1 Modulation of protein-DNA binding reveals mechanisms of spatiotemporal gene control in

2 early Drosophila embryos

- 3 Sahla Syed¹, Yifei Duan^{1,2}, and Bomyi Lim^{1*}
- ¹ Department of Chemical and Biomolecular Engineering, University of Pennsylvania,
 5 Philadelphia, PA 19104
- 6 ² Master of Biotechnology Program, University of Pennsylvania, Philadelphia, PA 19104
- 7 * To whom correspondence may be addressed: bomyilim@seas.upenn.edu

8 Abstract

9 It is well known that enhancers regulate the spatiotemporal expression of their target genes by 10 recruiting transcription factors (TFs) to the cognate binding sites in the region. However, the role 11 of multiple binding sites for the same TFs and their specific spatial arrangement in determining 12 the overall competency of the enhancer has yet to be fully understood. In this study, we utilized 13 the MS2-MCP live imaging technique to quantitatively analyze the regulatory logic of the snail 14 distal enhancer in early *Drosophila* embryos. Through systematic modulation of Dorsal and Twist 15 binding motifs in this enhancer, we found that a mutation in any one of these binding sites causes 16 a drastic reduction in transcriptional amplitude, resulting in a reduction in total mRNA production 17 of the target gene. We provide evidence of synergy, such that multiple binding sites with moderate 18 affinities cooperatively recruit more TFs to drive stronger transcriptional activity than a single site. 19 Moreover, a Hidden Markov-based stochastic model of transcription reveals that embryos with 20 mutated binding sites have a higher probability of returning to the inactive promoter state. We 21 propose that TF-DNA binding regulates spatial and temporal gene expression and drives robust 22 pattern formation by modulating transcriptional kinetics and tuning bursting rates.

23 Key words

Transcription kinetics; live imaging; MS2-MCP; transcription factors; bursting; Hidden Markov
 model

26

27 Introduction

28 Development of a Drosophila embryo is a highly precise and coordinated process, occurring with 29 little variability despite intrinsic and extrinsic noise and perturbations (Arias and Hayward 2006; 30 Houchmandzadeh, Wieschaus, and Leibler 2002). Proper levels of essential genes and correct 31 positioning of expression patterns are regulated by short non-coding DNA sequences known as 32 enhancers (Banerji, Rusconi, and Schaffner 1981). Enhancers tightly control their target gene 33 expression both in space and time via transcription factor (TF) recruitment. Complex patterning 34 and cell fates are established through TFs recognizing and binding to specific short DNA 35 sequences within enhancers with varying degrees of affinity at different developmental stages 36 (Long, Prescott, and Wysocka 2016; Reiter, Wienerroither, and Stark 2017; Ramos and Barolo 37 2013b). Concerted action of TFs with other transcriptional machinery has been found to reposition 38 nucleosomes, initiate chromatin remodeling, recruit additional activating co-factors, and generate 39 distinct transcriptional outputs (Spitz and Furlong 2012). However, it remains to be understood 40 how these brief, yet frequent, interactions between TFs and regulatory DNAs facilitate efficient and specific transcription on the timescale of minutes. Although we know that TFs influence 41 42 various facets of transcription such as timing or probability of activation, we have vet to determine 43 their role in orchestrating an enhancer's transcriptional competency at a mechanistic level. For 44 example, does the spatial arrangement of the binding sites influence transcriptional capability? How does each TF binding site shape transcriptional dynamics of individual nuclei and contribute 45 46 to overall pattern formation?

47 Recently, it was shown that the genomic context of an enhancer provides an optimal environment 48 for driving normal expression patterns and preventing misregulation upon induced perturbations. 49 Mutating a single Giant repressor binding site in a minimal even-skipped stripe 2 enhancer region 50 caused misexpression of the target gene, whereas those effects were buffered in an extended enhancer containing more TF binding sites and expression levels were comparable to the wildtype 51 52 (López-Rivera et al. 2020). However, the role of multiple TF binding sites with varying affinities 53 within the enhancer in regulating transcription has yet to be established. Recent studies have 54 explored the role of low-affinity binding sites in producing specific expression patterns and found 55 that enhancers containing optimal TF motifs may lead to overexpression and result in 56 developmental defects (Farley et al. 2015; Ramos and Barolo 2013a; Tsai et al. 2017). Previous 57 work has shown that modulating the strength of a single TF binding site was sufficient to disrupt 58 transcriptional activity, such that a mutation of an activator Dorsal (DI) site in the t48 enhancer 59 delayed activation and almost completely abolished transcriptional activity, while optimization of 60 the site to a consensus motif induced ectopic transcriptional activity with a broader gene 61 expression domain (Keller et al. 2020). However, systematic removal of binding sites of varying 62 affinities for another activator Bicoid seems to affect its target gene, hunchback, expression to a 63 similar degree, indicating that each site has a nearly equal contribution to the overall expression 64 pattern (Eck et al. 2020). Yet, since many studies have relied on fixed tissue experiments to derive 65 the role of TFs in transcriptional regulation, the changes in real-time transcription kinetics that 66 drive the observed misexpression are often overlooked. Dynamic interplay among TFs, cofactors, 67 and DNA occurs on the order of seconds, a time resolution that cannot be resolved solely through 68 RNAi and single molecule in situ hybridization experiments (Mir et al. 2017). Since TF binding 69 events affect the expression of regulatory genes both spatially and temporally, incorporation of 70 both live imaging techniques and predictive modeling is crucial to correlate transient TF-DNA 71 binding to downstream transcriptional activity in single-cell resolution.

72 In this study, we investigated the effects of perturbing TF-DNA binding strength on the 73 transcriptional dynamics of snail (sna) in early Drosophila embryos. sna is a well-characterized, 74 key patterning gene that encodes a zinc finger protein and is responsible for the differentiation of 75 the mesoderm (Rembold et al. 2014; Ip et al. 1992; Leptin 1991). Sna represses the expression 76 of genes responsible for neuroectoderm formation and establishes the mesoderm-neuroectoderm 77 boundary (Kosman et al. 1991). Embryos lacking sna fail to undergo gastrulation, resulting in 78 embryonic lethality (Hemavathy et al. 2004). Previous studies have demonstrated that sna 79 expression is controlled by a proximal enhancer and a distal (shadow) enhancer located directly 80 upstream and ~7 kb upstream of the promoter, respectively (Perry et al. 2010). The distal 81 enhancer is necessary for proper sna expression and the viability of the developing embryo, 82 especially under genetic and environmental stresses (Perry et al. 2010; Dunipace, Ozdemir, and 83 Stathopoulos 2011). sna is a target gene of the DI morphogen, and the nuclear gradient of 84 maternally deposited DI protein controls the sharp boundaries of *sna* expression, such that only 85 nuclei with high concentrations of nuclear DI express sna (Figure 1B) (Hong et al. 2008). Through 86 binding assays like EMSA and ChIP-seq, it was determined that the distal sna enhancer contains 87 multiple, low affinity binding sites for DI, Twist (Twi), and the pioneer factor Zelda (Zld) (Figure 88 1A) (Zeitlinger et al. 2007; Ferraro et al. 2016). Indeed, sna expression is completely abolished in 89 embryos lacking DI or Twi, and Zld null embryos show a delay in sna activation (Dufourt et al. 90 2018; Liang et al. 2008).

