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Simple Summary: REarranged during Transfection (RET) is an emerging target for several types of
cancer, including non-small cell lung cancer (NSCLC). The recent U.S. FDA approval of pralsetinib
and selpercatinib raises issues regarding the emergence of secondary mutations and amplifications
involved in parallel signaling pathways and receptors, liable for resistance mechanisms. The aim of
this review is to explore recent knowledge on RET resistance in NSCLC in pre-clinic and in clinical
settings and accordingly, the state-of-the-art in new drugs or combination of drugs development.

Abstract: The potent, RET-selective tyrosine kinase inhibitors (TKIs) pralsetinib and selpercatinib,
are effective against the RET V804L/M gatekeeper mutants, however, adaptive mutations that cause
resistance at the solvent front RET G810 residue have been found, pointing to the need for the
development of the next-generation of RET-specific TKIs. Also, as seen in EGFR- and ALK-driven
NSCLC, the rising of the co-occurring amplifications of KRAS and MET could represent other
escaping mechanisms from direct inhibition. In this review, we summarize actual knowledge on
RET fusions, focusing on those involved in NSCLC, the results of main clinical trials of approved
RET-inhibition drugs, with particular attention on recent published results of selective TKIs, and
finally, pre-clinical evidence regarding resistance mechanisms and suggestion on hypothetical and
feasible drugs combinations and strategies viable in the near future.

Keywords: RET; NSCLC; selpercatinib; pralsetinib; solvent-front mutations; acquired resistances

1. Introduction

Recent evidence in non-small cell lung cancer (NSCLC) about the new highly selective
REarranged during Transfection (RET) inhibitors selpercatinib and pralsetinib, despite
impressive results in clinical trials, have raised the urgency to highlight the best therapeutic
sequence in view of novel resistances which are able to cause selective inhibition to be
useless. With this aim, and aware that the inhibition of RET has always been a challenge
since its discovery in T-cell lymphoma [1], we want to summarize the available knowledge
on RET inhibitors, including both ongoing trials with new drugs and pre-clinical data
concerning overcoming the resistance mechanisms.
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2. RET in Pills

RET is located on chromosome 10q11.2 and its expression is mediated by several
DNA-binding proteins belonging to the Sp family of transcription factors (Sp1, Sp3) [2] or
early growth response protein 1 (EGR1) [2], SRY-box 10 (SOX10), paired box 3 (PAX3) [3],
NK2 homeobox 1 (NKX2–1) and homeobox B5 (HOXB5) [4]. RET encodes for a Trans-
membrane Tyrosine Kinase Receptor (RTK) with a unique structure composed of four
cadherin-like domains, a cysteine-rich domain, a transmembrane domain and a tyrosine
kinase (TK) domain, this latter has a different number of amino acids depending on the
isoform transcribed (RET9, RET43 and RET51) [5]. Each isoform interacts with adaptors
and signaling proteins that are able to activate different downstream pathways during
embryogenesis, in homeostasis of several tissues [6]. Physiologically, beginning RET signals
depend on the binding of specific ligand members of the glial cell line-derived neurotrophic
factors (GDNFs) with GDNF family receptor alpha (GFRα). The ligand family includes
GDNF, neurturin (NTRN), artemin (ARTN) and persephin (PSPN) and each has a selective,
although not completely specific, receptor, respectively called GFRα1, GFRα2, GFRα3 and
GFRα4 [7]. The interposition of the GDNF-GFRα complex allows for the homodimerization
between RET monomers resulting in autophosphorylation of the intracellular tyrosine
residues of the main docking-site of the RET51 isoform (Y1062). RET is also able to het-
erodimerize with other RTKs [5]. Phosphorylated tyrosine recruits a multitude of adaptors
that, in turn, mediate the activation of RAS- Mitogen-Activated Protein Kinases (MAPK)
and Phosphatidylinositol-3 Kinase (PI3K)- Protein Kinase B (AKT) pathways [5]. Several
docking sites (Y900, Y905, Y981, Y1015 and Y1096), able to trigger additional downstream
pathways such as JAK/STAT, PKA, PKC and JNK, have been described [6]. Moreover, RET
interacts with RTKs and other cell surface proteins guaranteeing a continuity and spreading
of downstream signals [8] (Figure 1). During embryogenesis RET is mainly expressed in
the urinary tract, nervous system and hematopoietic stem cells, justifying the pathogenesis
of hereditary diseases secondary to germline mutations (loss of function). In adult life,
low levels of RET expression are registered in all tissues [9] and different RET molecular
alterations have been reported in tumors at either germline or somatic levels. These include
gene amplification, fusion, as well as single base substitutions/small insertions/deletions.

