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A B S T R A C T   

In this introduction to the Special Issue on methods for modelling of infectious disease epidemiology we provide 
a commentary and overview of the field. We suggest that the field has been through three revolutions that have 
focussed on specific methodological developments; disease dynamics and heterogeneity, advanced computing 
and inference, and complexity and application to the real-world. Infectious disease dynamics and heterogeneity 
dominated until the 1980s where the use of analytical models illustrated fundamental concepts such as herd 
immunity. The second revolution embraced the integration of data with models and the increased use of 
computing. From the turn of the century an emergence of novel datasets enabled improved modelling of real- 
world complexity. The emergence of more complex data that reflect the real-world heterogeneities in trans-
mission resulted in the development of improved inference methods such as particle filtering. Each of these three 
revolutions have always kept the understanding of infectious disease spread as its motivation but have been 
developed through the use of new techniques, tools and the availability of data. We conclude by providing a 
commentary on what the next revoluition in infectious disease modelling may be.     

“We become what we behold. We shape our tools, and thereafter our 
tools shape us.”  McLuhan, M 1994,’ Understanding media: The 
extensions of man’, MIT Press  

1. Introduction and motivation 

The tools for transmission dynamic modelling are the motivations 
for this special issue: harnessing available data within a modelling 
framework to understand the transmission and spread spread of in-
fectious diseases. The focus is how to get the most valuable and ac-
tionable information out of data using models that translate data into 
evidence for policy. Transmission dynamic modelling is now central to 
designing and evaluating public health interventions against infectious 
diseases, especially for intervention programmes. Who should we vac-
cinate? Should we close schools to limit spread? What vector control 
option will save the most lives? These questions, if they are to be an-
swered rationally, need a way of predicting the impact in terms of 
health outcome, e.g. numbers of clinical cases or deaths averted. Policy 
questions determine the necessary components and the complexity of 
the model; models need to be simple enough to analyse, but sufficiently 
detailed to address the questions. 

Dynamic models are needed because the essence of infectious 

diseases is that transmission dynamics are non-linear: incidence is a 
function of current and past prevalence. Additionally, the dynamics are 
typically unobserved, for example asymptomatic infection frequently 
drives transmission and we rarely directly observe immunity of in-
dividuals. Consequently, it is impossible to make a rational decision on, 
say, vaccination policy simply from recent case numbers. To understand 
and predict what is happening, and to understand and predict the im-
pact of interventions, the transmission processes must be properly de-
scribed using a dynamic model (May, 1986). 

Data are necessary if the models are to be at all applicable: “it is all 
about the data” (B. T. Grenfell, pers. comm.). Early papers were content 
to try to understand the observed patterns: Kermack and McKendrick’s 
finding that “an epidemic, in general, comes to an end, before the 
susceptible population has been exhausted” was derived from first 
principles in order to explain the observations from data on a cholera 
epidemic in Bombay, India (Kermack et al., 1927). As the data become 
more complete and more detailed, the methods of analysis and fitting 
the model to data become more complex; and it is this that has sub-
stantially changed in the last 20 years of infectious disease modelling. 
Kermack and McKendrick’s SIR model from 1927 is still the archetypal 
virus model, but there have been many additions to this simple model, 
to test the utility of control strategies and to account for known biases 
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in the data. 
The field of infectious disease modelling has been rapidly devel-

oping, but is maturing as some of the core ideas become fixed. The 
purpose of this Special Issue on methods for infectious disease analysis 
is to act as both a marker in time of where the subject is, and as a way 
into the literature and techniques for those new to the area. Each paper 
takes one approach or technique (a ‘tool’), typically associated with a 
particular software platform, and leads the reader from the basic idea 
into the darker reaches. We have asked the authors to develop specific, 
relevant examples and we recommend that the reader work through the 
code and run the examples: it is impossible to learn to swim without 
getting wet. The first paper, Funk & King, describes and provides an 
overview of the available infectious disease models and suggests cri-
teria for selecting a specific model (see Box 1). 