Here, we utilize a combination of quantitative live imaging and mathematical modeling to probe the underlying regulatory mechanisms that TFs employ to initiate transcription, regulate gene expression levels, and establish spatial boundaries. Using MS2-MS2 coat protein (MCP) based live imaging, we visualized transcription dynamics driven by the wildtype minimal *sna* distal enhancer in the cases of with and without various TF binding site mutations. We find that mutating a single TF (DI or Twi) binding site in the enhancer significantly reduces mRNA production of the

97 target gene, mainly by lowering transcriptional amplitude, without significantly delaying the timing 98 of initiation or affecting the probability of activation. Surprisingly, we found that modulating the 99 same TF binding site in the context of the full sna distal enhancer results in a similar reduction in 100 expression levels, underscoring that additional TF binding sites in the full enhancer are not 101 sufficient to rescue reduced transcriptional activity. Using a thermodynamic equilibrium binding 102 model, we show that the TF binding sites must cooperate with each other to establish the correct 103 spatial pattern of sna. Moreover, a two-state stochastic model of transcription indicates that TF 104 binding site mutations affect transcriptional bursting, specifically by increasing the probability of 105 the promoter switching out of the ON state, k_{off}, and reducing burst durations. Together, our data 106 highlight the distinct mechanisms by which TF binding sites regulate transcriptional kinetics and 107 spatial patterning during embryonic development.

108 Results

Single TF binding site mutation greatly diminishes the transcriptional capability of the distal *sna* enhancer

111 The 519 bp sna minimal enhancer is located within the full sna distal enhancer (1.8 kb) and has 112 been shown to recapitulate proper sna expression (Figure 1A) (Ferraro et al. 2016). We focus on 113 the analysis of the minimal enhancer since it contains fewer TF binding sites than the full distal 114 enhancer, which allows systematic perturbation in a sensitized background to gain a functional 115 understanding of the role of TF binding site arrangements in gene regulation. The minimal 116 enhancer contains binding sites for many TFs, including DI, Twi, and Zld, and our study focuses 117 on the sites with the strongest binding affinities, three DI sites and one Twi site (Figure 1A). We 118 note that all DI and Twi sites still have relatively low binding affinities compared to the consensus 119 motif, because sna is activated only in the domain with high nuclear DI concentration (Hong et al. 120 2008). We systematically deleted one site at a time by introducing point mutations in each binding

motif. The mutations were created by inducing double-nucleotide substitutions that cause thesequence to no longer be recognized as a TF motif match (Table 1).

123

124 We utilized the MS2-MCP live imaging technique to guantitatively analyze the effects of modulating TF binding sites within the minimal *sna* distal (sna*min*) enhancer. Specifically, the 10x 125 126 repeat sequences of MS2 are integrated into the 5' UTR of the *vellow* reporter gene (Figure 1A). 127 Upon transcription, each MS2 sequence forms a stem loop which is detected by maternally 128 deposited MCP tagged with fluorescent proteins. To visualize nascent transcription dynamics, 129 females carrying His2Av-mRFP and MCP-GFP were crossed with males carrying the desired 130 MS2 construct, resulting in progeny expressing distinct fluorescent puncta in active transcription 131 loci (Figure 1C, Video 1). sna distal enhancer drives gene expression in the endogenous sna 132 domain, where the nuclear DI level is the highest (Figure 1B). The fluorescence intensity trajectory 133 for each nucleus is extracted for subsequent analysis and correlated to its instantaneous 134 transcriptional activity (Figure 1D,E).

135

136 We found that a mutation of any single DI or Twi binding site within the minimal enhancer resulted 137 in a dramatic reduction in mRNA production (Figure 1F, Video 1,2, Figure 1 supplement 1A). 138 Nuclei in the center of the sna expression domain of a mutant embryo produce 65% less mRNA 139 than those in the wildtype counterpart. The reduction occurs uniformly across the sna expression 140 domain without significantly affecting the width (Figure 1G, Figure 1 supplement 1C). It is 141 important to note that mutations of different TFs (DI and Twi) and of binding sites with different 142 affinities (DI1 and DI2) all result in a similar degree of decreased mRNA production. Surprisingly, 143 even the embryos with two mutated binding sites exhibit a similar mRNA reduction (Figure 1G – 144 pink, Figure 1 supplement 1A - orange). These results suggest that each site in the minimal 145 enhancer is necessary to drive normal sna expression, perhaps due to the sensitized background 146 in which the mutations were induced.

Figure 1. Single TF binding site mutation greatly diminishes mRNA production from the distal *sna* enhancer

(A) Schematic of the reporter construct containing the minimal *sna* distal enhancer, *sna* core promoter, MS2 stem loops, and the *yellow* reporter gene. The minimal enhancer contains binding sites for TFs Zld, Twi, and Dl.

(B) Embryo expressing maternally deposited DI-Venus protein (green) and *sna* distal>*PP7-yellow* reporter gene (orange). *sna* is expressed in the region with high nuclear DI.

(C) Snapshots of an embryo expressing minimal *sna* distal>*MS2-yellow*. The nuclei are marked with Histone-RFP (blue) and the MS2-*yellow* reporter gene is observed with MCP-GFP (orange). Each nucleus has one distinct fluorescent punctum, indicating nascent transcription. Bottom row are magnifications of the embryo within the rectangle.

(D,E) Single nucleus transcriptional trajectories for a wildtype and DI2 mutant embryo, respectively.

(F) Heatmap showing that mRNA production is higher in a wildtype embryo compared to a DI2 mutant embryo. The white line indicates the ventral midline.

(G) Average mRNA production of all nuclei in wildtype embryos and DI1, DI2, and DI1/2 mutant embryos across the *sna* expression domain (Lateral-Ventral-Lateral).

(H) Plot indicating the wildtype steepness of *sna*min expression is significantly higher than the mutants.

(I) Top: Schematic showing the additional TF binding sites present in the full *sna* distal enhancer. Bottom: Heatmap showing higher mRNA production of *MS2-yellow* in a wildtype embryo containing the full *sna* distal enhancer compared to the embryo containing the full enhancer with DI2 site mutations.

(J) Average mRNA production of all nuclei in wildtype embryos and DI1, DI2, and DI1/2 mutant embryos containing the full *sna* distal enhancer across the expression domain.

(K) Plot indicating the wildtype steepness of *sna* distal expression is significantly higher than the mutants.

Shaded error bars in (E), (G), and (J) indicate standard error of the mean (SEM).

Error bars in (H) and (K) indicate SEM.

1524 nuclei from 3 replicate wildtype embryos, 1672 nuclei from 4 replicate DI1 mutant embryos, 2091 nuclei from four replicate DI2 mutant embryos, and 1788 nuclei from three replicate DI1/2 mutant embryos were analyzed.

** denote p<0.001 from the student's t-test.

147

148 To further examine the significance of these core TF binding sites in the minimal enhancer, we 149 investigated if the additional TF binding sites in the full distal enhancer would buffer against the 150 drastic changes in mRNA production caused by the mutations. Despite several additional DI and 151 Twi sites flanking the minimal enhancer, we found that the same mutations on the same TF motifs 152 caused a similar decrease in mRNA production (Figure 1I,J). Furthermore, we found that in both 153 the minimal and full distal enhancers, the mutant embryos have shallower gradients and less 154 sharp boundaries, highlighting the importance of proper TF-DNA interactions in regulating the 155 sharpness of the expression domain (Figure 1H,K, Figure 1 supplement 1B). Shallower 156 expression of sna may lead to higher uncertainty in germ layer formation between mesoderm and 157 neuroectoderm. It is interesting to note that the introduction of the mutations in the larger genomic 158 context (i.e., full distal enhancer) did not lessen their effect on transcriptional activity and pattern 159 formation. Here, it is evident that additional TF sites are not able to rescue normal sna 160 transcriptional activity and that each site within the minimal enhancer region plays a critical role 161 in ensuring robust expression.

