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Wearable Electrocardiogram (ECG) is attracting much attention in daily healthcare applications. From the viewpoint of long-term use, it is
desired that the electrodes are non-contact with the human body. In this study, the authors propose an algorithm using the stationary
wavelet transform (SWT) to remove motion artefact superimposed on ECG signal when using non-contact capacitively coupling
electrodes. The authors evaluate the effect on motion artefact removal of this algorithm by applying it to various ECG signals with motion
artefacts superimposed. As a result, the correlation coefficients of ECG signals with respect to the clean ones have been improved from
0.71 to 0.88 on median before and after motion artefact removal, which demonstrates the validity of the proposed SWT-based algorithm.
1. Introduction: In recent years, the demand on information and
communication technology is increasing in healthcare and medical
applications. Body area network (BAN) has been proposed for
this purpose. BAN is a wireless network constructed by connecting
various vital sensors on human body to collect and monitor health
states in daily life [1, 2]. Wearable electrocardiogram (ECG) is
one of typical vital sensors. By adding a wireless communication
function in the wearable ECG, the ECG signal can be detected
and sent to a coordinator of BAN in real time. Such a wearable
ECG can be used to grasp the health state and to trigger an alarm
at impending state of life. As an example, it may be used to
monitor driver’s ECG in an automobile.

Current ECG sensors usually employ gel electrodes that
contact the skin directly. Although the gel electrodes are strong
to noise, they are not suitable to long term use because of the deteri-
oration of detection sensitivity with the drying of gel, allergic
reaction to the person who has weak skin, and discomfort of
contact. It is obvious that non-contact capacitively coupling electro-
des are more promising for long term daily use. However, the
body’s movement may be easily superimposed on the detected
ECG signal.

Fig. 1 shows an exmaple of ECG signal with movement of
upper body for a sitting person, measured by our developed
human body communication-based wearable ECG [3, 4]. This
wearable ECG employs human body as the communication
medium and the detected ECG signal can be send to a receiver
when the human hand touches it. It can be seen from Fig. 1 that
the motion artefact due to the body’s movement is superimposed
in the ECG signal around 6 s. Its magnitude achieves a similar
level to the QRS complex. Therefore, in order to realise a steady
monitoring of ECG signal in daily life, it is necessary to effectively
remove the motion artefact from the ECG signal.

An existing method to remove the motion artefact is to employ
an accelerometer for measuring the body movement at the same
time of ECG detection [5]. However, for non-contact electrode
structure of ECG detection, an accelerometer directly attached
to the human body is unacceptable. Another attempt is to employ
stationary wavelet transform (SWT) to remove the motion artefact
[6], where the QRS complex is extracted based on the energy of
ECG signal. However, this method is difficult to work especially
when the motion artefact occurs between two QRS complexes
with a level similar to the R-wave. In this study, we propose an
improved SWT-based algorithm to remove the motion artefact
in ECG signal. We verify its validity in motion artefact removal
by applying it to various ECG signals with superimposed body
movement effect.
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2. Algorithm: The wavelet transform of a signal x(t) is defined by
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Here, a is the scale parameter, b is the shift parameter, c∗ t( ) is the
complex conjugate of mother wavelet c t( ) which satisfies the
admissibility condition,
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where ĉ v( ) is Fourier transform of c t( ).
In the case of discrete wavelet transform, the scale parameter and

the shift parameter take discrete value, a = 2j, and b = 2jk. The
discrete wavelet transform of x(t) is defined by:
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The discrete wavelet transform with Mallat devised algorithm
can be obtained by combining high-pass filters Hj and low-pass
filters Lj [7]. However, Mallat’s algorithm carries out down-
sampling. In the SWT [8], as shown in Fig. 2, by up-sampling
the filter coefficients of the high-pass filters and the low-pass
filters, it is possible to perform time-invariant wavelet transform.
This is important in order to find outliers such as the artefact
due to body movement and the specified signal components such
as the QRS complex. The wavelet coefficients are given by
the sequences {d1, d2, ..., dJ} and the scaling coefficient is given
by the sequence aJ . Where J represents the order of SWT. Since
the ECG signal has a frequency component of 0–100 Hz, we set
J = 9. Fig. 3 shows the SWT result of the ECG signal in Fig. 1.
The main features of QRS complex are observed in the wavelet
coefficients from {d1} to {d6}.

Compared with the existing SWT-based algorithm only using the
energy of ECG signal, we also consider the time periodicity of ECG
signal and introduce it to the QRS complex detection part of the
existing algorithm. The flowchart of the proposed algorithm for
motion artefact removal is shown in Fig. 4. First of all, to detect
the QRS complex from the energy of ECG signal, we calculate
the energy e(n) of the ECG signal within a time period (0.1 s)
and detect the local maximum value e(N ) of the energy.
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Fig. 3 SWT of the ECG signal in Fig. 1