Figure 1. Schematic RET protein structure showing phosphorylation sites. RET forms a heterocom-
plex with GFRα and GFLs proteins, which in turn results in the activation of multiple signaling
pathways involved in survival, differentiation, motility, proliferation, and growth.
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2.1. Germline Mutations

Genitourinary and nervous system development [10,11], maturation and migration of
stem cell lines and a general involvement in embryogenesis and spermatogenesis, repre-
sent the main known mechanisms in which RET’s signaling is involved during embryonic
development [12,13]. It’s clearly understandable how RET loss of function due to germline
mutations, affecting those mechanism, can lead to a variety of congenital malformations
such as Hirschsprung disease (HSCR) and congenital abnormalities of the kidney and uri-
nary tract (CAKUT), and cause numerous symptoms in patients with phenotypic variants
of these syndromes [14,15]. However, a role for RET in maintenance of hematopoietic
system and in development of Gut-Associated Lymphoid Tissue (GALT) has recently been
recognized [16]. Germinal mutations of the proto-oncogene RET affecting cysteine-rich
extracellular domains or less frequently on the intracellular domains give rise to multiple
neuroendocrine neoplasia 2 (MEN2). MEN2 is classified based on clinical features in
MEN2A characterized by thyroid cancer, pheochromocytoma, and hyperparathyroidism
and in MEN2B with also ganglioneuromatosis and a Marfanoid habitus [17]. Similarly to
MEN2, the familial medullary thyroid carcinoma (FMTC) derived from germinal point
mutation that causes an increase in the effect of self-activation by increasing ATP-binding
or phosphorylation activity, sustains the oncogenic and pro-proliferative stimuli [18]. Every
point mutation, rarely seen outside neuroendocrine neoplasms, correlates with different
prognosis and clinical outcome, suggesting the necessity to sketch out an early screening
and subsequently a different therapeutic approach [19,20]. Indeed, MEN2A and FMTC,
having phenotypic and clinical indolent characteristics, appear to be more of a continuum
of the same disease, unlike MEN2B which has a juvenile onset and a more aggressive
course [21].

2.2. Somatic Mutations and Cancer

To better understand its decisive role as a proto-oncogene in sporadic cancers we had to
wait until the Chernobyl disaster in 1986 showed a correlation between the papillary thyroid
carcinomas (PTC) onset and gene rearrangements in post-radiation exposed children [22].
RET/Coiled-Coil Domain Containing 6 (CCDC6) gene fusion is associated in about 80%
of cases of sporadic PTC, while the Nuclear Receptor Coactivator 4 (NCOA4) gene, is
mainly related to radiation exposure and younger age [23]. Countless rearrangements
have been described in literature being a part of the pathogenesis of PTC [24]. Although
PTCs are the most frequently associated cancers. with RET rearrangements (10–20%),
many other neoplasms are associated with RET-fusion involved in creating resistances
and escaping mechanisms to classical therapies. In hormone positive breast cancer (BC),
RET overexpression is described in less than 0.1% of cases and is involved in resistance
to anti-hormonal therapies in BC cell lines [25]. Based on preclinical evidence of crosstalk
between RET and positive estrogen receptors, some clinical trials in BC patients without
any convincing results in disease control explore the benefit of using multi-kinase inhibitors
active on RET [26]. Recently, a single case report has been presented as part of LIBRETTO-
001 trial, of a metastatic BC woman who presented a complete clinical response with
Selpercatinib, suggesting a possible role of selective RET inhibitors in this field [27]. In colon
cancers RET rearrangements represent 0.2% of cases [28]. Among them, 2/3 manifest in the
right colon and are characterized by MSI, RAS and BRAF wild type status, and could benefit
from the use of specific therapies [29,30]. Other gastrointestinal malignancies, gynecological
tumors, renal and prostate cancer have a limited expression of RET fusions [31] and could
benefit from treatment inside basket trials, thanks to recent gene sequencing techniques.