162

163 Mutations cause lower mRNA production, mainly due to reduced transcriptional amplitude 164 After establishing the dramatic reduction in transcriptional activity, we delved into the underlying 165 causes of the low mRNA production in both a single nucleus and across the entire sna expression 166 domain. We hypothesized that the reduced mRNA production may occur through multiple different 167 modes. The mutations may affect the transcriptional capability of the enhancer by altering the 168 time of transcriptional activation or by reducing the transcriptional window, thereby effectively 169 lowering the mRNA production compared to a wildtype embryo. Or the mutations may reduce the 170 enhancer's ability to transcribe and effectively load Pol II, resulting in decreased instantaneous 171 transcriptional amplitude (Figure 2A). We found that the differences in the time for half the nuclei

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.05.522923; this version posted January 5, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A B

Figure 2. Mutations cause lower mRNA production, mainly due to lower transcriptional amplitude

(A) Schematic comparing wildtype and mutants. The mutant embryo may have fewer nuclei transcribing and at a lower intensity. Each nucleus in mutant embryos may have late activation or a shorter transcription window, all of which may contribute to the observed low mRNA production.

(B) Heatmap of transcription activation times for representative wildtype and DI2 mutant embryos. The time at which half of the nuclei are activated is indicated by the dotted white line and there is no significant difference.

(C-E) Boxplots showing (C) the time to transcriptional activation (D) the duration of active transcription, and (E) the transcriptional amplitude for all actively transcribing nuclei. Decreased transcriptional amplitude contributes the most to the low mRNA production in mutants.

(F-G) (F) Average time to transcriptional activation, (G) average duration of transcription for all actively transcribing nuclei, and (H) average transcriptional amplitude for all nuclei across the *sna* expression domain (Lateral – Ventral – Lateral). Nuclei in the middle of the expression domain are affected more, but there is no significant change in the expression width.

Shaded error bars in (F-H) indicate SEM.

250 individual data points are overlaid on the respective boxplots.

1124 nuclei from 3 replicate wildtype embryos, 1011 nuclei from 4 replicate DI1 mutant embryos, 1123 nuclei from four replicate DI2 mutant embryos, and 943 nuclei from three replicate DI1/2 mutant embryos were analyzed.

Transcription of the MS2-yellow reporter gene is driven by the minimal sna distal enhancer.

** denote p<0.001 from the student's t-test.

172 to begin transcription as well as the transcription initiation time per nucleus were not sufficient to explain the low mRNA output (Figure 2B,C, Figure 2 supplement 1A). Although the duration of 173 174 active transcription is slightly lowered in embryos containing the induced mutations (Figure 2D, 175 Figure 2 supplement 1B), the main cause of the low mRNA output was the average transcriptional 176 amplitude (Figure 2E, Figure 2 supplement 1C). Here, we observed a significant decrease in 177 transcriptional intensity, leading us to conclude that the mutations mainly modulate transcription 178 by lowering Pol II loading rate. At single-cell resolution, we find that the mutants with two deleted 179 binding sites have a slightly bigger impact on transcriptional activity than those with one site 180 removed, but the differences are minimal (Figure 2C-E, Figure 2 supplement 1A-C).

181

182 Since sna is a patterning gene and is responsible for the formation of the ventral furrow and 183 presumptive mesoderm, we wanted to determine how the mutations spatially affect the 184 aforementioned transcription parameters and the spatial boundaries of the expression pattern. 185 The nuclei in the center of the sna expression domain are more substantially affected, exhibiting 186 lower duration of transcription and average transcriptional amplitude, confirming the trend we observed for mRNA production (Figure 2F,G, Figure 2 supplement 1D-F). Our results agree with 187 188 previous studies, in which the center nuclei within the eve stripe 2 domain had significantly longer 189 transcription windows and overall, higher rates of mRNA production (Lammers et al. 2020). 190 Interestingly, we observed that the DI1 mutation induced earlier transcriptional activation than 191 wildtype (Figure 2C,F). Since the DI1 and DI2 binding sites are less than 10 bp apart, mutating 192 the DI1 site may create a more favorable steric conformation, allowing DI to bind to the single site 193 more efficiently. However, the earlier activation time is not sufficient to buffer against the severe 194 reduction in transcriptional amplitude and causes the DI1 mutant to exhibit similarly reduced 195 mRNA production (Figure 1G).

196

197 Interestingly, in addition to modulating the average transcriptional intensity, the mutations in the 198 full distal enhancer affect the time to activation and the transcription window as well. 199 Transcriptional activation is more significantly delayed and the duration of transcription is 200 substantially lower in the mutants than in the wildtype (Figure 2 supplement 2A-C). As with the 201 case with the minimal enhancer, here we do not observe any significant spatial modulation of 202 these parameters and the expression width remains unaffected (although the boundary is less 203 sharp) (Figure 2 supplement 2D-F).

204

Thermodynamic equilibrium binding model reveals synergistic interactions among TF binding sites

207 The mechanistic role that multiple TF binding sites with different affinities play in regulating 208 enhancer activity and capability is still unclear. Is a single binding site sufficient to establish the 209 correct pattern and expression levels? In that case, why does an enhancer contain multiple TF 210 binding sites for the same TF? Our findings seem to indicate a nonadditive behavior between 211 binding sites, such that both a single and double mutation affect transcriptional dynamics to a 212 similar degree. We utilized a thermodynamic Monod-Wyman-Changeux (MWC) model to examine 213 the contributions of each DI and Twi site to the overall competency of the enhancer (Monod, 214 Wyman, and Changeux 1965). Here, we assume that the microstates (unbound, bound with 215 activator(s)) are in equilibrium and that the probability of each state can be correlated with its 216 Boltzmann weight (Eck et al. 2020). As described in (Eck et al. 2020; Kanodia et al. 2012), the 217 Boltzmann weights can be calculated in terms of activator concentration C, dissociation constant, 218 K and a cooperativity term ω (Figure 3A). The probability of transcription initiation is represented 219 by the probability of an activator (i.e., DI) binding to its cognate site, which can be written as:

220
$$p_{bound} = \frac{\frac{C_{D11}}{K_{D11}} + \frac{C_{D12}}{K_{D12}} + \omega \frac{C_{D11}C_{D12}}{K_{D11}K_{D12}}}{1 + \frac{C_{D11}}{K_{D11}} + \frac{C_{D12}}{K_{D12}} + \omega \frac{C_{D11}C_{D12}}{K_{D11}K_{D12}}}$$

Figure 3. Thermodynamic equilibrium binding model reveals synergy among TF binding sites

(A) Promoter states and statistical weights for each microstate. A bound activator will yield transcription. Cooperativity term ω is included when more than one TF is bound which will result in higher mRNA production. Dissociation constants are given by K_i , which is correlated with the binding affinity of each site.

(B-C) mRNA production curves generated by assuming (B) no cooperativity and (C) cooperativity among TF binding sites. Modeling results support experimental data with the cooperativity term included.

