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A B S T R A C T   

Genomic techniques such as next-generation sequencing and microarrays have facilitated the identification and 
classification of molecular signatures inherent in cells upon viral infection, for possible therapeutic targets. 
Therefore, in this study, we performed a differential gene expression analysis, pathway enrichment analysis, and 
gene ontology on RNAseq data obtained from SARS-CoV-2 infected A549 cells. Differential expression analysis 
revealed that 753 genes were up-regulated while 746 down-regulated. SNORA81, OAS2, SYCP2, LOC100506985, 
and SNORD35B are the top 5 upregulated genes upon SARS-Cov-2 infection. Expectedly, these genes have been 
implicated in the immune response to viral assaults. In the Ontology of protein classification, a high percentage 
of the genes are classified as Gene-specific transcriptional regulator, metabolite interconversion enzyme, and 
Protein modifying enzymes. Twenty pathways with P-value lower than 0.05 were enriched in the up-regulated 
genes while 18 pathways are enriched in the down-regulated DEGs. The toll-like receptor signalling pathway is 
one of the major pathways enriched. This pathway plays an important role in the innate immune system by 
identifying the pathogen-associated molecular signature emanating from various microorganisms. Taken 
together, our results present a novel understanding of genes and corresponding pathways upon SARS-Cov-2 
infection, and could facilitate the identification of novel therapeutic targets and biomarkers in the treatment 
of COVID-19.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 
been implicated as the causative agent of the recent global pandemic 
disease named Coronavirus disease 2019 (COVID-19). SARS-CoV-2 be
longs to a larger family of Coronaviridae (CoVs) which causes gastroin
testinal, respiratory, and neurological diseases to a varying degree of 
severity [1,2]. CoVs are non-segmented positive-sense RNA viruses that 
are zoonotically introduced into the human population [3]. They are 
divided into four groups: the α, β,γ, and δ-CoVs [4]. SARS-CoV-2, SAR
S-CoV and MERS-CoV are β-coronaviruses that cause lethal respiratory 
infections [5]. It has been estimated that deaths from the ravage of 
SARS-CoV-2 in a short space of time, has been more than that which 
resulted from SARS-CoV, and MERS-CoV combined [6] (Fig. 1). The 
method of transmission of SARS-CoV-2 is mainly human to human 
especially by close contact with an infected host’s aerosols and also the 
surfaces these have contaminated [7,8]. To date, there is no effective 

antiviral treatment for SARS-CoV-2 [9]. Instead, existing drugs are being 
repurposed for its treatment. Examples of these drugs among many 
others include serine protease inhibitors and a promising drug candi
date, remdesivir, which has been found to have broad-spectrum activity 
against RNA viruses by hampering the mechanism of replication [10]. 
Other examples include favipiravir, hydroxychloroquine, 
co-administration of lopinavir and ritonavir, baricitinib, etc. [11–13]. 
These drugs and other supplemental therapies have functioned to 
resolve the infection to varying degrees of success [14–17]. Different 
approaches have been employed in the design of CoV vaccine, a majority 
of these strategies are developed to target the surface-exposed spike (S) 
glycoprotein, such as targeting the full S protein or S1-receptor-binding 
domain [43]. The similarity in the T-cell epitopes of MERS-CoV, SARS- 
and SARS-CoV-2 has been leveraged upon to examine the 
cross-reactivity of MERS-CoV and SAR-CoV vaccines [44]. A compara
tive study on the sequence length of S protein between SARS-CoV-2 and 
SARS-CoV showed that the variable amino acids were found on the S1 

* Corresponding author. 
E-mail address: soliman@ukzn.ac.za (M.E.S. Soliman).  

Contents lists available at ScienceDirect 

Informatics in Medicine Unlocked 

journal homepage: http://www.elsevier.com/locate/imu 

https://doi.org/10.1016/j.imu.2020.100384 
Received 26 April 2020; Received in revised form 20 June 2020; Accepted 21 June 2020   

mailto:soliman@ukzn.ac.za
www.sciencedirect.com/science/journal/23529148
https://http://www.elsevier.com/locate/imu
https://doi.org/10.1016/j.imu.2020.100384
https://doi.org/10.1016/j.imu.2020.100384
https://doi.org/10.1016/j.imu.2020.100384
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imu.2020.100384&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Informatics in Medicine Unlocked 20 (2020) 100384

2

subunit of S protein, the major CoV vaccine target [44]. Furthermore, 
immune-informatics approaches have also been employed in the dis
covery of candidate epitopes as vaccine targets [45]. Vaccine candidates 
in clinical trials include INO-4800, mRNA-1273 and ChAdOx1 nCoV-19 
[18–20]. 