2.3. RET in Lung Cancer

In NSCLC the prevalence of RET alterations is estimated to be 1–2% of all cases [32].
Thanks to modern genomic sequencing methods, the first fusion gene discovery in 2011
between RET and the Kinesin Family Member 5B (KIF5B) gene has allowed to broaden
the knowledge of translocations involving RET [33]. As mentioned above, rearrangements
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involving chromosome 10 are intrachromosomal, leading to fusion with several genes
lying on the same chromosome. In NSCLC the gene most involved in fusions is KIF5B,
a gene involved in a pericentric rearrangement, followed by CCDC6 and NCOA4 which
are characterized by a paracentric inversion fusion [32]. Several other inter-chromosomal
rearrangements or translocations have been described, however they represent a small
percentage of cases, we have summarized some in Table 1. [24,34]. Breakpoints in KIF5B
are frequently found in the intron 11 at different positions and are involved in transcription
of intracytoplasmic segments of RET, however, different introns are rarely involved in
fostering the inclusion of the transmembrane dominion [35,36]. In addition to fusions,
single amplifications or mutations with variable penetrance related to histotype and gender
have been found [34,37]. KIF5B exon 15 fusion to RET exon 12 is the most frequently
detected fusion in nonsmokers and young females, while CCDC6 exon 1 to RET exon
12 correlates with smoking habits and male gender [34].

Adenocarcinoma and adenosquamous carcinoma are the most frequent histologies
diagnosed in rare solid subtypes as per signet ring cells or mucinous form [38]. Fusions
support intracellular signaling thanks to the increase in kinase expression in those tis-
sues normally lacking in RET expression, non-ligand mediated self-activation secondary
to mutation in upstream proteins able to support coiled-coil domains interaction, and
finally, the loss of self-inhibitory capacity. These modifications determine activation of the
signaling pathways STAT3, JAK/STAT3 and RAS/RAF/MEK/ERK capable of support-
ing proliferation, differentiation, angiogenesis and metastasis as demonstrated in in vivo
experiences [39–41].

Table 1. Other rearrangements and RET fusions.

Fusions Histotype Gender Reference

CDC123-RET ADC F [42]
CCDC6-RET ADC, NE M > F [34]
CLIP1-RET ADC NA [43]
CUX1-RET ADC M [44]

EPHA5-RET ADC NA [45]
ERC1-RET ADC NA [43]

FRMD4A-RET ADC F [46]
FYCO1-RET ADC F [34]
ITGA8-RET ADC M [34]
ITIH2-RET AS F [34]

KIF13A-RET ADC F [47]
KIF5B-RET ADC, NE, NSCLC, AS F > M [34]

KIAA1468-RET IMA M [48]
MIR3924-RET SCC M [34]
MYO5C-RET ADC NA [49]
NCOA4-RET ADC F [50]
PICALM-RET ADC NA [45]
RASSF4-RET ADC NA [51]
RUFY2-RET ADC NA [52]

SLC25A36-RET ADC F [34]
SLC39A8-RET ADC F [34]
TBC1D32-RET ADC F [53]
TRIM24-RET ADC NA [52]
TRIM33-RET ADC F [54]

WAC-RET ADC F [55]
ZBTB41-RET ADC M [34]

Abbreviations: ADC adenocarcinoma; NE neuroendocrine; AS adenosquamous carcinoma; NSCLC non-small cell
lung cancer; IMA invasive mucinous adenocarcinoma; F: female, M: male; NA not available.