221

222 This equation can be expanded to include all the combinations of DI and Twi interactions (See 223 Methods, Equation 1). The equilibrium binding constants were correlated to the p-values 224 calculated from the PWM scanning software, FIMO (Bailey et al. 2015) (see Methods). We first 225 tested our model in the case of completely independent binding, or no cooperativity. In this 226 condition, the model failed to predict the experimental data and we found that the wildtype has 227 only slightly higher expression levels compared to the mutants (Figure 3B). When we modified 228 the model to include the cooperativity terms among all the TFs, we were able to qualitatively 229 recapitulate the experimental mRNA production curve as well as determine which TFs work 230 synergistically to help recruit more TFs to the enhancer region (Figure 3C). We found that 231 DI1/DI2/Twi, DI2/DI3/Twi, and DI1/DI2/DI3/Twi cooperativities were the key parameters to reach 232 a stable solution, confirming the role of cooperativity among weak binding sites as a mechanism 233 for precise gene control. We note that the deletion of one or two sites would render no 234 cooperativity, and hence would result in a similar effect on transcription. Our data demonstrate 235 that TF binding sites must coordinate with one another to some degree to recreate the correct 236 pattern and levels of *sna*. Synergistic interactions among TFs have been observed in other genes 237 as well, such that the transcriptional output of multiple TFs is significantly higher than the sum of 238 their individual activities (Keller et al. 2020; Park et al. 2019). We propose that the cooperativity 239 allows TF binding sites with moderate or weak affinities to recruit more TFs to the enhancer, 240 generate sharp transcriptional responses, and drive strong and robust expression in the narrow 241 sna expression domain (see Discussion).

242

A two-state model of transcription reveals differences in k_{off} rates and burst duration

As shown previously, transcription occurs discontinuously in distinct, stochastic bursts of activity punctuated by quiescence (Corrigan et al. 2016; Senecal et al. 2014; Donovan et al. 2019). Bursting has been proposed as an evolutionary mechanism for driving heterogeneity in gene

247 expression, giving rise to cell-to-cell variability and overall diversity (Rodriguez and Larson 2020). Bursting parameters, such as burst frequency, burst duration, and promoter switching rates 248 249 provide a glimpse into the underlying mechanisms of dynamic transcription regulation, such as 250 kinetic rates and promoter states. We find that the wildtype and mutant embryos show comparable 251 numbers of actively transcribing nuclei at the beginning of the nuclear cycle 14. However, at later 252 times, most wildtype nuclei in the sna expression domain are active in a given frame while nuclei 253 from mutant embryos exhibit stochastic activity (Figure 4A, Video 3,4). Indeed, by quantifying the 254 number of nuclei transcribing at every time point, we find that the embryos with mutations have 255 far fewer active nuclei in each frame compared to the wildtype, despite their cumulative number 256 of active nuclei being comparable (Figure 4 supplement 1A,B). We use stochastic modeling of 257 transcription to investigate if TF binding site mutations cause changes in transcriptional bursting 258 characteristics of each nucleus. The two-state model, in which a promoter can switch between an 259 active (ON) and inactive (OFF) state, has been widely implemented to gain a functional 260 understanding of bursting control on transcription (Figure 4B) (Bothma et al. 2014; Corrigan et al. 261 2016).

262

263 Hidden Markov models (HMMs) are utilized to reveal hidden states not directly observable based 264 on a sequence of observed events (Bronson et al. 2009). They are extensively used to recover 265 rates of promoter switching and other bursting parameters from transcriptional trajectories 266 (Bothma et al. 2014; Lammers et al. 2020; Hoppe et al. 2020). In this study, we utilize an HMM to 267 infer the promoter state based on the observed fluorescence intensity curves. The inferred 268 promoter states of the mutant show slightly shorter burst durations compared to its wildtype 269 counterpart (Figure 4C,D, Figure 4 supplement 1C,D). Based on previous studies, burst 270 separation and burst duration can be correlated to bursting parameters, k_{on} and k_{off} (Hoppe et al. 271 2020; Zoller, Little, and Gregor 2018). Using our modeling approach, we extracted the kinetic 272 rates of the promoter returning to an active state from an inactive state (k_{on}) and vice versa (k_{off}).

Figure 4. A two-state model reveals differences in koff rates and burst duration

(A) Actively transcribing nuclei are false-colored for early and late NC14. Mutant embryos show more sporadic transcriptional activity in a given frame.

(B) Schematic depicting a single nucleus that can be in an OFF or ON state and switches between the two with rates k_{on} and k_{off} . The rates of k_{on} and k_{off} can be correlated to burst separation and burst duration, respectively.

(C-D) Representative transcriptional trajectory of (C) wildtype and (D) DI2 mutant with the inferred promoter states derived from the Hidden Markov model (HMM).

(E-F) Plots showing the rates of (E) k_{on} and (F) k_{off} . k_{on} is not significantly affected, whereas k_{off} rates are higher in the mutant embryos. Error bars indicate standard deviation (SD).

(G-H) Probability distributions of (G) k_{on} rates and (H) k_{off} rates for wildtype, DI1, DI2, and DI1/2 mutants. The distribution of k_{on} rates follow a tight normal distribution while the k_{off} distributions vary widely.

Error bars in (E-F) indicate standard deviation (SD).

1124 nuclei from 3 replicate wildtype embryos, 1011 nuclei from 4 replicate DI1 mutant embryos, 1123 nuclei from four replicate DI2 mutant embryos, and 943 nuclei from three replicate DI1/2 mutant embryos were analyzed.

Transcription of the MS2-yellow reporter gene is driven by the minimal sna distal enhancer.

** denote p<0.001 from the student's t-test.

273 Our results reveal that k_{on} is only slightly affected by the induced mutations, while k_{off} is 274 significantly increased in mutants (Figure 4E,F, Figure 4 supplement 1E,F). Moreover, all of the 275 perturbations do not change the normal distribution trend of k_{on} rates (Figure 4G, Figure 4 276 supplement 1H). However, we observe heterogeneity and high variability in the distribution of k_{off} 277 rates as well as shorter burst durations in the mutated embryos, explaining the bursty and noisy 278 transcriptional activity we observed (Figure 4G,H, Figure 4 supplement 1G,I). This leads us to 279 conclude that the mutations affect the ability of the promoter to remain in the active state, causing 280 it to become more unstable and more likely to revert to the inactive state, supporting the 281 observation of lower mRNA production. In the full distal enhancer, we observe similar stochastic 282 transcriptional activation, where the number of actively transcribing nuclei is about 50% less in 283 the mutants than in the wildtype at any given time (Figure 4 supplement 2A). We also see a similar 284 increase in the rate of k_{off} in the full distal enhancer, with minimal effect on k_{on} (Figure 4 supplement 285 2D-F). The trend in the distributions of the promoter switching rates remains the same as well 286 (Figure 4 supplement 2B-C). Taken together, our data demonstrate that TF-DNA binding 287 modulates mRNA production by increasing the rate of promoter inactivation (koff).

288

289 Discussion

290 Organisms have evolved to contain enhancers with multiple binding sites for the same TF, not 291 only for robustness under varying biological conditions, but as a molecular regulatory mechanism. 292 Here, we studied transcriptional dynamics driven by different degrees of TF-DNA interactions 293 through inducing mutations in the sna regulatory module. By utilizing quantitative live imaging, we 294 dissected the effects of modulation of TF binding sites and determined that mRNA production of 295 the target gene is severely reduced when a single binding site is mutated. This reduction is mainly 296 due to the decreased transcriptional amplitude (i.e., Pol II loading rate) but is also slightly affected 297 by shorter duration of transcription, delayed transcriptional activation, and lower probability of 298 activation. Although a previous study demonstrated that an extended enhancer with additional

binding sites could buffer against the effects of mutating a single TF binding site (López-Rivera et al. 2020), we find that the same effect in the minimal enhancer is also observed in the full distal enhancer. It is interesting to note that despite the presence of additional TF binding sites, modulating a single site can catastrophically reduce gene expression levels. We confirm that the minimal enhancer is the core region that is needed to recapitulate normal *sna* levels and that TFs in that region employ distinct mechanisms to regulate transcription in response to genetic perturbations.