Over the years, genome sequencing (whole and targeted) has evolved 
as a viable and efficient route for drug discovery. It has been employed 
in understanding the molecular basis of the pathogenesis of diseases, the 
mechanism of drug actions/resistance, and also for the identification of 
chemotherapeutic targets in organisms [21]. The complete genome of 
the Wuhan-Hu-1 coronavirus (WHCV) a strain of SARS-CoV-2, has been 
sequenced. From this, a clearer insight into the molecular basis of its 
virulence, its establishment and main target in human hosts is being 
propounded. 

High throughput sequencing technologies have facilitated the in
crease in the number of genetic biomarkers, many techniques such as 
protein-arrays, mass-spectrometry, and gene-expression have been 
employed in the discovery of genomic biomarkers. These techniques 
encourage the analysis of expressions and also enable the ability to 
determine the activity of these genes in different conditions. In this 
study, the RNAseq dataset of mock-treated A549 (MT_A549) cells and 
SARS-CoV-2 infected A549 (SI_A549) cells retrieved from the Gene 
expression Omnibus (GEO) database were analysed to identify differ
entially expressed genes between MT_A549 cells and SI_A549 cells. 
Furthermore, the objective of this study is to identify the dysregulated 
pathways between these two conditions. 

2. Materials and methods 

2.1. Data retrieval, processing, and differential expression analysis 

We downloaded RNAseq datasets of MT_A549 cells (SRR11412249) 
and SI_A549 cells (SRR11412251) from the study with accession number 
GSE147507 [22]. In this study, transformed lung alveolar (A549) cells 

and human lung epithelium cells were mock treated with SARS-CoV-2. 
The Illumina NextSeq 500 platform was used in sequencing the RNA. 
Raw reads in fastq format of the MT_A549 cells and the SI_A549 cells 
were downloaded for our analysis. The statistical software R and 
encompassing packages from Bioconductor were used to analyse the 
MT_A549 cells and the SI_A549 cells. FastQC [23] was used to access the 
quality of the RNAseq data. Sequence trimming was then carried out 
with the aid of Trimmomatric [24]. We aligned the trimmed sequences 
to a reference human hg38 genome using Bowtie [25]. Furthermore, to 
have insight into the counts of individual genes and transcripts present 
in each condition, we used Htseq-count [26]. Each count was done both 
at the transcript level and gene level. However, genes possessing low 
expression were filtered out. Genes possessing negative fold change 
values are described as down-regulated while those possessing positive 
fold-change values are described as overexpressed. Identification of 
DEGs between the MT_A549 cells and the SI_A549 cells was carried out 
using DESeq2 [27]. 

2.2. Gene ontology, pathway enrichment analysis, and functional protein 
network construction 

Gene Ontology is a method used in the categorization of gene 
expression attributes [28]. Protein ANalysis THrough Evolutionary Re
lationships [23] (PANTHER) is a straightforward visualization tool 
which is employed by researchers in the analysis of the biological 
functions of gene sets [29]. The 753 up-regulated genes and 746 
down-regulated genes were used as input in the PANTHER server with a 
statistical difference set at P < 0.05. The PANTHER Classification Sys
tem and analysis tool was therefore employed to classify the DEGs ac
cording to biological process, protein class, and molecular function, to 
ascertain their overrepresentation [29]. To analyse the pathways 
enriched in the MT_A549 cells and the SI_A549 cells, the 753 
up-regulated genes and 746 down-regulated genes were used as input in 
the online server WebGestalt [30]. The Search Tool for the Retrieval of 