In this introduction, we put the methodological tools presented in 
this Special Issue in a historical context and briefly describe the con-
tents of each paper. For example, at first it may not be obvious, and 
perhaps even confusing, why several methods are available using dif-
ferent software to estimate parameters of a transmission model. The 
intended readership of the Special Issue are early career researchers 
who may be less familiar with how the field has evolved to where it 
currently stands. Later career researchers may also find the papers in-
teresting in order to keep up to date with recent methodological de-
velopments. Whilst it is far from compulsory, the order in which the 
papers are presented in this Introduction could be used to determine the 
order of reading. 

1.1. The origin and emergence of disease dynamics (1766–1980 s) 

Bernoulli is usually credited to have developed the first mathema-
tical model for gaining insight into an infectious disease in 1766 (Dietz 
and Heesterbeek, 2002). Disease dynamics could be seen at this time as 
a sub-discipline of population dynamics. With this respect three early 
20th century studies can be considered as the founding of disease dy-
namics: Ross’s work on malaria transmission (Ross, 1911), McKendrick 
and Kermack’s paper (Kermack et al., 1927) and Reed-Frost’s chain 
binomial model (presented in 1928 but not published at the time) 
(Lessler and Cummings, 2016). 

A major step-change in the use of models to understand infectious 
diseases was apparent in the late 70 s and early 80 s where investigation 
began in full-swing in both the UK and the USA. These developments 
were motivated by understanding both the chronic effects of persistent 
parasite infection (for example hookworm), the regularity of viral epi-
demics such as ‘flu and measles, the emergence of epidemics such as 
HIV/AIDS, and the initiation of large vaccination programmes and the 
importance of maintaining herd immunity (Agur et al., 1993; Anderson 
and May, 1985; Elveback et al., 1976; Grenfell and Anderson, 1989;  
Longini et al., 1984; May and Anderson, 1987). Whilst most modelling 
studies emerged from a small number of research groups, there are 
some notable exceptions (e.g. influenza in the USSR). Although the 
development of models in order to support policy making was well 
underway at the end of the 1980s, it was only later, with the emergence 
of affordable computational power following the advent of personal 
computers and the increasing availability of digital data, that effective 
tools to were developed or borrowed from other fields. This period ends 
about 1993 marked by the publication of Anderson & May (1993) and 

the series of meetings at the Newton Institute (Grenfell et al., 1995;  
Medley and Isham, 1996; Mollison, 1995). Heesterbeek’s PhD-thesis 
titled R0 and his notable seminar style in which he filled a blackboard 
with equations, marks the last point where infectious disease epide-
miology had been developed using the application of mathematics 
alone (Heesterbeek, 1992). Within the Newton volumes the contribu-
tion to theory, and especially in heterogeneity in transmission, is no-
table. Much of this was driven by the need to understand the observed 
patterns in the risk of HIV acquisition. However, few articles within the 
volumes include large datasets on incidence, which was indicative of 
the field at the time, where model fitting and inference were not well 
developed. 

1.2. First revolution: Advanced computing and inference (1990s-early 
2000s) 

Following the early achievements in epidemic modelling, interest 
grew in capturing the behaviour of more realistic and more complicated 
dynamic systems, yet this often resulted in problems which could no 
longer be solved analytically. Iterative methods therefore became a 
vital component in the modeller’s toolkit, alongside comparisons of 
model output to specific datasets by minimising the error between 
model and data, or by using approximations to simplify a set of para-
meters. These approaches are illustrated within models applied to the 
use of the expectation maximisation algorithm to estimate parameters 
from HIV epidemics (Becker, 2016), the 2001 foot-and-mouth outbreak 
in UK livestock (Keeling et al., 2001; Tildesley et al., 2006), and esti-
mating parameters from measles epidemics prior to the introduction of 
vaccination (Finkenstädt et al., 2002). 