306

307 Moreover, we determined that the TF binding sites in the sna enhancer work synergistically to drive the proper pattern and levels of the target gene expression. Cooperativity is a necessary 308 309 mechanism by which a hub of weaker sites can coordinate to synergistically generate the correct 310 expression pattern and levels in a developing embryo. In the context of sna, the sna enhancer 311 only contains weak DI binding sites, since high affinity DI sites would cause sna to be expressed 312 in nuclei with intermediate DI levels, repressing short gastrulation (sog) expression in the region 313 and preventing those cells from developing into neuroectoderm (Hong et al. 2008). Hence, it is 314 crucial that the sna enhancer contains only weak DI binding sites to drive expression exclusively 315 in the region with high DI concentration (i.e., mesoderm). Indeed, previous works have shown that 316 other enhancers also utilize weak, sub-optimal binding sites to drive specific target gene 317 expression. It was determined that despite the shavenbaby enhancers containing low-affinity 318 binding sites, a microenvironment of high concentrations of Ubx and other cofactors can mediate 319 efficient and specific transcription of the target locus (Tsai et al. 2017). Moreover, a single 320 optimized DI binding site in the t48 enhancer resulted in earlier activity and ectopic expression 321 patterns (Keller et al. 2020). Suboptimization of enhancers was shown to be an important 322 characteristic of gene regulation to drive restricted expression, whereas optimizing TF motifs 323 resulted in the loss of specificity and an increase in aberrant transcriptional activity (Farley et al.

324 2015). We propose that the *sna* enhancer utilizes synergy among multiple weak binding sites to
325 drive stable and robust expression of *sna* in its narrow expression domain.

326 Interestingly, we found that the TF binding site mutations affect the rate of the promoter switching 327 OFF. The heterogeneity in k_{off} rates confirms that the mutations abolish the ability of the embryo 328 to develop robustly by causing promoter instability and shorter transcription windows, leading to 329 overall lower mRNA production. As a result of higher k_{off} rates, the mutant embryos have fewer 330 actively transcribing nuclei within the domain at any given time point (Figure 4A, Figure 4 331 supplement 1A, Figure 4 supplement 2A, Video 3,4). Furthermore, the shallower gradient of the 332 expression pattern highlights the role of TFs in controlling the sharpness of the expression 333 gradient, potentially affecting the robustness in germ layer formation (Figure 1H,K). In sum, we 334 believe that multiple TF binding sites are imperative not only for pattern formation but also for 335 eliminating extrinsic and intrinsic variabilities that may occur during development.

336

337 We illustrate that the minimal enhancer is an adequate model system to study transcription 338 kinetics. We note that although it may not always be possible to generalize the effects of mutations 339 from a reporter construct to the endogenous setting, we can still gain valuable insights and 340 broaden our understanding of transcription regulation. Since sna is responsible for mesoderm 341 formation as well as for the repression of other patterning genes like sog that specify 342 neuroectoderm, it will be interesting to characterize the phenotypic effects of these mutations. 343 Specifically, if the mutation causes 65% reduction in sna activity endogenously, would the 344 developing embryo undergo proper gastrulation and remain viable? However, since sna has at 345 least two well-characterized enhancers (proximal and distal) that compensate for each other, 346 investigating the phenotypic effects of endogenously modulating TF binding sites remains 347 challenging. In order to correlate transcriptional dynamics with downstream development it will be 348 critical to carefully design experiments that will disentangle the contributions of the individual 349 enhancers and the role of specific TF binding sites.

350

351 Moreover, the sna enhancer contains weaker binding sites for DI and hence is activated by high 352 concentrations of DI. For this reason, it will be of interest to note how the induced mutations affect 353 sna activity in the presence of reduced maternally deposited DI levels. While DI heterozygotes 354 flies are viable and fertile, analyzing development under reduced DI level conditions may reveal 355 effects on cell-to-cell variability in transcriptional activity. Lastly, the spatial arrangement of the TF 356 binding may also play a role in ensuring normal development. Mutation of the DI1 site (Figure 1A) 357 seems to cause earlier transcriptional activation, which may indicate a potential competing 358 conformation due to the close proximity between the two DI sites (DI1 and DI2).

359

360 In this work, we demonstrate that TFs can regulate transcriptional dynamics by tuning bursting 361 parameters and modulating transcriptional activity in response to genetic perturbations. Using our 362 quantitative live imaging platform, we find that low-affinity TF binding sites can create an 363 environment of increased transcriptional activity to drive localized, specific, and sharp expression 364 patterns. The evidence of a dual modality of regulation and synergy highlights the importance of 365 moving beyond fixed tissue studies and focusing on experiments that can tease apart subtle 366 kinetic changes that occur during development. Collectively, our findings provide novel insights 367 into enhancer-mediated transcriptional dynamics and expand our understanding of enhancer-TF 368 binding through a combination of experimental and modeling approaches.

369

370 Materials and methods

371 Motif scanning

TF binding sites were found through the FIMO (Find Individual Motif Occurrences) (Bailey et al.
2015) tool using motifs from (Keller et al. 2020) and JASPAR (Castro-Mondragon et al. 2022).
The cut-off p-value for motif match was set to p<1e-3. Mutations of the TF binding sites were

375	confirmed by scanning the mutated sequence through FIMO and ensuring that it was no longer
376	recognizable as a motif. The wildtype and mutated sequences are shown in Table 1.

377

378 Plasmid and transgenic fly generation

The minimal distal *sna* enhancer was characterized in (Ferraro et al. 2016). TF binding sites were mutated using PCR-mediated site-directed mutagenesis and confirmed via Sanger sequencing (Table 1). The mutated enhancers were cloned into a plasmid containing the core 100 bp *sna* promoter, 10 copies of MS2 stem loops, and the *yellow* reporter gene. Transgenic reporter lines were created using PhiC31-mediated integration and the transgene was inserted to the VK33 locus (Venken et al. 2006). Injection was performed by the BestGene, Inc.

385

386 Live imaging

387 Wild-type embryos were produced by crossing yw;His2Av-mRFP,nanos>MCP-GFP (Fukaya, 388 Lim, and Levine 2016) virgin females to the desired y,w;MS2 males. The embryos from the cross 389 were laid at 25°C, dechorionated, and staged with Halocarbon oil. All images were taken using a 390 Zeiss LSM800 confocal laser scanning microscope. Images were acquired with a Plan-391 Apochromat 40x1.3 NA oil objective using a 488 nm and 561 nm laser to visualize MCP:GFP and 392 His2Av-mRFP, respectively, with a time resolution of 21s/frame. Images were created using 393 maximum projection of 14 z-stacks with 0.75 µm steps. The same exposure and laser settings 394 were used for all minimal sna replicates and a different set of settings were used for all the full 395 distal sna replicates. All images were acquired in 16-bits. Images were taken as the embryo entered the 14th nuclear cycle until the embryo began gastrulation. 396

397

398 Quantification and Statistical Analysis

399 All the image processing methods and analyses were implemented in MATLAB

400 (R2018b, MathWorks). Histograms of all the snapshots and movies shown in all figures were
401 adjusted for visualization purposes only. Analysis of all data was performed using raw images. To
402 determine statistical significance, two sample t-tests were performed. ** indicates p<0.001.