Fig. 1. COVID-19 infection rate and diversity based on geographical location.  
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Fig. 2. Top 10 most up-regulated DEGs (red arrow) and 10 most down-regulated DEGs (green arrow) in the samples. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 3. Functional Classification of DEGs in MT_A549 cells and SI_A549 cells. (A) Molecular function ontology of overexpressed genes (red) and down regulated 
genes (black). (B) Biological process ontology of overexpressed genes (red) and down regulated genes (black). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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Interacting Genes (STRING) version 11.0, covering 24584628 proteins 
from 5090 species was employed to determine Protein-protein Interac
tion (PPIs). The interactions retrieved in STRING had a confidence score. 
During the prediction, we used experimentally validated interactions 
possessing a confidence score 0.4 and maximum additional interactor 
set at 0 to develop the protein-protein interaction network with the aid 
of Cytoscape software version 3.8.0 [46]. The String Enrichment plugin 
in Cytoscape was used to retrieve the functional enrichment. The sta
tistically significant difference was set at P < 0.05. 

2.3. 3D structure modeling and binding site characterization 

Homology modeling is a technique used in computational biology for 

the determination of protein 3D structure using its amino acid sequence 
as building blocks [31]. It is adjudged the most accurate and effective 
method of computational structure prediction [31]. The protein 
sequence of OAS2, SYCP2L, GNB3, and ALOX12B with accession num
ber P29728, Q5T4T6, P16520, and O75342 respectively, were retrieved 
from UniProt [32]. These amino acids sequences were used as input in 
the online template-based homology modeling server; SwissModel [33]. 
Validation of the built models was carried out with the aid of RAMPAGE 
[34], the ProSA web server [35], and Verify-3D [36]. Furthermore, after 
the structures were modeled, the binding sites needed to be identified; 
we therefore used metaPocket [37] to identify binding sites for potential 
drug binding sites. metaPocket is a webserver that uses different pre
dictors (LIGSITE, PASS, Q-SiteFinder, SURFNET, Fpocket, GHECOM, 
ConCavity, and POCASA) to determine a protein’s binding site. 

3. Results and discussion 

3.1. Differential gene expression between MT_A549 cells and the SI_A549 
cells 

The DESeq2 package was employed to determine DEGs in the 
MT_A549 cells and the SI_A549 cells. At the Trimming stage, 7,461,512 
(94.42%) reads of the (infected sample) passed the trim filter, 469, 643 
(5.58%) were removed and 7,461,512 (99.11%) were aligned. For the 
mock-treated samples, 2440, 387 (89.20%) of the total reads passed the 
trim filter; out of this, 99.12% were aligned. At a P-value of 0.05 and 1% 
FDR (Q < 0.01), a total of 17179 transcripts and genes were differen
tially expressed between MT_A549 cells and the SI_A549 cells. Out of the 
17179 expressed genes, 753 were up-regulated while 746 were down- 
regulated. However, the analysed result indicated that the level and 
range of expression of the down-regulated genes and transcripts were 
lower than that of the overexpressed genes. The top 5 overexpressed 
genes are SNORA81, OAS2, SYCP2, LOC100506985, and SNORD35B 
while the top 5 down-regulated genes are GNB3, TMED10P1, ALOX12B, 
MAFG-AS1 and SAYSD1 (Fig. 2). SNORA81, and SNORD35B belong to a 
highly expressed group of non-coding RNAs called Small nucleolar RNAs 
and C/D box snoRNAs, respectively. These proteins have been impli
cated in the regulation of pre-mRNA splicing, polyadenylation of genes, 

Table 1 
Representation of DEGs according to protein class based on PANTHER 
classification.  

Protein Class Up-regulated 
genes 

Down-regulated 
genes 

Extracellular matrix protein 2 3 
Cytoskeletal protein 16 12 
Transporter 20 29 
Scaffold/adaptor protein 10 13 
Nucleic acid binding protein 30  
Intercellular signal molecule 12 16 
Protein-binding activity modulator 18 19 
Calcium-binding protein 5 1 
Gene-specific transcriptional regulator 45 20 
Defense/immunity protein 2 5 
Translational protein 4 – 
Metabolite interconversion enzyme 34 26 
Protein modifying enzyme 40 23 
Chromatin/chromatin-binding, or 