The theory of sampling from an intractable distribution using 
Markov chains was originally presented in the early fifties, but, having 
been born from the field of physics, its potential as a tool in epidemic 
modelling went largely unnoticed. At the time, it was also not very 
practical for applied use: even with the most advanced tools available to 
the 1950s analyst, the original Metropolis paper reports that a run of 
less than 100 iterations took five hours to complete. These methods 
were brought more mainstream by Geman and Geman (1984), and  
Gelfand and Smith (1990). These methods, now referred to as Markov 
chain Monte Carlo (MCMC), to approximate the posterior distribution 
have provided an incredibly useful and simple iterative method. It is 
particularly useful inside the Bayesian framework, but also any situa-
tion where a probability distribution can be derived by linking the data 
and the parameters of the model. It provides a way of exploring the 
parameter space and obtaining representative samples of the para-
meters compatible with the target distributions. We assume in this 
special issue that the essentials of MCMC are known. Readers who 
might want to look for more information in implementing MCMC can 
refer to Gilks and van Ravenzwaaij et al. (Gilks et al., 1996; van 
Ravenzwaaij et al., 2018). 

While the general principles behind MCMC are simple, the efficient 
implementation of even the most simple algorithms can be tricky. The 
arrival of Bayesian analysis Using Gibbs Sampling (BUGS) in the early 
90 s as a user-friendly software for implementing MCMC brought 
Bayesian analysis to the mainstream and spurred a revolution in in-
fectious disease modelling. BUGS remains a widely used tool for ana-
lysing data including from the perspective of infectious disease models 

Box 1 
Choices and trade-offs in inference with infectious disease models (Funk and King) 

With the increase in the number of models, simulation approaches, inference algorithms, and software available it can be confusing to choose 
the appropriate pathway when confronted with modelling an infectious disease. In this paper, Funk and King review the choices available and 
trade-offs to be made when designing a model and an inference method. This roadmap should help the infectious disease modeller to tailor 
their model so that they optimally exploit the data available and efficiently answer the policy question. Examples using influenza data in the 
software R are provided.  
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(see Box 2 and Auzenbergs et al. (2019) in this issue). The use of the 
BUGS language for fitting complex models gained popularity in many 
areas of infectious disease research, but some challenges to using SIR- 
like models prevented their widespread use, such as the acyclic nature 
of non-linear models. Until MCMC samplers became easier to write, and 
researchers’ skills in computational methods improved enough to write 
them, a second revolution was required in methodological research in 
infectious disease epidemiology. 

1.3. Second Revolution: adding complexity and application to the real- 
world (early 2000s - present) 

As the field of mathematical modelling for infectious diseases has 
expanded, so has the complexity of models and their relation to data. 
Specific policy questions have triggered the need for including new 
layers of heterogeneity and complexity to existing models. A notable 
example of this type of change is the inclusion of the age structure 
within transmission models using contact surveys (Mossong et al., 
2008). This increase in model complexity has been driven by an im-
provement in understanding transmission; in the example by Mossong it 
has been the importance of age-structure in driving transmission of 
infectious diseases (in this case ‘flu). Without including this model 
complexity, predictions in the effectiveness of interventions would be 
incorrect. Although the theory related to the importance of heteorge-
nity had already been developed, it’s relation to real data had not, and 
spurred the second revolution. 

This model diversification has required the application of new in-
ference methods, whether completely novel or borrowed from other 
fields and adapted to epidemiological studies. Developments in statis-
tical methods applied to infectious diseases in this period include ac-
counting for the incubation period to infer transmission from disease 
data (Donnelly et al., 2003), using data augmentation to account for 
asymptomatic/undetected transmission (Cauchemez et al., 2006) and 
likelihood-free parameter estimation (Toni et al., 2009). Fortunately, 
advances in computational capabilities, as well as advances in tools and 
software packages available have allowed for these developments. In-
fectious disease modellers now require skills in coding (often in several 
languages) and statistical inference, as well as an ability to manipulate 
and solve equations. However, with increasing model complexity, sta-
tistical inference becomes challenging and sometimes a distraction from 

