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Abstract
Alternative splicing, polyadenylation, and chemical modifications of RNA
generate astonishing complexity within eukaryotic transcriptomes. The last
decade has brought numerous advances in sequencing technologies that allow
biologists to investigate these phenomena with greater depth and accuracy
while reducing time and cost. A commensurate development in biochemical
techniques for the enrichment and analysis of different RNA variants has
accompanied the advancement of global sequencing analysis platforms. Here,
we present a detailed overview of the latest biochemical methods, along with
bioinformatics pipelines that have aided in identifying different RNA variants.
We also highlight the ongoing developments and challenges associated with
RNA variant detection and quantification, including sample heterogeneity and
isolation, as well as ‘Omics’ big data handling.
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How did we get here?
The RNA world hypothesis, a widely prevailing idea among 
molecular biologists, describes self-replicating RNA as the pre-
cursor to all modern life forms. Besides recognizing its primordial 
origin, we have come to realize that RNA is a highly complex and 
diverse macromolecule, which plays central roles in protein syn-
thesis by serving as the encoder (mRNA), the decoder (tRNA), 
and the catalyst (rRNA). But our understanding of RNA diversity, 
form, and function continues to evolve as we keep discovering new 
and exciting classes of RNAs that carry out unexpected functions. 
Recent transcriptome studies, which capture nearly every transcript 
in a cell, have revealed an overwhelming number of RNA variants 
resulting from multiple transcription initiation sites, alternative 
pre-mRNA splicing and polyadenylation, post-transcriptional 
editing, and direct chemical modifications of RNA (Figure 1). 
These studies have demonstrated that the variants play key roles 
in generating mRNA diversity by altering their coding sequences, 
half-lives, and translation efficiencies, allowing complex organisms 
to control temporal and tissue-specific transcriptome patterns.

The systematic study of RNA variants began in the 1990s when 
cloning of expressed sequence tags revealed the diversity of mRNA 

populations expressed in different cells and tissues of metazoans1. 
The advent of microarrays in the early 2000s expedited the discov-
ery of new RNA variants2,3, but the technology had several limita-
tions, including (i) high background levels due to dependence on 
hybridization, (ii) reliance on existing sequence knowledge, and 
(iii) a limited range of detection. In the last decade, the field has 
taken a significant leap forward with the development of next-generation  
sequencing. The timeline of major milestones that facilitated  
the discovery of novel RNA variants is provided in Figure 2.

First-generation sequencing required separate reactions for individ-
ual nucleotides and was limited by a gel electrophoresis step, which 
was further complicated by the need to use radioactive reagents4,5. 
Next-generation sequencing, however, uses advanced optics and 
flow cells to identify nucleotide sequences rapidly, making the 
analysis and sequence determination quicker and more accurate6–8. 
A number of next-generation sequencing platforms have been 
developed, and the most popular ones are Illumina Solexa9 (relies 
on fluorescence imaging post-nucleotide addition every cycle, 
approximately 100 nucleotide reads, 0.1% error rate), Roche 454 
sequencing10 (long reads and short homopolymeric stretches 
sequenced in single-cycle, approximately 500 nucleotide reads, 1% 

Figure 1. Alternative splicing, circular RNA formation, and mRNA modifications are the major mechanisms generating much of the 
mRNA diversity. Alternative splicing results in the selective inclusion or skipping of particular exons as well as alternate 5′ and 3′ untranslated 
region (UTR) selection within a processed mRNA transcript. In some cases, alternative splicing also results in intron retention events. Circular 
RNA formation occurs because of back splicing of the 3′ end of a downstream exon to the 5′ end of an upstream exon. Lastly, mRNAs can be 
modified through editing mechanisms converting A and C nucleotides to I and U nucleotides, respectively, as well as through the addition of 
functional groups on either the base or the sugar moiety of a nucleotide.
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Figure 2. Timeline outlining the recent advances in analyzing RNA variants.

