMF NMF 1 p = 0.034 0.0052 0.1871

FastICA 1 p < 0.001 0.2242 0.3795

NMF FastICA 1 p < 0.001 0.1549 0.2563

a state and presumptively reflected a connectivity state steadily
presented in the fMRI data. A distinctive feature was that the
overall connectivity of state 1 to state 4 was different in terms
of the strength of the connectivities between the functional
networks. Specifically, state 2 and state 3 were stronger connected
states, and state 1 and state 4 were weaker connected states. It
was worth noting that the weaker connectivity state was easier
to detect than the stronger connectivity state, which meant that
the connectivity of the brain network mainly depended on the
comparatively weaker connectivity state.

To better visualize the connectivity patterns of the large-scale
network in different states, Figure 7B displays the top 15% of
the absolute value of the connectivity strength in each state. In
states 1 and 3, the large-scale network exhibited connectivity
characteristics around LVISN and OVISN, and also involved
RFPN. Furthermore, the connectivity between SMN and RFRN
was positively connected in both states. On the whole, the
connectivity distribution was more complex. In state 2, the
large-scale network presented connectivity characteristics around
DMN and RFPN. In state 4, the overall connectivity strength
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FIGURE 5 | (A) The optimal window length is estimated based on the classification accuracy. (B) Estimation results of the optimal step length in terms of
classification accuracy.

was weaker. At the same time, the overall connectivity strength
of adult ADHD patients was lower than that of HCs, indicating
that the connectivities between large-scale networks of adult
ADHD subjects were interrupted or decreased. In addition, this
illustrates that the SCNMF algorithm can be effective in detecting
patterns of connectivity specific to the large-scale networks of
adult ADHD patients and HCs.

To explore how different quantitative summary metrics of
dynamic FC vary with age, the MDT for each state is statistically
analyzed employing univariate linear regression, and the results
are shown in Figure 8. The parameter β stands for the linear
regression coefficient. A positive coefficient of β expresses that
the older subjects expended more time in the commensurable
state whereas a subtractive coefficient of β indicated that younger
subjects expended more time in that state.

As can be seen in Figure 8, older subjects had longer MDT in
state 1, state 3, and state 4. In contrast, younger subjects showed
longer MDT in state 2. Since adult ADHD was mainly distributed
in states 2 and 4, it can be seen that older adults with ADHD were
mainly in state 4 and younger adults with ADHD were mainly in
state 2. However, the effect of age was smaller for HC subjects.

To further research the influence of age on adult ADHD in
states 2 and 4, the median participant in each state was calculated
employing the window correlation matrix of each subject. It
has been documented that the median matrix can be deemed a
representative model of the subjects in a specific state (Damaraju
et al., 2014). Subsequently, univariate analysis was applied to
research the correlation between connectivity and age in the
median matrix of these subjects, as shown in Figure 9A.

The effect of age on the large-scale network connectivity of
adult ADHD subjects in state 2 and state 4 was only reflected in
a few large-scale network connectivities. However, the effects of
age on the two states were different. Specifically, in state 2, the
negative age-related FC was between CBN and ECN. In state 4,
age only affects the FC between OVISN and LFPN.

Then, to assess adult ADHD state differences in dynamic
functional connectivity between state 2 and state 4, we used
the median of these subjects and applied paired t-test to assess

state differences. All outcomes were consistent with the false
discovery rate (FDR) multiple comparison correction threshold
p < 0.05. The state modification was visualized by drawing the
log of p value with the sign of t statistics, − sign(t)log(p).
The momentous state difference between functional networks
is shown in Figure 9B. The results showed that FC in adult
ADHD was significantly different under these two states.
Among them, the positively significant differences in brain
functional connectivity were mainly between ECN and CBN,
and between AUDN and SMN. Relatively speaking, the FCs with
negatively significant differences were mainly between LVISN
and SMN. These pieces of evidence indicate that large-scale
network connectivities in adult ADHD have commonality and
specificity and may serve as a biomarker for the study of adult
ADHD in the future.

DISCUSSION

In this study, we proposed a new spatial constrained NMF
method based on the authentic reference signal, which mined
available spatial prior information from the group fMRI

FIGURE 6 | Percentage of recurring dynamic windows for adult ADHD and
HCs in each state.
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FIGURE 7 | (A) Group-specific centroids of dynamic functional connectivity (FC) states for adult Attention-deficit/hyperactivity disorder (ADHD) and healthy controls
(HCs). Dynamic FC states stemmed from k-means clustering employing the sliding window approach. (B) It shows that the absolute strength of dynamic FC of
large-scale networks in each state is at the top 15%. The red line expresses positive connectivity between networks, and the blue line expresses minus connectivity
between networks. The thickness of the line indicates the strength of connectivity.