the objectives of the analysis (i.e. to capture the dynamics of infection 
through a population). Fortunately, shortcuts have been made in-
creasingly available, such as packages for inference methods and ap-
proximating the full likelihood, which has been helped by the sharing of 
code to complement equations within the papers. The increasing use of 
R and python software by researchers has also been transformational, as 
the software is relatively accessible and the use of libraries that consist 
of additional code or the capabilities to use other languages enable a 
rapid progression to carry out infectious disease modelling. To this end, 
several of the papers within this Special Issue make use of R libraries, 
especially those that enable use of other languages into R (Auzenbergs 
et al., 2019; Chatzilena et al., 2019; Funk and King, 2020), making 
modelling more accessible. 

A particularly useful development has been Approximate Bayesian 
Computation (ABC) which can be used where the likelihood of a model 
is intractable. Whilst ideas related to this method have been circulating 
since at least the 1980s, only in the late 1990s did ABC in its current 
form start being applied, primarily in the field of genetics (Tavaré et al., 
1997). Central to ABCs usefulness is that instead of evaluating the 
likelihood, specific characteristics of the data are chosen by the re-
searcher, and model output is compared to these characteristics (See  
Minter and Retkuteb (2019) in this issue and Box 3). The simplicity of 
the approach enables parameter estimation which would not otherwise 
be feasible, thus enabling more complex models to be fitted to data. The 
challenge then becomes the need to identify appropriate summary 
statistics. 

An interesting example of cross-discipline methodological develop-
ments is provided by particle MCMC. Particle filtering (which is the 
basis for particle MCMC) stems from fluid mechanics, where it has been 
used since the 1960s. Particle MCMC (pMCMC) combines MCMC 
methods with Sequential Monte Carlo (SMC) methods and is particu-
larly useful when dealing with ‘hidden’ states (e.g. true numbers of 
infected cases in a community) which have to be inferred and are likely 
to have highly correlated parameters. Its first use in infectious disease 
modelling appeared in Dureau et al. (2013) and it since has become an 
increasingly popular choice as a fitting method for highly complex 
models where states are not directly observable. However, the devel-
opment of this method has been hindered by the potentially complex 
mathematical background behind it, in particular in terms of the mul-
tiple indices necessary to write the algorithms. In this issue, Endo et al. 

Box 2 
Desirable BUGS in models of infectious diseases (Auzenbergs et al.) 

In the last few decades, tools for implementing Bayesian inference have been developing at quite a pace. There is now a wealth of options 
available, each with its own advantages and disadvantages, and the choice can be intimidating to anyone taking their first steps into the field. 
This paper introduces the original software, Bayesian inference using Gibbs Sampling (BUGS), which remains a key player for many appli-
cations despite its first incarnation dating back to the 80s. They also set out the basic ideas behind the Bayesian approach and introduce the 
BUGS language for model specification, which has become the basis to several other software packages since. Three examples are presented 
and discussed in terms of complexity and runtime, providing a practical guide for the first-time user as to which options could prove most 
accessible for their problem.  

Box 3 
Approximate Bayesian computation for infectious disease modelling (Minter and Retkuteb) 

Many standard fitting techniques such as Markov chain Monte Carlo (MCMC) require knowledge of the likelihood in order to fit the model to 
data and estimate the parameters. Approximate Bayesian Computation (ABC) allows modellers to estimate parameters without defining the 
likelihood, and with great flexibility. This paper is a great introductory step-by-step guide to ABC, detailing its usefulness and providing clear 
instructions on how to implement it. Once the theory is covered, three examples are used with ABC, highlighting the complexities and 
importance of the assumptions made.  
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(2019) (see Box 4) have designed a tutorial to guide the modeller to be 
able to use this powerful method of inference for their own project. 