error rate), Ion Torrent11 (based on detection of H+ ion release due 
to polymerization of dNTP probes, approximately 200 nucleotide 
reads, 1% error rate), and SOLiD sequencing12 (relies on sequenc-
ing by ligation over synthesis, 35 nucleotide reads, less than 0.1% 
error rate). Of the above methods, the first three are classified as 
sequencing by synthesis methods whereas SOLiD is under the 
sequencing-by-ligation category. The field of sequencing by liga-
tion has made rapid strides with the development of complete 
genomics technology that uses combinatorial synthesis meth-
ods, involving the use of multiple probe-anchor combinations to 
determine sequence13. Additionally, Pacific Biosciences has 
recently introduced single-molecule real-time sequencing14 of full- 
length transcripts, and the average read length is 2.5 kb (non-stop 
sequencing and real-time imaging, more than 1% error rates).

Perhaps the most significant breakthrough in the field was the  
development of massively parallel cDNA sequencing, commonly 
referred to as RNA-seq15. It involves sequencing of cDNA frag-
ments generated from total RNA after oligo-dT or random priming.  
For most transcriptome studies, mRNA is enriched from the total 
RNA pool by using either a poly(A) pull-down or selective deple-
tion of rRNA. Following sequencing, the reads are aligned to a pre-
annotated reference genome or assembled de novo to provide both 
the qualitative and the quantitative information of entire transcrip-
tomes. This technique now can be used to identify new transcripts 
without having a priori knowledge of all gene models16. Recent 
mapping tools can also identify splice junctions by using reads span-
ning across two exons, bolstering identification of alternative splice 
isoforms. Initially, RNA sequencing (RNA-seq) studies examined 
only the steady-state levels of RNA populations; however, the 
relative contribution of variable transcription (synthesis) and RNA 
degradation (stability) in those studies was unclear. New  
techniques such as Net-Seq17,18 and BRU-seq19 address this problem. 

Net-Seq employs DNA-RNA-RNA polymerase complex stability 
to isolate 3′ ends of nascent transcripts. Bru-Seq uses pulse-chase 
labeling of newly transcribed RNA with bromouridine to determine  
rates of RNA synthesis and stability.

The past five years have witnessed a surge of new techniques 
employing RNA-seq to identify many new RNA variants, and  
isolation/enrichment methods are based on each variant type. In 
parallel, significant advances in computing power have expanded 
our ability to annotate and quantify these variants with high confi-
dence from a single cell to complex tissues, along with the advent of 
consortium projects that have given rise to databases for their com-
parative and meta-analyses20–22. The increasing sensitivity of detec-
tion, wherein extremely minute quantities (picograms) of RNAs 
can be amplified and sequenced, has also spurred development of 
single-cell RNA-seq (scRNAseq)23 for identifying heterogeneity 
within cell populations and uncovering transcriptome differences 
that may be hidden in bulk RNA-seq24. Some of the commonly 
used sequencing technologies and bioinformatics packages for the  
detection of different RNA variants are provided in Table 1.

In this review, we discuss different types of mRNA variants com-
monly found in metazoans, consider the latest advances in tech-
niques to identify them, and provide a brief overview of the recent 
developments in bioinformatics pipelines for their quantitative 
analyses.

Decoding the splice variants
Pre-mRNA splicing is an essential step for the expression of most 
genes in metazoans. Splice sites within a pre-mRNA facilitate the 
splicing and ligation of introns and exons, respectively, producing 
a mature mRNA transcript. Alternative splicing involves differen-
tial usage of splice sites to yield multiple mRNAs from a single 
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Table 1. Summary list of bioinformatics pipelines/tools for analyzing different RNA variants.