403

404 Image analysis

405 Segmentation, nuclei tracking, and MS2 signal extraction were performed as described in (Syed 406 et al. 2021). Actively transcribing nuclei were labeled if they exceeded a predetermined 407 fluorescence intensity threshold. mRNA production was calculated by integrating under the 408 fluorescence intensity trajectories of actively transcribing nuclei. Activation time was defined as 409 the time at which the MS2 signal increased beyond the threshold. Transcription duration was 410 calculated to be the time a nucleus was above the given threshold. The mean transcriptional 411 amplitude was determined by the averaging of the MS2 signal for all transcriptionally active nuclei. 412 The average transcriptional trajectory was obtained by averaging the intensity of all active nuclei 413 at each timepoint. The sharpness of the expression gradient was determined by finding the 414 maximum derivative of the mRNA production curves. Spatial analysis was performed by dividing 415 the embryo into 16 bins along the dorsoventral axis. All the nuclei data within each bin was 416 averaged to obtain the plots.

417

418 Equilibrium binding model

The thermodynamic model utilized in this study is built on those described in (Eck et al. 2020; Kanodia et al. 2012). Concentrations of nuclear DI were assumed to follow a normal distribution. Twi concentration was calculated from (Lim et al. 2015) and normalized. The dissociation constants were chosen to reflect the relative p-values obtained from the FIMO analysis, correlated to the affinity of each binding site. Assuming that the microstates are in equilibrium, the probability of transcription occurring is given by Equation 1:

425
$$p_{bound} =$$

426

427	$-\frac{c_A}{\kappa_A} + \frac{c_B}{\kappa_B} + \frac{c_C}{\kappa_C} + \frac{c_D}{\kappa_D} + \omega_1 \frac{c_A c_B}{\kappa_A \kappa_B} + \omega_2 \frac{c_B c_C}{\kappa_B \kappa_C} + \omega_3 \frac{c_A c_C}{\kappa_A \kappa_B \kappa_C} + \omega_5 \frac{c_B c_D}{\kappa_B \kappa_B \kappa_B} + \omega_5 \frac{c_C c_D}{\kappa_B \kappa_B \kappa_B} + \omega_7 \frac{c_A c_B c_C}{\kappa_A \kappa_B \kappa_C} + \omega_8 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_9 \frac{c_A c_B c_C c_D}{\kappa_B \kappa_C \kappa_D} + \omega_9 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 \frac{c_A c_B c_C c_D}{\kappa_A \kappa_B \kappa_C \kappa_D} + \omega_1 c_A$
	$1 + \frac{c_A}{k_A} + \frac{c_B}{k_B} + \frac{c_C}{k_C} + \frac{c_D}{k_D} + \omega_1 \frac{c_A c_B}{k_A k_B} + \omega_2 \frac{c_B c_C}{k_B k_C} + \omega_3 \frac{c_A c_C}{k_A k_K c} + \omega_4 \frac{c_A c_D}{k_A k_K c} + \omega_5 \frac{c_B c_D}{k_B k_D} + \omega_6 \frac{c_C c_D}{k_C k_D} + \omega_7 \frac{c_A c_B c_C}{k_A k_B k_C} + \omega_8 \frac{c_A c_B c_C}{k_A k_B k_C} + \omega_8 \frac{c_A c_B c_C c_D}{k_B k_C k_D} + \omega_9 \frac{c_A c_B c_C c_D}{k_B k_C k_D} + \omega_1 \frac{c_A c_B c_C c_D}{k_A k_B k_C k_D} + \omega_1 \frac{c_A c_B c_D}{k_B k_C k_D} + \omega_1 \frac{c_A c_D}{k_B k_C k_D} + $
428	

429 where C_i is the concentration of a TF, K_i is the dissociation constant, and ω_i is the cooperativity 430 factor. To find the minimum of the nonlinear multivariable functions in the previous equation, we 431 utilized a nonlinear programming solver, *fmincon*. The solver returns a vector of cooperativity 432 values that minimize the objective function. The objective function uses the root mean square 433 error between the wildtype and mutant conditions to determine the cooperativity terms that would 434 satisfy the constraints (i.e., mutant condition must have 65% reduction in expression level 435 compared to the wildtype). A stable solution was defined once the solution converged and the 436 solver returned cooperativities that satisfied the objective function and constraints within a step 437 tolerance of 1e-10. Using these evaluated cooperativities, curves were generated to predict 438 mRNA production. In the case of no cooperativity (Figure 3B), all cooperativity values were set to 439 1 and the results were plotted.

440

441 **Two-state model**

442 Two-state model fitting is similar to that described in (Keller et al. 2020). Transcriptional 443 trajectories were smoothened using local regression (LOESS) method. Each trajectory from a 444 given nucleus was converted into a binary plot indicating promoter ON (1) and promoter OFF (0) 445 states as described below. The slope between two consecutive time-points of active transcription 446 was obtained to define promoter ON and OFF states. Time points with positive slope were 447 considered as ON promoter states (1), while those with a negative slope were assumed as OFF 448 promoter states (0). This binary data was used as the input for the Baum-Welch based HMM. 449 Initial transition probabilities were assumed to be equal (i.e., 0.5). These probabilities were

450	adjusted in each iteration to individual burst traces until they converged. The Viterbi algorithm was
451	used to determine the most likely sequence of (ON/OFF) promoter states (shown in Figure 4C,D).
452	Burst separation and burst duration were correlated to k_{on} and k_{off} , respectively.
453	
454	Acknowledgements
455	We thank members of the Lim lab for helpful discussions and comments on the manuscript. We
456	especially thank Noel Buitrago for his help in imaging. DI-venus fly was kindly provided by the
457	Shvartsman Lab at Princeton University. We also thank the FlyBase for providing useful
458	information (Gramates et al. 2022). This study was funded by NIH R35GM133425 awarded to
459	BL.
460	
461	Competing interests
462	The authors declare that there are no competing interests.
463	
464	References
465	Arias, Alfonso Martinez, and Penelope Hayward. 2006. "Filtering Transcriptional Noise during
466	Development: Concepts and Mechanisms." Nature Reviews Genetics 2006 7:17 (1): 34-44.
467	https://doi.org/10.1038/nrg1750.
468	Bailey, Timothy L., James Johnson, Charles E. Grant, and William S. Noble. 2015. "The MEME
469	Suite." Nucleic Acids Research 43 (W1): W39–49. https://doi.org/10.1093/NAR/GKV416.
470	Banerji, Julian, Sandro Rusconi, and Walter Schaffner. 1981. "Expression of a Beta-Globin Gene
471	Is Enhanced by Remote SV40 DNA Sequences." Cell 27 (2 Pt 1): 299–308.
472	https://doi.org/10.1016/0092-8674(81)90413-X.
473	Bothma, Jacques P., Hernan G. Garcia, Emilia Esposito, Gavin Schlissel, Thomas Gregor, and
474	Michael Levine. 2014. "Dynamic Regulation of Eve Stripe 2 Expression Reveals