Contributing to the delay in complex inference methods entering 
mainstream usage are the computational skills of the researchers within 
the field. Many researchers using mathematical modelling do not have 
computational backgrounds, and therefore availability of re-usable 
software is an essential criterion for methods to be widely used. 
Additionally, providing code in a re-usable format was not initially 
routine and resulted in inefficiencies in carrying out research (in con-
trast to the practices of sharing code that perhaps stemmed from C++ 
users in physics). The practice of “reproducible research”, including the 
sharing of code and associated data has become increasingly common 
and is now frequently requested by research funders (AMS, 2015). The 
STAN software platform is a great example of reusable software, as it 
allows researchers to efficiently implement complex methods such as 
Hamiltonian Monte Carlo and Variational Inference, both of which 
allow the fitting of more complex models than simpler MCMC algo-
rithms. The paper by Chatzilena et al. (2019) and Box 5 gives more 
details on these methods. 

2. Discussion and speculation about the future 

The tools and approaches presented in this special issue are a mix of 
the tried-and-tested and those under active development and explora-
tion. The age of an approach should not impact its use, provided the 
approach remains useful. ‘Fashions’ in infectious disease modelling will 
rise, only to be replaced by the latest trends, but with time it is possible 
to see approaches that continue to provide insight, even if the specifics 
have been updated using modern tools. In this section we offer some 
thoughts about how methods might develop. 

Since the beginning of infectious disease modelling, sweeping, gross 
assumptions have had to be made in order to make progress. One of the 
most fundamental is the “closed population”, which only exist in very 
special circumstances such as boarding schools and isolated populations 
(Keeling and Grenfell, 1997). But people (and non-human hosts) move. 
An important problem at the time of writing is the emergence and 
spread of the novel coronavirus (Covid-19), initially in Wuhan, China 
(Riou and Althaus, 2020). As well as the need to rapidly understand the 
natural history of infection of this new virus, it is essential to under-
stand how population movement will impact spread. An important part 
of the data revolution is the increasing ease with which geostatistical 
information is available; it is increasingly common to use flight data to 
estimate patterns of emergence and associate an individual with a 
precise and temporally changing spatial location, utilising GPS devices 
and smartphones (Wesolowski et al., 2015). The analysis of infectious 

disease spread in geographical space and time is an area requiring more 
attention. The paper by Milton et al. (2019) (see Box 6) is different from 
the others in the issue in that the dynamics are not at the centre of 
attention, but this approach represents one of our bets for the future. 
Infectious disease dynamics drive spatio-temporal statistical patterns on 
an aggregate level, providing an alternative angle for inference when 
strong assumptions on the transmission process cannot be justified. 
First considered for measles by Grenfell et al. (2001), methodology for 
analysing these patterns has been a major growth area and is likely to 
continue. 

Another safe prediction is that data are only going to get “bigger”. 
The standardisation and integration of genomic sequencing, georefer-
encing, economics, sociology and the use of social media will only 
develop richer and more detailed data on which to build models. All 
these expansions contribute towards capturing heterogeneity in trans-
mission, which is why their inclusion in many settings will be im-
portant. In particular, the inclusion of data-driven dynamic contact 
networks within infection models is starting to appear, particularly in 
veterinary disease contexts where the data exist (Orton et al., 2018). 
The embarrassment for the modeller will be not so much that there is no 
data to inform parameters (which was the norm 30 years ago), but that 
there is so much data that it’s not clear what the model structure should 
be to accommodate the data. In this context we are likely to see more 
and more machine learning approaches used to extract and simplify the 
relationships within the data. The tools and insights from big data may 
well be the third revolution for infectious disease modelling. A cau-
tionary note is that big data and analytic methods such as machine 
learning should not replace the essential insights from the last 40 years 
but complement them. 