Variant analysis 
classification

Biochemical methods (methods for 
feature enrichment)

Bioinformatics tools

Pre-processing tools Analysis tools

Alternative splice 
variants

a. RNAseq post Poly(A) enrichment for 
mRNA pulldown 
b. Isoform sequencing (Iso-Seq) and 
SLR-RNA-seq95 (synthetic long-read) 
for full-length transcript sequencing 
c. RNAseR enrichment for circular 
RNA

- Quality check: fastQC 
and HTSeq 
- Processing: Fastx, 
Trimmomatic, and 
cutadapt 
- Mapping: STAR96, 
OLego97, and TopHat98

rMATS99, 
MISO53, IRCall, 
CIRCexplorer44, 
MAJIQ37, and DEXSeq

5′ and 3′ end 
variants

a. 3′ end enrichment libraries: 3P-Seq, 
PAPERCLIP, and 3′-Seq 
b. poly(A) tail length: TAIL-seq, PAL-seq, 
and LM-PAT 
c. 5′ end enrichment libraries: CAGE100 
and deepCAGE

- Quality check: fastQC 
and HTSeq 
- Processing: Fastx, 
Trimmomatic, and 
cutadapt 
- Mapping: STAR, OLego, 
and TopHat

MISO and DaPars

RNA modification 
variants

a. antibody-based IP: m6A, m1A, m5C, 
and hm5C 
b. Selective RNA chemistry: m5C and 
Ψ

- Processing: flexbar and 
Fastx 
- Mapping: STAR, OLego, 
and TopHat

MACS101, HOMER102, 
CIMS103, and CITS104

Translational variants a. Ribosome profiling 
b. TATL-seq for alternative transcript 
leader sequences 
c. Poly(A)-primed sequencing (2P-seq) 
d. Frac-Seq and TrIP-seq

- Quality check: fastQC 
and HTSeq 
- Processing: Fastx, 
Trimmomatic, and 
cutadapt 
- Mapping: STAR, OLego, 
and TopHat

Plastid, RiboTaper105, 
Cufflinks/Cuffdiff106, 
and DESeq

gene. The functional outcomes are increased proteome diversity 
and the introduction of premature termination codons to degrade 
mRNAs by nonsense-mediated decay25 and to generate variability 
in untranslated regions (UTRs) which modulate mRNA translation 
efficiency, stability, and localization26,27. Given the direct and wide-
spread impact of alternative splicing on eukaryotic gene expression, 
cataloging the full repertoire of splice variants within individual 
cell types, developmental stages, and different human diseases has 
been a focus of many research laboratories.

The initial RNA-seq studies for detecting splicing patterns  
suffered from short read lengths, limiting the reliable genomic 
alignment of the alternative exon-exon junctions. Clever computa-
tional approaches, however, overcame these limitations through the 
addition of all potential splice junctions to the reference genome 
and accounting for them within the alignment mix28–30. The results 
transformed our view of the extent and complexity of eukaryotic 
transcriptomes, as more than 95% of human multi-exon genes were 
found to have alternatively spliced isoforms31. Importantly, calcu-
lating the number of mapped reads against individual exons plus 
each splice junction provided a direct measure of splicing efficiency 
that allowed precise quantification of isoform ratios.

The development of strand-specific and paired-end sequencing 
led to improved mapping, the discovery of pervasive anti-sense 
transcription32,33, and many novel splice variants in vertebrate  
species34,35. Emerging technologies are geared toward sequencing 

the full-length transcripts (for example, Iso-seq36) such that variably 
spliced regions from different areas of a single gene can be accu-
rately connected to provide information about the entire mRNA iso-
forms (that is, from the 5′ end to the poly[A] tail). There has also 
been a strong push to improve the existing algorithms to capture the 
full complexity of splicing patterns within existing RNA-seq data. 
For instance, Vaquero-Garcia et al. have recently developed a new 
computational pipeline to accurately detect, visualize, and quan-
tify complex local splice variants that are tissue-specific or change 
dynamically across different experimental conditions37. 