-regulatory protein 
8 2 

Transfer/carrier protein 1 – 
Membrane traffic protein 11 7 
Chaperone 1  
Transmembrane signal receptor 11 15 
Cell adhesion – 6 
Structural protein – 3 
Cell junction – 7  

Fig. 4. Pathway enrichment analysis of the overexpressed DEGs using WebGestalt.  
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and formation of protein complexes without the incorporation of 
fibrillarin [38]. Studies have shown how viruses use SNORD for host 
infectivity. According to research by Murray et al., 2014, using 
gene-trap insertional mutagenesis, 83 SNORDs and SNORAs were 
identified as major factors required for viral infectivity. This study 
suggested that the SNORDs, and not the host genes, were responsible for 
the replication of RNA viruses and DNA viruses [38] (see Fig. 3). 

The second most upregulated gene OAS2 encodes the enzyme 20-50- 
oligoadenylate synthases 2; these enzymes are reputed for their ability 
to enhance intracellular antiviral mechanisms. After induction by type 1 
interferons, 20-50-oligoadenylate synthases 2 facilitates the polymeriza
tion of ATP to 20-50-linked adenosine oligomers (2–5As). 2–5As subse
quently activates the RNase L degradative pathway responsible for 
cleaving viral RNA and mitigates against infection [39]. 

3.2. Classification and overrepresentation analysis 

To explore the DEGs at an in-depth functional level, the predicted 
DEGs were mapped onto the PANTHER database. Over-represented GO 
terms were identified in three ontologies. In the ontology of molecular 
function, the result indicated that the up-regulated genes were involved 
in majorly 6 molecular functions with the majority of the genes involved 
in binding (149 genes), catalytic activity (116 genes), transcription 
regulatory activity (27 genes), etc. Similarly, some down-regulated 
genes were also predicted to be implicated in catalytic activity, bind
ing, and transcription regulatory activity. The abundance of genes in 
these processes is due to the fact that they contain genes that are 
necessary for basic life functionality. Granulocyte-macrophage colony 
stimulating factor is one of the genes involved in cellular process. This 
gene is a monomeric glycoprotein that serves as a cytokine that facili
tates the development of the immune system and promotes defense 
against infections [40]. The cellular processes include cell communica
tion, cell cycle, gene expression, protein targeting, metabolism, etc. 
Some genes classified under metabolic processes are involved in 
energy-producing pathways. These genes include PDK4, NLK, BATF2, 
ATP6AP1L, GRIK2, etc. Biological regulation describes genes that are 
involved in metabolism, apoptotic regulation, homeostasis, catalytic 
activity, and translation. The most abundant protein classification of the 
DEGs are Gene-specific transcriptional regulator, protein modifying 

enzyme, and metabolite interconversion enzyme (Table 1). 

3.3. Signalling pathway analysis 

To identify the dysregulated pathways on infection with SARS-CoV- 
2, pathway enrichment analysis was carried out with the aid of Web
Gestalt. 20 pathways with a P-value lower than 0.05 were enriched in 
the up-regulated genes while 18 pathways were enriched in the down- 
regulated DEGs. The Toll-like receptor (TLR) signalling pathway is one 
of the major pathways enriched among the DEGs (Fig. 4). TLRs play a 
very crucial function in the innate immune system by identifying the 
pathogen-associated molecular signature emanating from various 
microorganism [41]. Genes implicated in this pathway include C–C 
motif chemokine ligand 5, interferon regulatory factor 7, signal trans
ducer and activator of transcription 1, C-X-C motif chemokine ligand 8, 
toll-like receptor 1 and Fos proto-oncogene (Fig. 4B). Furthermore, 
other pathways enriched are Leukocyte transendothelial migration 
(LEM), and Cytokine-cytokine receptor interaction. LEM movement 
from the blood vessel plays a crucial role in inflammation and immune 
surveillance. Leukocytes interact with endothelial cell adhesion mole
cules (CAM), and subsequently move across the vascular endothelium 
[42]. Some of the genes enriched in the cytokine-cytokine receptor 
interaction include C-X-C motif chemokine ligand 12, thrombopoietin, 
TNF superfamily member 8, X–C motif chemokine ligand 2, and inter
leukin 20 receptor subunit alpha (Fig. 5B). 