FIGURE 8 | The mean dwell time (MDT) and fraction of time (FT) from four states varied with age. The positive coefficient of β manifests that the older subjects
expend more time in the homologous state. Simultaneously, the subtractive coefficient of β manifests that the younger subjects expend more time in that state.
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FIGURE 9 | (A) It shows age association across the dynamic FC state 2 and state 4. The blue line expresses a negative relevance among FC and age. All of the
outcomes expressed correspond to the false discovery rate (FDR) multiple comparison correction threshold of p < 0.05. (B) State difference between dynamic FC
state 2 and state 4 is obtained using paired t-test with the FDR threshold (p < 0.05). State variation was visualized by drawing the log of p value with the sign of t
statistics, −sign(t)log(p).

data and amalgamated this prior information into the NMF
method. By comparing with other classical methods, the
SCNMF algorithm proposed in this manuscript can better
extract the region of interest. On this basis, this study
proposed a new analytical framework for assessing large-scale
functional network changes in adult ADHD and healthy subjects,
exploring the differences in dynamic functional connectivity
patterns between the two groups. To our knowledge, this
is the first time that NMF has been integrated into the
dynamic functional connectivity of large-scale networks and
applied to adult ADHD.

So far, the most common dynamic functional connectivity
method for fMRI data is ICA. The ICA method assumes
independence between components to obtain spatial
components, but there is a problem that it cannot extract
sparse sources efficiently. The NMF method can be a good
solution to this problem because it can decompose the data into a
linear combination of sparse, partial-based non-negative features.
In addition, it has been shown that adding prior information
to NMF can improve its analytical performance on fMRI data.
Therefore, this study proposed an SCNMF method based on the
real information of fMRI data. The proposed SCNMF method
was quantitatively compared with the traditional methods NMF
and FastICA, and the results showed that the spatial brain
networks detected by SCNMF were better than those detected
by NMF and FastICA. From this point of view, it seems that the
SCNMF method does help to improve the recovery of spatial
source signals in fMRI data analysis, while the extracted brain
networks of interest have higher separation quality and accuracy.

Dynamic FC collared steady connectivity patterns, which are
not watched in stationary FC. The FC of the brain is not static
but changed over time. Therefore, more valuable information
can be discovered by observing the differences in intergroup
connectivity captured by dynamic states. According to the results
of this study, the differences between ADHD and HCs were
not limited to a single dynamic FC state but distributed in four
dynamic FC states.

The ECN consists of the cingulate cortex, prefrontal
cortex, insular cortex, and striatum and is involved in
cognition, inhibitory behavior, emotion, and pain (Smith and
Nichols, 2009). It is also referred to as the “transitional
network connecting cognition and emotion/sensation” (Laird
et al., 2011). The medial prefrontal cortex is an important
component of the ECN and is an area known to be associated
with information processing. In most psychiatric disorders,
coordination between executive function and internal and
external attention is considered to be severely impaired.
Interestingly, ADHD patients had elevated connectivity between
the ECN and RFPN in the dynamic functional connectivity
state compared to HCs. Furthermore, it had been shown that
ADHD abnormalities were strongly associated with the ECN
(Makris et al., 2009; Bush, 2010; Posner et al., 2014). Therefore,
the unbalanced connectivity between ECN and FPN may help
to explain the broader psychopathological features of ECN
abnormalities in adult ADHD.

Another important finding of dynamic FC between large-scale
networks was that adult ADHD had enhanced FC between ECN
and CBN compared to HCs, but connectivity became smaller
with age. According to a literature review, ADHD patients had
demonstrated stronger internal connectivity in the CBN (Mostert
et al., 2016). In addition, an increased FC in the ECN and the
anterior cingulate cortex of the cerebellum was previously found
in ADHD (McCarthy et al., 2013; Wang et al., 2013), which was
consistent with our findings. However, our results complemented
existing studies and found out the effects of age on ADHD.

Cortese et al. conducted a meta-analysis of 55 articles (39 for
children and 16 for adults), concentrating on clinical features
or particular neuropsychological structures in ADHD. They
discovered that adult ADHD hypoactivation was prominent in
the frontoparietal networks, while adult ADHD hyperactivation
appeared in the visual, dorsal attention, and DMN (Cortese
et al., 2012). In the present study, adult ADHD had enhanced
connectivity in the DMN and SMN relative to HCs. Interestingly,
adult ADHD also had enhanced RFPN and SMN connectivity.
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Therefore, there was a great difference between the strength of
the FC within the network and the FC between the networks.
We can take this as a starting point and verify it in the future
research center.

It is worth mentioning that there is an age-related effect of
MDT in dynamic states in adult ADHD and HCs. Specifically,
it was observed that older ADHD had a longer dwell time in
the relatively weaker connected state 4, whereas younger ADHD
had a shorter dwell time in the relatively stronger connected
state 2. However, age had little effect on HCs. This is slightly
different from the adult connectivity model previously found
in adult studies (Fair et al., 2008; Zuo et al., 2010), suggesting
that neurodevelopment in ADHD differs from that of HCs. In
addition, the difference in results may also be due to differences
in the scale of the study. In this manuscript, the entry point
of the study is the brain network, while some literature has
considered brain regions, and the difference in scale may also
affect the final results. In the future, we can consider more
comprehensive studies from multiple scales to further discover
the pathogenesis of ADHD.

In addition, there was almost no overlap in the four states
obtained in dynamic functional connectivity with only one
type of subjects in each state. Considering that it is possible
that this is due to a problem with the data set, for this
reason, we changed the data set for validation. Forty-five
HCs and 40 adult ADHD subjects were downloaded from
openfMRI. Ten cognitive networks were extracted using the
algorithm proposed in this manuscript, followed by dynamic

functional connectivity analysis. The four dynamic functional
state distributions obtained were similar to the results obtained
in this manuscript.
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