In addition to the discovery of variably spliced regions, RNA-seq 
has been an incredible asset for the investigation of splicing inter-
mediates and novel splice products. For instance, it led to the iden-
tification of recursive splicing where long introns require specific 
exon contexts and are spliced out in phases rather than the usual 
two-step process38,39. Recursive splicing uses cryptic sites within 
the intron, known as recursive splice (RS) site/ratchet points, 
which are surprisingly more conserved than the regular 5′ and 3′ 
splice sites. However, the identification of these RS sites required 
extensive deep sequencing with over a billion paired-end reads, 
without poly(A) selection in an attempt to capture pre-mRNA 
and nascent RNA transcripts40,41. Likewise, RNA-seq has renewed 
interest in studying circular RNAs (circRNAs). The discovery of 
circRNAs, though known for over two decades, remained mostly  
serendipitous42,43. Typical RNA-seq experiments fail to conserve 
RNA circularity because fragmentation and the absence of a 
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poly(A) tail or free 5′ or 3′ end cause de-enrichment of circRNAs 
during most library preparations. However, the lack of exposed 
5′ or 3′ ends also stabilizes the circRNAs, making them resistant 
to exonuclease-mediated degradation. The recent development 
of biochemical methods to enrich for circRNAs (for example, 
RNAseR treatment to digest single-stranded RNA) along with new 
computational strategies (CIRCexplorer44) to mine the existing  
Encyclopedia of DNA Elements (ENCODE) Ribozero RNA-seq  
data has aided their de novo detection in humans, mice, and 
Caenorhabditis elegans. The results have revealed that most 
circRNAs are non-coding splice variants containing multiple exons 
located in the middle of genes that are often expressed in a tissue- 
and developmental stage-specific manner and that these variants 
may act as sponges to antagonize microRNA activity45,46.

Cracking the terminal variants
Whereas the gene body variants in mRNAs promote proteome 
diversity, variability at the terminal ends is known to serve more of 
a regulatory role in protein synthesis. This realization has led to a 
strong surge in the development of new methodologies to identify 
all the 5′ and 3′ end variants within eukaryotic transcriptomes. For 
instance, recent methods have revealed that alternative transcrip-
tion start sites (TSSs) are prevalent in the human genome and that 
approximately 30 to 50% of human genes have more than one  
promoter47. A substantial number of these alternative TSSs alter the 
5′ UTRs, in turn modulating the translational output of mRNAs48. 
5′ UTRs are known to comprise many regulatory features—5′ cap 
structure, internal ribosome entry sites, G-quadruplexes, and so 
on—that can drastically affect the ability of ribosomes to assemble 
and initiate translation. Apart from forcing the gain or loss of such 
regulatory features, alternative TSSs generate RNA variants with 
different upstream open reading frames (uORFs). Ribosome foot-
printing studies have uncovered a significant fraction of such short 
translated uORFs within 5′ UTRs that potently repress the transla-
tion of downstream ORFs49–51.

Apart from providing proper signals for mRNA 3′ end formation 
and poly(A) site selection, the 3′ UTR is considered to be a regula-
tory hub for gene regulation. Proper 3′ end formation is essential 
for nuclear export and stability of mature mRNAs and their efficient 
translation52. Analysis of existing RNA-seq data with new computa-
tional pipelines (MISO and DaPars)53,54 or sequencing of the librar-
ies enriched for 3′ ends of mRNAs (3P-Seq, 3′-seq, 3′READS, and 
PAPERCLIP) have documented that over 50% of human mRNAs 
express variable 3′ UTRs—generated by alternative cleavage,  
splicing, and polyadenylation. Importantly, these 3′ UTR vari-
ants are differentially expressed during differentiation, develop-
ment, and disease55–58, and they often influence the accessibility 
of microRNAs and RNA-binding proteins (RBPs) to the 3′ UTR 
cis-regulatory elements affecting mRNA stability, localization, and  
translation efficiency59.

Poly(A) tail length is another important 3′ UTR feature that impacts 
the post-transcriptional fate of mRNAs. Although some biochemi-
cal methods (LMPAT60 and ePAT61) can accurately measure the 
poly(A) tail lengths of individual genes, precise measurements at 
a genome-wide scale are hampered by difficulties in sequencing 
homopolymeric sequences longer than 30 nucleotides. However, 

new advances in poly(A) tail length profiling methods (TAIL-seq 
and PAL-seq) use specialized 3′ adapters, RNAse T1 treatment 
(digests the mRNA body but not the poly[A] tail), and the spike in 
controls in library preparation. These biochemical improvements in 
conjunction with refined machine-learning algorithms to analyze the 
intensity of raw fluorescence signals allow the precise estimation of 
poly(A) tail lengths. These new methodologies have started to pro-
vide the first high-resolution, global views of poly(A) tail length 
variants and their relevance to mRNA stability and translational 
efficiency in cells and tissues from a variety of species, including 
yeast, Drosophila, zebrafish, Xenopus, mouse, and human62–64.