3.4. Protein-protein interaction network analysis 

PPI network analysis is crucial in the understanding of the biological 
responses of cells to infection. Based on the interactions result from 
STRING, we built a protein-protein interaction network using Cytoscape 
[46] (Fig. 6). A total of 810 nodes and 2300 edges were identified in the 
network. The STRING online database was used in the analysis of the 
predicted DEGs. The top 15 hub genes with the highest node degrees 
were ISG15, STAT1, HERC6, IRF7, HERC5, IFIH1, DDX58, GBP1, IRF9, 
OASL, MX1, OAS2, DDX60, OAS1, and IFIT1 (Table 2). The accuracy of 
the network was ascertained by the clustering coefficient (0.247), 
network density (0.247), and network centralization (0.063). These top 
15 hub genes were investigated for betweenness centrality, MNC 

Fig. 5. Pathway enrichment analysis of the down regulated DEGs using WebGestalt.  
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centrality, stress centrality, and degree centrality. ISG15 showed the 
highest node degree of 52 and betweenness centrality of 0.0639. OAS2 is 
strongly correlated with MX1; this connectivity could probably be due to 
the function of MX1 as protective genes against influenza virus infection 
[43] by interrupting viral ribonucleoprotein complex assembly [44]. 

3.5. Gene-products structure modeling 

Homology modeling plays a crucial role in facilitating the drug dis
covery and development pipeline. We selected two representative genes 
from the up-regulated and down-regulated genes to be modeled. The 
protein sequence of OAS2, SYCP2L, GNB3, and ALOX12B with accession 
numbers P29728, Q5T4T6, P16520, and O75342 respectively, were 
retrieved from UniProt [32]. OAS2 has 719 amino acids; this sequence 
was used to build a model for OAS2, based on the in-built alignment 
algorithm in SwissModel [33], 20-50-oligoadenylate synthase 1 (4rwn) 
was used as template; there was 52.33% sequence identity between 
OAS2 and 20-50-oligoadenylate synthase 1. Similarly, this process was 
repeated for SYCP2L, GNB3, and ALOX12B. Synaptonemal complex 

Fig. 6. Network analysis of the Differentially Expressed Genes based on betweenness centrality.  

Table 2 
Top 15 hub genes with highest degree on interaction.  

Genes Betweenness 
Centrality 

Degree Number Of Undirected Edges Closeness 
Centrality 

ISG15 0.0639 52 52 0.2075 
STAT1 0.0530 50 50 0.2053 
HERC6 0.0068 45 45 0.1841 
IRF7 0.0114 45 45 0.1873 
HERC5 0.0081 45 45 0.1843 
IFIH1 0.0057 41 41 0.1862 
DDX58 0.0135 41 41 0.1862 
GBP1 0.0051 40 40 0.1853 
IRF9 0.0110 40 40 0.1875 
OASL 0.0073 40 40 0.1865 
MX1 0.0020 40 40 0.1857 
OAS2 0.0022 39 39 0.1852 
DDX60 0.0041 37 37 0.1832 
OAS1 0.0013 37 37 0.1843 
IFIT1 9.0918E-4 37 37 0.1839  
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protein (5iwz) was used as the template to model SYCP2L; there was a 
40.21% similarity between Synaptonemal complex protein and SYCP2L. 
An 83.24% sequence identity was found between Guanine 
nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 and GNB3. 
Lastly, in modeling ALOX12B, Arachidonate 15-lipoxygnase B was used 
as a template; these two proteins have 51.04% similarity (Fig. 7). 

The quality of the selected model was validated by ProSA (z-score), 
Ramachandran plots, and Verify-3D. According to the RAMPAGE algo
rithm, 97.1% of OAS2 residues are found in the favoured region, 1.7% 
are in the allowed regions while 1.2% are located in the outlier region. 
97.1%, 94.7%, and 94.1% amino acid residues of SYCP2L, GNB3, and 
ALOX12B respectively, were found in the favoured region (Table 3). 
Validation by ProSA revealed that the model structures are of good 
quality judging by the values of the z-score. (Table 3). Furthermore, the 

ProSA plots indicate that all of the modeled structures fall between the 
range of scores characteristic of proteins of similar size. Assessment of 
the model by Verify-3D showed that for OAS2, the profile score was 
96.56%; this indicates that 96.56% of the residues have an average 3D- 
1D score of �0.2 (Fig. 8). The 3D-1D score �0.2 of SYCP2L, GNB3, and 
ALOX12B are 93.75, 88.20, and 93.71, respectively. Taken together, 
results obtained from these three servers suggest that the model OAS2, 
SYCP2L, GNB3 and ALOX12B structures are of high quality and could be 
used for further study. 