The interaction between models and policy decisions are also likely 
to change dramatically in the foreseeable future. The quality of the 
evidence provided by different models fitted to different datasets is not 
well defined, and there has been recent interest in developing model 
ensembles and modelling consortia (Flasche et al., 2016; Hollingsworth 
and Medley, 2017). Although this solves the problem of basing policy 
on a single model, it raises the problem of how to combine different 
model outcomes. Weighting the strength of evidence from each model 
seems a sensible approach, but choosing the weights is problematic. 
The majority of the approaches in this issue work in a Bayesian context, 
where the data and model are combined with prior information to in-
form parameter estimates and therefore model behaviour. If the public 
health decision is also put into a Bayesian context, i.e. the model is part 
of the evidence, then it seems logically natural to treat models as 
“data”. 

When the 2001 UK foot-and-mouth outbreak emerged, outputs from 

Box 4 
Introduction to particle Markov chain Monte Carlo the disease dynamic modellers (Endo et al.) 

A tutorial to guide the infectious disease modeller on particle Markov chain Monte Carlo (pMCMC) methods is described. The pMCMC 
approach is particularly suited to explore models where the states of the models are only indirectly observed and therefore unknown. These 
hidden states have to be inferred in order to be able to estimate the parameters of the model. Sequential Monte Carlo methods are used to 
explore the time structure of these systems and integrate out the hidden states, thus enabling the exploration of the parameter space in a 
similar way than with more classical MCMC methods. In this tutorial, a brief overview of the theory of pMCMC is presented, along with 
example R code for the infectious disease dynamics modeller.  

Box 5 
Contemporary statistical inference for infectious disease models using Stan (Chatzilena et al.) 

Stan is a platform for statistical modelling, with implementation of various techniques that can be used to fitting statistical models. In 
particular, Stan is currently the only platform within which Hamiltonian Monte Carlo (HMC) and variational inference (VI) are available. The 
authors focus on the No-U-Turn Sampler (NUTS) and automatic differentiation variational inference (ADVI) implementations of HMC and VI 
provided within Stan. The paper shows how, when coupled with an ordinary differential equation solver, Stan is able to fit infectious disease 
models of increasing complexity. The authors then compare NUTS and ADVI and demonstrate trade-offs between statistical accuracy and speed 
of the algorithms.  
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infectious diseases models were directly used to inform policy and the 
decisions made. This was perhaps the start of using real-time epidemic 
modelling, and with the emergence of SARS, pandemic influenza 
(2009), Ebola, Zika virus and now Covid-19 (this is far from an ex-
haustive list), the appetite of policy makers to use models to aid deci-
sion making has not abated. The field needs to keep ahead of the de-
mand, and to this point rather sophisticated methods to infer R0 and 
other parameters have been developed so that they can be used rapidly 
and often by researchers with limited expertise (Polonsky et al., 2019). 
Another aspect of this expanding field is improved assessment of model 
predictions (Johansson et al., 2019). 

In conclusion, since its inception infectious disease modelling has 
already gone through two revolutions, and it appears that the field is 
rapidly transitioning into a new one. Can the field remain whole in this 
new era of big data and advanced computing? And if not, where will the 
splits be? Those who develop inference methods and those who have 
the infectious disease knowledge to implement them? Or rather into 
subject-specific domains: those who are able to work with spatial data, 
those with social data, those with missing data… What does remain 
clear is that despite extensive interventions and effort, infectious agents 
continue to cause widespread morbidity and mortality. Improving on 
our current systems and fully utilising new data streams remains a 
daunting task, and it is through collaboration within and outside our 
field that we will grow into this new revolution, support advancements 
in global health, and vitally, not misuse data that could cost lives. 
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Box 6 
Spatial analysis made easy with linear regression and kernels (Milton et al.) 

Linear models are commonly the first methodology to be introduced were learning about statistics. They are widely used even though the real 
world is often far more complex and non-linear. This paper provides an introduction into how such linear models can be extended to nonlinear 
problems using kernel methods, focusing on spatial examples. Furthermore, random Fourier features are introduced which offer a compu-
tationally efficient way of implementing kernel methods, so that they can be used on large datasets as well. The paper provides a tutorial of 
how these methods can be derived from basic principles including examples and relevant R code. This can be seen as an excellent starting point 
to that encourages the reader to explore and apply these topics within their own research.  
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