Marking the variants
Though originally discovered in highly abundant rRNAs, tRNAs, 
and snRNAs, newly tailored mRNA sequencing methods have 
revealed that base modifications and editing sites are also highly 
prevalent in mRNAs65. The study of mRNA modifications (methyl-
ation, hydroxy-methylation, and pseudouridylation) plus editing (A–I  
or C–U) is now commonly referred to as “epitranscriptomics”66–68.  
Much like the epigenome, the epitranscriptome expands the infor-
mation content of nucleic acids, rendering them additional structural 
and functional flexibility. Recent advances have led to the profiling 
of millions of modification sites for each of the known mRNA modifi-
cations, including methylation, as well as base editing (such as A–I 
or C–U)69,70. Whereas most of these have been observed across all 
genes, some are limited to specific classes of transcripts.

Remarkably, the genome-wide mapping of modifications and edit-
ing sites has not only expanded the landscape of this new class of 
mRNA variants within eukaryotic transcriptomes but also unraveled 
their dynamics in abundance and site selection in response to 
intra- and extra-cellular stimuli71–74. The impact of these post- 
transcriptional marks is now recognized in almost every step of gene 
regulation, including mRNA processing, stability, and translation75. 
An interesting example is the recent work on ADAR (adenosine 
deaminase acting on RNA) enzymes, showing their role in protect-
ing double-stranded RNA (dsRNA) against recognition by dsRNA 
response pathways76. Importantly, the writers, erasers, and reader 
proteins for some of these modifications have been identified, and 
the phenotypic and molecular consequences of their gain or loss  
of function have been demonstrated77.

Today, the transcriptome-wide mapping of modified nucleosides 
relies on either antibody-based immunoprecipitation (m6A, m1A, 
m5C, and hm5C)66,78 or a modification-selective RNA chemis-
try approach (m5C and Ψ)79,80 to enrich for the target modifica-
tion during library preparation. However, further optimization of 
these methods is needed to simultaneously obtain single-nucleotide 
resolution and stoichiometry of RNA modifications, as fractional 
modification represents another mechanism to generate functional 
diversity within individual mRNA pools. Current epitranscrip-
tome profiling techniques accurately identify the modification sites 
within RNA transcripts but fail to provide information about the 
modified fraction for each site. Given that a modification may alter 
the mRNA secondary structure or binding site for RBPs, quantita-
tive fractional information about each modified site in the transcrip-
tome is highly desired.
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Translating the variants
Early dogma predicted that the amount of mRNA for a given gene 
directly correlated with the amount of protein made. However, we 
now know that through sequence variations discussed above and 
along with other RNA control elements, the translation of spe-
cific transcripts can be fine-tuned for the purpose of responding to  
cellular needs in a variety of contexts81. Therefore, estimating aver-
age gene-level translation by ribosome profiling82—a technique 
that uses short, approximately 28 nucleotide ribosome footprints 
on mRNA as a means of quantifying protein output—may not 
provide an accurate measure of the translational potential for indi-
vidual RNA variants or isoforms. This is especially true for splice 
variants, which can exhibit variable coding capacities because of 
(i) sequence differences, (ii) altered mRNA half-lives, or (iii) dif-
ferential nucleo-cytoplasmic export. Indeed, several recent efforts 
to measure isoform-specific translation have revealed discrete  
effects of 5′ end83, 3′ end84, and coding sequence85,86 diversity.