475	Transcriptional Bursts in Living Drosophila Embryos." Proceedings of the National
476	Academy of Sciences of the United States of America 111 (29): 10598–603.
477	https://doi.org/10.1073/PNAS.1410022111/SUPPL_FILE/PNAS.1410022111.SM05.MOV.
478	Bronson, Jonathan E., Jingyi Fei, Jake M. Hofman, Ruben L. Gonzalez, and Chris H. Wiggins.
479	2009. "Learning Rates and States from Biophysical Time Series: A Bayesian Approach to
480	Model Selection and Single-Molecule FRET Data." Biophysical Journal 97 (12): 3196.
481	https://doi.org/10.1016/J.BPJ.2009.09.031.
482	Castro-Mondragon, Jaime A., Rafael Riudavets-Puig, Ieva Rauluseviciute, Roza Berhanu
483	Lemma, Laura Turchi, Romain Blanc-Mathieu, Jeremy Lucas, et al. 2022. "JASPAR 2022:
484	The 9th Release of the Open-Access Database of Transcription Factor Binding Profiles."
485	Nucleic Acids Research 50 (D1): D165–73. https://doi.org/10.1093/NAR/GKAB1113.
486	Corrigan, Adam M., Edward Tunnacliffe, Danielle Cannon, and Jonathan R. Chubb. 2016. "A
487	Continuum Model of Transcriptional Bursting." ELife 5 (FEBRUARY2016).
488	https://doi.org/10.7554/ELIFE.13051.
489	Donovan, Benjamin T, Anh Huynh, David A Ball, Heta P Patel, Michael G Poirier, Daniel R
490	Larson, Matthew L Ferguson, and Tineke L Lenstra. 2019. "Live-Cell Imaging Reveals the
491	Interplay between Transcription Factors, Nucleosomes, and Bursting." The EMBO Journal
492	38 (12): e100809. https://doi.org/10.15252/EMBJ.2018100809.
493	Dufourt, Jeremy, Antonio Trullo, Jennifer Hunter, Carola Fernandez, Jorge Lazaro, Matthieu
494	Dejean, Lucas Morales, et al. 2018. "Temporal Control of Gene Expression by the Pioneer
495	Factor Zelda through Transient Interactions in Hubs." Nature Communications 2018 9:1 9
496	(1): 1–13. https://doi.org/10.1038/s41467-018-07613-z.
497	Dunipace, Leslie, Anil Ozdemir, and Angelike Stathopoulos. 2011. "Complex Interactions

498	between Cis-Regulatory Modules in Native Conformation Are Critical for Drosophila Snail
499	Expression." Development 138 (18): 4075-84. https://doi.org/10.1242/DEV.069146.

- 500 Eck, Elizabeth, Jonathan Liu, Maryam Kazemzadeh-Atoufi, Sydney Ghoreishi, Shelby Blythe,
- and Hernan G. Garcia. 2020. "Quantitative Dissection of Transcription in Development
- 502 Yields Evidence for Transcription Factor-Driven Chromatin Accessibility." *ELife* 9
- 503 (October): 1–99. https://doi.org/10.7554/ELIFE.56429.
- 504 Farley, Emma K., Katrina M. Olson, Wei Zhang, Alexander J. Brandt, Daniel S. Rokhsar, and
- 505 Michael S. Levine. 2015. "Suboptimization of Developmental Enhancers." *Science* 350
- 506 (6258): 325–28.
- 507 https://doi.org/10.1126/SCIENCE.AAC6948/SUPPL_FILE/FARLEY.SM.PDF.
- 508 Ferraro, Teresa, Emilia Esposito, Laure Mancini, Sam Ng, Tanguy Lucas, Mathieu Coppey,
- 509 Nathalie Dostatni, Aleksandra M. Walczak, Michael Levine, and Mounia Lagha. 2016.
- 510 "Transcriptional Memory in the Drosophila Embryo." *Current Biology* 26 (2): 212–18.
- 511 https://doi.org/10.1016/J.CUB.2015.11.058.
- Fukaya, Takashi, Bomyi Lim, and Michael Levine. 2016. "Enhancer Control of Transcriptional
 Bursting." *Cell* 166 (2): 358. https://doi.org/10.1016/J.CELL.2016.05.025.
- 514 Gramates, L Sian, Julie Agapite, Helen Attrill, Brian R Calvi, Madeline A Crosby, Gilberto dos
- 515 Santos, Joshua L Goodman, et al. 2022. "FlyBase: A Guided Tour of Highlighted Features."
- 516 *Genetics* 220 (4). https://doi.org/10.1093/GENETICS/IYAC035.
- 517 Hemavathy, Kirugaval, Xiaodi Hu, Shovon I. Ashraf, Stephen J. Small, and Y. Tony Ip. 2004.
- 518 "The Repressor Function of Snail Is Required for Drosophila Gastrulation and Is Not
- 519 Replaceable by Escargot or Worniu." *Developmental Biology* 269 (2): 411–20.
- 520 https://doi.org/10.1016/j.ydbio.2004.01.029.

- 521 Hong, Joung Woo, David A. Hendrix, Dmitri Papatsenko, and Michael S. Levine. 2008. "How
- 522 the Dorsal Gradient Works: Insights from Postgenome Technologies." *Proceedings of the*
- 523 *National Academy of Sciences of the United States of America* 105 (51): 20072–76.
- 524 https://doi.org/10.1073/PNAS.0806476105/ASSET/23BB268E-511A-45FD-BD8E-
- 525 6CC0CCED1BBE/ASSETS/GRAPHIC/ZPQ9990852040003.JPEG.
- 526 Hoppe, Caroline, Jonathan R. Bowles, Thomas G. Minchington, Catherine Sutcliffe, Priyanka
- 527 Upadhyai, Magnus Rattray, and Hilary L. Ashe. 2020. "Modulation of the Promoter
- 528 Activation Rate Dictates the Transcriptional Response to Graded BMP Signaling Levels in
- the Drosophila Embryo." *Developmental Cell* 54 (6): 727-741.e7.
- 530 https://doi.org/10.1016/J.DEVCEL.2020.07.007.
- 531 Houchmandzadeh, Bahram, Eric Wieschaus, and Stanislas Leibler. 2002. "Establishment of
- 532 Developmental Precision and Proportions in the Early Drosophila Embryo." *Nature 2002*

533 *415:6873* 415 (6873): 798–802. https://doi.org/10.1038/415798a.

- 534 Ip, Y T, R E Park, D Kosman, K Yazdanbakhsh, and M Levine. 1992. "Dorsal-Twist Interactions
- 535 Establish Snail Expression in the Presumptive Mesoderm of the Drosophila Embryo."

536 *Genes & Development* 6 (8). https://doi.org/10.1101/gad.6.8.1518.

- 537 Kanodia, Jitendra S., Hsiao Lan Liang, Yoosik Kim, Bomyi Lim, Mei Zhan, Hang Lu, Christine
- 538 A. Rushlow, and Stanislav Y. Shvartsman. 2012. "Pattern Formation by Graded and
- 539 Uniform Signals in the Early Drosophila Embryo." *Biophysical Journal* 102 (3): 427–33.

540 https://doi.org/10.1016/J.BPJ.2011.12.042.

- 541 Keller, Samuel H., Siddhartha G. Jena, Yuji Yamazaki, and Bomyi Lim. 2020. "Regulation of
- 542 Spatiotemporal Limits of Developmental Gene Expression via Enhancer Grammar."
- 543 *Proceedings of the National Academy of Sciences of the United States of America* 117 (26):

- 544 15096–103.
- 545 https://doi.org/10.1073/PNAS.1917040117/SUPPL_FILE/PNAS.1917040117.SM04.MOV.
- 546 Kosman, David, Y. Tony Ip, Michael Levine, and Kavita Arora. 1991. "Establishment of the
- 547 Mesoderm-Neuroectoderm Boundary in the Drosophila Embryo." Science 254 (5028): 118–
- 548 22. https://doi.org/10.1126/science.1925551.
- 549 Lammers, Nicholas C., Vahe Galstyan, Armando Reimer, Sean A. Medin, Chris H. Wiggins, and
- 550 Hernan G. Garcia. 2020. "Multimodal Transcriptional Control of Pattern Formation in
- 551 Embryonic Development." *Proceedings of the National Academy of Sciences of the United*
- 552 *States of America* 117 (2): 836–47.
- 553 https://doi.org/10.1073/PNAS.1912500117/SUPPL_FILE/PNAS.1912500117.SM07.AVI.
- Leptin, M. 1991. "Twist and Snail as Positive and Negative Regulators during Drosophila