3.5.1. Binding site characterization and potential for drug targeting 
The function of a protein is dependent on its interaction with other 

biomolecules; these biomolecules could be called ligands [45]. The 
interaction between these ligands and proteins occur at a specific region 
of the protein called ligand binding sites; binding is facilitated by amino 
acid residues located in this ligand binding site [45]. Ligand binding 
sites have gained remarkable attention in drug-target interaction, mo
lecular docking, drug design, etc. [46]. Hence, the identification of 
ligand binding sites aids in the understanding of the mechanism of 
intermolecular interaction between ligand and protein and hence its 
implication in the pathogenesis or modulation of disease condition [47]. 
We used metaPocket, which is a traditional machine learning-based 
ligand binding site server. metaPocket uses different predictors (LIG
SITE, PASS, Q-SiteFinder, SURFNET, Fpocket, GHECOM, ConCavity, 
and POCASA) to determine a protein’s binding site. Binding site 

Fig. 7. Modeled structures of OAS2, SYCP2, GNB3, and ALOX12B using template-based 3D structure modeling.  

Table 3 
Assessment and validation of OAS2, SYC2L, GNB3, and ALOX12B using 
RAMPAGE and ProSA.  

Genes Favoured Region 
(%) 

Allowed Region 
(%) 

Outlier Region 
(%) 

ProSA z- 
score 

OAS2 97.1 1.7 1.2 � 9.86 
SYCP2L 97.1 2.1 0.8 � 8.04 
GNB3 94.7 3.6 1.8 � 7.34 
ALOX12B 94.1 4.6 1.3 � 11.61  

O.S. Soremekun et al.                                                                                                                                                                                                                          
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prediction using metaPocket based on z-score and clustering highlighted 
two potential binding sites in the proteins. Fig. 9 highlights the two 
binding sites of OAS2, SYCP2, GNB3, and ALOX12B. Having highlighted 
these sites, they could be leveraged in the drug design and development 
pipeline. Most importantly, structure-based virtual screening (SBVS), 
SBVS is a method used in screening small molecule libraries or database 
for novel bioactive compounds against a certain protein [48]. This 
method makes use of the 3-dimensional structure, obtained from X-ray 
crystallography, Nuclear Magnetic Resonance, or homology modeling to 
dock a collection of small molecules into the binding pocket of proteins 
and subsequently select a subset of these compounds based on their 
binding pose [48]. Different online servers could be used in SBVS; for 
instance, when GNB3 was queried on the online Drug-Gene Interaction 
Database (DGIdb 3.0) [49], Lovastatin, Simvastatin, Olanzapine, Cer
ivastatin, and Hydrochlorothiazide were returned as potential drugs that 
could be used to target GNB3. 

4. Conclusion 

This research presents a differentially expressed gene analysis of 
RNAseq data of SARS-CoV-2 infected A549 cells. This expression profile 
was retrieved from Gene Expression Omnibus. We performed 

differential gene expression within the scope of gene sets and pathway 
analysis to explore genes and molecular-signature pathways that may be 
peculiar to Covid-19 infection. SNORA81, OAS2, SYCP2, 
LOC100506985, and SNORD35B are the top upregulated genes upon 
infection. To explore the DEGs at an in-depth functional level, the pre
dicted DEGs were mapped onto the PANTHER database. Over- 
represented GO terms were identified in three ontologies. PPI network 
analysis is crucial in the understanding of the biological responses of 
cells to infection. The STRING online database was used in the analysis 
of the predicted DEGs. The top 20 overexpressed genes were investi
gated for betweenness centrality, MNC centrality, stress centrality, and 
degree centrality. 
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