Using translation-associated transcript leader sequencing 
(TATL-seq), Arribere and Gilbert successfully mapped transcript 
leader boundaries across the yeast genome and discovered hun-
dreds of new alternative transcript leader variants, the majority hav-
ing differential translation efficiencies83. Complementing this work, 
Spies et al. acquired decay and translation rates for proximal and  
distal 3′ UTR variants using poly(A)-primed sequencing (2P-seq) 
but found only a modest regulatory influence for alternative 3′ 
UTR sequences84. By comparing isoform ratios in cytoplasmic and 
polyribosomal extracts from human cells (Frac-seq), Sterne-Weiler 
et al. observed that not all splice isoforms are similarly loaded into 
polyribosomes and that the presence of microRNA binding sites 
or premature termination codons can greatly affect the loading of 
individual isoforms into polyribosomes85. Similarly, a major impact 
of mRNA isoforms on protein output was observed by Floor and 
Doudna, who recently adapted the classic approach of polysome 
profiling to measure isoform-specific translation (TrIP-seq)87.

Where are we headed?
Emerging technologies have given us a powerful toolbox to detect 
and quantify RNA variants from simple unicellular organisms to 
complex vertebrates. These new techniques allow for previously 
unimagined access to compare transcriptome patterns across  
species, tissues, developmental stages, and disease states. We now 
can isolate and sequence picogram amounts of RNA from fresh and 
formalin-fixed paraffin-embedded tissue specimens and even iden-
tify variants within single cells that are isolated from a wide range of 
biological samples. Moreover, the ENCODE project has generated 
unprecedented information about the many different RNA variants 
present in model organisms and human cells. Systematic discovery 
of cis-acting RNA elements, trans-acting RBPs that bind to these 
elements to control the production of variants, and their expression 
and subcellular localization is paving the way to uncovering the 
underlying code for generating much of the RNA diversity88,89. If 
sequencing costs continue to decline as anticipated, clinical meas-
urements of normal and aberrant RNA variants in body fluids or 
tissue biopsies in the not-so-distant future may become part of 
personalized medicine, making for more accurate diagnoses and  
offering better-informed treatment plans.

However, as with most opportunities, certain challenges must be 
overcome to realize their full potential. What are the common 
challenges facing global profiling of RNA variants? First, biologi-
cal specimens are usually heterogeneous, composed of multiple 
cell types. Since most RNA variants are expressed in a single cell 
type-specific90, developmental stage-specific91, or disease-specific92 
manner, particular attention must be paid when selecting optimal 
biological specimens for sequencing. For instance, individual cell 
types from most tissues now can be isolated by serial dilution,  
fluorescence-activated cell sorting, or laser-capture micro-dissection.  
Therefore, developing compound protocols that combine cell type-
specific purification strategies with sequencing may provide more 
reliable information on RNA variants within particular cell types 
under normal or disease states. Second, identifying RNA variants 
from single-cell RNA-seq often requires multiple amplification 
steps to produce a sufficient quantity of nucleic acid for sequenc-
ing. These amplification steps introduce stochastic bias for certain 
sequences, which may cause dropout of certain low-abundance var-
iants while amplifying others, thereby reducing the accuracy, repro-
ducibility, and quantification power of detecting variants within 
single cells93. Third, there has been a rapid surge in the deposition 
of transcriptome data in public repositories in recent years. This 
has resulted in new challenges about how to effectively integrate 
the RNA variant information with other “Omics” datasets and build 
streamlined platforms for metagene analyses. Finally, perhaps the 
biggest challenge facing the field is the storage, distribution, and 
analysis of massive amounts of sequencing data. Multiple consor-
tium projects like ENCODE, TCGA (The Cancer Genome Atlas), 
ExAC (Exome Aggregation Consortium), and other individual 
centers generate sequencing data at an astounding pace, doubling 
their numbers every seven months94. As the world moves toward a 
future of personalized genomic diagnostics and medicine, Stephens 
et al. propose that real-time transcript expression level analysis and 
the development of genomic variant databases against reference 
genomes will help solve the data storage problem94. With growing 
data, there is a need for platform development for data distribu-
tion. Cloud computing-based analysis may serve as the most prac-
tical option. While sequencing-based variant analysis provides a 
big boost for the future of precision medicine, handling genomics  
data is one of the most pressing challenges for the next decade.
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