555 Mesoderm Development." *Genes & Development* 5 (9): 1568–76.

- 556 https://doi.org/10.1101/GAD.5.9.1568.
- 557 Liang, Hsiao Lan, Chung Yi Nien, Hsiao Yun Liu, Mark M. Metzstein, Nikolai Kirov, and
- 558 Christine Rushlow. 2008. "The Zinc-Finger Protein Zelda Is a Key Activator of the Early
- 559 Zygotic Genome in Drosophila." *Nature* 456 (7220): 400–403.
- 560 https://doi.org/10.1038/NATURE07388.
- 561 Lim, Bomyi, Carmeline J Dsilva, Thomas J Levario, Hang Lu, Trudi Schüpbach, Ioannis G
- Kevrekidis, and Stanislav Y Shvartsman. 2015. "Dynamics of Inductive ERK Signaling in
 the Drosophila Embryo." https://doi.org/10.1016/j.cub.2015.05.039.
- 564 Long, Hannah K., Sara L. Prescott, and Joanna Wysocka. 2016. "Ever-Changing Landscapes:
- 565 Transcriptional Enhancers in Development and Evolution." *Cell* 167 (5): 1170–87.
- 566 https://doi.org/10.1016/J.CELL.2016.09.018.

- 567 López-Rivera, Francheska, Olivia K. Foster Rhoades, Ben J. Vincent, Edward C.G. Pym,
- 568 Meghan D.J. Bragdon, Javier Estrada, Angela H. DePace, and Zeba Wunderlich. 2020. "A
- 569 Mutation in the Drosophila Melanogaster Eve Stripe 2 Minimal Enhancer Is Buffered by
- 570 Flanking Sequences." *G3: Genes/Genetics* 10 (12): 4473.
- 571 https://doi.org/10.1534/G3.120.401777.
- 572 Mir, Mustafa, Armando Reimer, Jenna E. Haines, Xiao Yong Li, Michael Stadler, Hernan
- 573 Garcia, Michael B. Eisen, and Xavier Darzacq. 2017. "Dense Bicoid Hubs Accentuate
- 574 Binding along the Morphogen Gradient." *Genes & Development* 31 (17): 1784–94.
- 575 https://doi.org/10.1101/GAD.305078.117.
- 576 Monod, Jacque, Jeffries Wyman, and Jean Pierre Changeux. 1965. "On the Nature of Allosteric

577 Transitions: A Plausible Model." *Journal of Molecular Biology* 12 (1): 88–118.

- 578 https://doi.org/10.1016/S0022-2836(65)80285-6.
- 579 Park, Jeehae, Javier Estrada, Gemma Johnson, Ben J Vincent, Chiara Ricci-Tam, Meghan DJ
- 580 Bragdon, Yekaterina Shulgina, et al. 2019. "Dissecting the Sharp Response of a Canonical
- 581 Developmental Enhancer Reveals Multiple Sources of Cooperativity." *ELife* 8 (June).
- 582 https://doi.org/10.7554/ELIFE.41266.
- 583 Perry, Michael W., Alistair N. Boettiger, Jacques P. Bothma, and Michael Levine. 2010.
- 584 "Shadow Enhancers Foster Robustness of Drosophila Gastrulation." *Current Biology : CB*
- 585 20 (17): 1562. https://doi.org/10.1016/J.CUB.2010.07.043.
- 586 Ramos, Andrea I., and Scott Barolo. 2013a. "Low-Affinity Transcription Factor Binding Sites
- 587 Shape Morphogen Responses and Enhancer Evolution." *Philosophical Transactions of the*
- 588 *Royal Society B: Biological Sciences* 368 (1632). https://doi.org/10.1098/RSTB.2013.0018.

- and Enhancer Evolution." *Philosophical Transactions of the Royal Society B: Biological Sciences* 368 (1632). https://doi.org/10.1098/rstb.2013.0018.
- 592 Reiter, Franziska, Sebastian Wienerroither, and Alexander Stark. 2017. "Combinatorial Function
- 593 of Transcription Factors and Cofactors." *Current Opinion in Genetics & Development* 43
- 594 (April): 73–81. https://doi.org/10.1016/J.GDE.2016.12.007.
- 595 Rembold, Martina, Lucia Ciglar, J. Omar Yáñez-Cuna, Robert P. Zinzen, Charles Girardot,
- 596 Ankit Jain, Michael A. Welte, Alexander Stark, Maria Leptin, and Eileen E.M. Furlong.
- 597 2014. "A Conserved Role for Snail as a Potentiator of Active Transcription." *Genes &*

598 *Development* 28 (2): 167. https://doi.org/10.1101/GAD.230953.113.

- 599 Rodriguez, Joseph, and Daniel R. Larson. 2020. "Transcription in Living Cells: Molecular
- 600 Mechanisms of Bursting." *Https://Doi.Org/10.1146/Annurev-Biochem-011520-105250* 89
- 601 (June): 189–212. https://doi.org/10.1146/ANNUREV-BIOCHEM-011520-105250.
- 602 Senecal, Adrien, Brian Munsky, Florence Proux, Nathalie Ly, Floriane E. Braye, Christophe
- 603 Zimmer, Florian Mueller, and Xavier Darzacq. 2014. "Transcription Factors Modulate C-
- Fos Transcriptional Bursts." *Cell Reports* 8 (1): 75–83.
- 605 https://doi.org/10.1016/J.CELREP.2014.05.053.
- 606 Spitz, François, and Eileen E.M. Furlong. 2012. "Transcription Factors: From Enhancer Binding
- to Developmental Control." *Nature Reviews Genetics 2012 13:9* 13 (9): 613–26.
- 608 https://doi.org/10.1038/nrg3207.
- 609 Syed, Sahla, Henry Wilky, João Raimundo, Bomyi Lim, and Amanda A. Amodeo. 2021. "The
- 610 Nuclear to Cytoplasmic Ratio Directly Regulates Zygotic Transcription in *Drosophila*
- 611 through Multiple Modalities." *Proceedings of the National Academy of Sciences* 118 (14).
- 612 https://doi.org/10.1073/pnas.2010210118.

- 613 Tsai, Albert, Anand K. Muthusamy, Mariana R.P. Alves, Luke D. Lavis, Robert H. Singer,
- 614 David L. Stern, and Justin Crocker. 2017. "Nuclear Microenvironments Modulate
- 615 Transcription from Low-Affinity Enhancers." *ELife* 6 (November).
- 616 https://doi.org/10.7554/ELIFE.28975.
- 617 Venken, Koen J.T., Yuchun He, Roger A. Hoskins, and Hugo J. Bellen. 2006. "P[Acman]: A
- 618 BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D.
- 619 Melanogaster." *Science (New York, N.Y.)* 314 (5806): 1747–51.
- 620 https://doi.org/10.1126/SCIENCE.1134426.
- 621 Zeitlinger, Julia, Robert P. Zinzen, Alexander Stark, Manolis Kellis, Hailan Zhang, Richard A.
- 622 Young, and Michael Levine. 2007. "Whole-Genome ChIP-Chip Analysis of Dorsal, Twist,
- and Snail Suggests Integration of Diverse Patterning Processes in the Drosophila Embryo."
- 624 *Genes & Development* 21 (4): 385–90. https://doi.org/10.1101/GAD.1509607.
- 625 Zoller, Benjamin, Shawn C. Little, and Thomas Gregor. 2018. "Diverse Spatial Expression
- 626 Patterns Emerge from Unified Kinetics of Transcriptional Bursting." Cell 175 (3): 835-
- 627 847.e25. https://doi.org/10.1016/J.CELL.2018.09.056.