Fig. 1 Measured ECG signal with motion artefact

Fig. 2 Stationary wavelet transform

Fig. 4 Flowchart of motion artefact extraction
Fig. 5 shows the calculated result of energy for the ECG signal in
Fig. 1. The threshold eth is determined from the value obtained
by multiplying the median value of all e(N ) by α to avoid overlook-
ing the QRS complex. If e(N ) . eth, we define k = N, and calculate
the time interval T(k) between e(k) and e(k − 1). The threshold Tth
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is defined from the median value of T(k). Since the QRS complex
should periodically appear in the ECG signal normally, if T(k)
and T(k + 1) are both larger than Tth, e(k) is determined as the
energy of the QRS complex. On the other hand, the SWT is per-
formed for the ECG signal. The Haar wavelet is used as the
mother wavelet. Since the time width of the QRS complex is
about 0.1 s, the wavelet coefficients {d1, d2, ..., d6} during the
determined QRS complex period are replaced with 0. Next,
P wave and T wave rise more slowly compared with the
QRS complex. Hence, we focus on the wavelet coefficients
{d6, d7, d8, d9} that correspond to low-frequency component.
Since the heart rate of an adult is 60–90 times within one minute
usually, we detect the local maximum values and minimum
values of wavelet coefficients {d6, d7, d8, d9} every one second.
The thresholds Dmax and Dmin are defined by the medians
of the local maximum values and the local minimum values, re-
spectively. Then, if Dmin , dj(n) , Dmax, the wavelet coefficients
{d6, d7, d8, d9} during this time period are replaced with
0. Thereafter, by the inverse SWT, the motion artefact can be
extracted, and then we can remove the motion artefact from the
ECG signal by subtracting the extracted one.
3. Results: To verify the validity of the proposed algorithm, we
produced an artificial ECG signal by superimposing a motion
artefact as shown in Fig. 6b to a measured clean ECG signal in
Fig. 6a. We assumed that the motion artefact was caused by
electrode slippage and obtained the motion artefact by attaching
the electrode on the arm and moving it up and down. Fig. 6c
shows the artificial ECG signal with superimposed motion
artefact. Comparing the two waveforms in Figs. 6c and 1, it can
be said that the artificial ECG waveform with superimposed
motion artefact is similar to the actual one. Fig. 6d shows the
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Fig. 5 Calculated energy e(N) within per 0.1 s for the ECG signal in Fig. 1

Fig. 6 Artificial ECG signal by superimposing a motion artefact and mea-
sured clean ECG signal
a Clean ECG signal
b Motion artefact
c ECG signal with superimposed motion artefact
d Motion artefact removal from the signal in Fig. 6c using the proposed
algorithm

Fig. 7 Four kinds of clean ECG signals selected from the ECG-ID database

Fig. 8 Four kinds of measured motion artefact
result after applying the algorithm to remove the motion artefact
with the factor α = 0.8 for the threshold eth. As can be seen from
Fig. 6d, the motion artefact has been significantly removed from
the ESG signal without obvious degradation of signal quality.
Moreover, the extracted motion artefact waveform by the
proposed algorithm is shown on the upper right of Fig. 6b. It can
be confirmed that the extracted motion artefact is almost the same
as the original one.
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A quantitative evaluation was conducted by calculating the cor-
relation coefficients between the ECG signal after motion artefact
removal and the clean ECG signal. Compared with the correlation
coefficient of 0.76 between Figs. 6a and c, the correlation coeffi-
cient has been improved to 0.93 between Figs. 6a and d. In add-
ition, we produced 16 artificial ECG signals by superimposing
four measured motion artefact as shown in Fig. 8 on four clean
ECG signals as shown in Fig. 7. The four clean ECG signals
were selected from the ECG-ID database [9, 10] (Fig. 8). Our algo-
rithm was quantitatively evaluated by the correlation coefficients
between the ECG signals after motion artefact removal and the
clean ECG signals. Fig. 9 shows the cumulative distribution of
the correlation coefficients before and after applying the algorithm
for the 16 ECG signals with motion artefacts. In all of the cases, the
motion artefacts have been significantly removed so that the correl-
ation coefficient has been improved from 0.71 to 0.88 on median.

Next, we investigated the optimal value of the factor α for the
threshold eth which detects the QRS complex. We applied our algo-
rithm to 20 different ECG signals selected from the ECG-ID data-
base. By comparing the number of R waves, we determined the
appropriate α for each ECG signal and made their average as the
optimal value of α. As a result, α = 0.6 is likely most suitable as
the optimal value.

To illustrate the performance of our algorithm, we also compared
the motion artefact removal effect by applying our algorithm
and Strasser et al.’s algorithm [6] to the ECG signal in Fig. 1.
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Fig. 9 Cumulative distribution of the correlation coefficients before and
after applying our algorithm for various ECG signals

Fig. 10 ECG waveform after applying our algorithm and the ECG wave-
form after applying their algorithm
a Motion artefact removal using our algorithm
b Motion artefact removal using Strasser et al.’s algorithm
The ECG waveform after applying our algorithm is shown in
Fig. 10a, and the ECG waveform after applying their algorithm is
shown in Fig. 10b. It can be confirmed that the motion artefact
has been more significantly removed by our algorithm. In addition,
we examine whether it is possible to remove motion artefact in
ECG signals including premature ventricular contraction (PVC).
We superimposed the motion artefacts as shown in Fig. 8 on
several ECG signals with the PVC, selected from the MIT-BIH
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Arrhythmia Database [10, 11]. We attempted to apply our algorithm
to these ECG signals, but it did not work well in removing the
motion artefacts. This may be due to that our algorithm requires
the time interval of QRS complex.

4. Conclusion: Wearable ECG integrated with non-contact ECG
detection and human body communication can provide a lot of
convenience in daily monitoring of ECG signal. In this study, we
paid attention to the motion artefact in the ECG signal measured
by our wearable ECG, and proposed a SWT-based algorithm for
motion artefact removal. To evaluate the validity of the motion
artefact removal algorithm, we applied it to various ECG signals
with motion artefact superimposed artificially. Then we calculated
the correlation coefficients between the ECG signals before
and after the motion artefact removal and the clean ECG signals,
respectively. It is found that the correlation coefficients have
been improved from 0.71 to 0.88 on median before and after
the motion artefact removal, which demonstrates the validity of
the proposed SWT-based algorithm.

The future work is to investigate the influence of other mother
wavelet on motion artefact removal and to devise an algorithm
which is valid even in the existence of a PVC beat.
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