3. Activity of MKIs in RET-Positive NSCLC

As the tyrosine kinase receptor RET shares similarities in the structure of the kinase
domain with other tyrosine kinases (TK) [56], initial attempts to target RET rearrangements
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focused on multikinase inhibitors (MKIs) with non-selective RET inhibitory activity have
been approached. However, results obtained with MKIs suggest that RET fusions are not
highly actionable. Treatment with MKIs in RET fusion-positive NSCLC demonstrated
both modest clinical activity and limited response durability. Moreover, the response
rates achieved in clinical experiences were lower compared with outcomes with therapies
targeting other oncogenic drivers (i.e., EGFR mutations, ALK and ROS-1 fusions) [57].
Several MKIs inhibitors, that have been investigated in the treatment of RET-rearranged
NSCLC, are approved for the treatment of thyroid cancers (i.e., vandetanib, cabozantinib,
lenvatinib and sorafenib) or are approved for other indications (i.e., ponatinib, alectinib and
sunitinib). Activity of MKIs in RET fusion-positive NSCLC has been reported in pre-clinical
cancer models [31,36,58,59], in retrospective case series [45,60] and in phase I and phase II
trials [43,49,54,61–64]. These agents have been developed against a variety of target-kinases
other than (or in addition to) RET, such as VEGF receptors, AXL, FGFR1, EGFR, MET,
c-KIT and BRAF, and unfortunately demonstrated limited potency for RET-positive cancers.
Moreover, these agents have led to a variety of adverse events (AEs) which are closely
related to their activity against other pathways, such as EGFR (diarrhea and dermatologic
toxicities) and VEGFR (hypertension). These off-target side effects can frequently lead to
discontinuation of treatment or dose reduction and, as a consequence, treatment with a dose
that effectively inhibits RET would not be guaranteed. Taken together these evidence may
explain the suboptimal activity and the lower clinical benefits obtained in MKIs-treated
RET-positive NSCLC, compared to the outcomes of other oncogene-addicted NSCLC
subtypes when treated with matched targeted therapies.

3.1. Vandetanib

Vandetanib, a multi-target TKI targeting VEGF receptors, EGFR and RET, has been
investigated in a phase II trial [61]. In this study clinical antitumor activity has been
reported in nine out 19 (47%) patients with RET-positive NSCLC enrolled (ORR 47%), but
grade 3 or 4 AEs were common and a dose reduction was described in 53% of patients.
In another phase II trial [49] vandetanib showed moderate activity in pretreated patients
with NSCLC harboring RET rearrangements (ORR 18%, DCR 65%) and dose reduction
was necessary in 4 of 18 (22%) patients enrolled. The efficacy outcomes reported in the
above studies are comparable with the retrospective analysis of a global registry study
(GLORY) with an ORR = 18% [45]. Moreover, in a retrospective analysis of four randomized
phase III trials, the overall prevalence of RET rearrangements identified was 0.7% and
none of the three RET-positive NSCLC patients have obtained an OR after treatment with
vandetanib [65].

3.2. Cabozantinib

Cabozantinib, initially developed against AXL e MET, demonstrated activity versus a
broad range of TK, such as VEGFR2, ROS1, c-KIT, TIE2 and RET. The first report of response
to cabozantinib in RET-fusion positive lung adenocarcinomas was described by Drilon and
colleagues [54] in three patients as preliminary data of a phase II trial. Final results of this
phase II study [43] showed 28% ORR and 73% of dose reduction rate (DRR) due to AEs in
the 26 patients with RET-rearrangement NSCLC, that have been treated with cabozantinib.
Similarly, in the global multicenter registry in patients with RET-rearranged lung cancers,
Gautschi et al. reported 32% ORR in the 21 patients treated with cabozantinib [45].

3.3. Lenvatinib

Lenvatinib is a MKI of FGFRs, VEGFRs, PDGFR-alpha, KIT and RET. This MKI has
been tested as oral monotherapy in 25 RET-rearranged NSCLC patients in a phase II
study [62,64]; the reported ORR and DCR were 16% and 76%, respectively. In the study,
almost all patients treated with lenvatinib experienced at least one treatment-related AE:
grade 3 or 4 AEs was reported in 92% of patients, 16 patients (64%) required a dose
modification of the therapy and six patients (24%) discontinued treatment due to side
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effects. In the GLORY database only two patients with RET-positive NSCLC received
lenvatinib: one experienced partial response (PR) to treatment while a disease progression
was reported for the second patient [45].

3.4. Other MKIs

Clinical data regarding the activity of other MKIs (sorafenib, sunitinib, ponatinib,
alectinib, nitedanib and regorafenib) in RET fusion-positive NSCLC are lacking or have
been reported in smaller experiences, case reports and in patients included in the large
retrospective series already cited [45], in which MKIs were administered in various line of
systemic therapy. The efficacy of sorafenib has been tested in a limited number of patients
(n = 3) in a study by Horiike et al. [66]: one patient experienced stable disease (SD) while
two showed progressive disease (PD) as best responses to treatment. Conversely, response
to MKI sunitinib has been described in a case report of a patient with NSCLC harboring
KIF5B-RET rearrangement [67]. Clinical activity of the anaplastic lymphoma kinase TKI
alectinib in RET-rearranged NSCLC was firstly reported in two of four patients described
by Lin et al. [60], successively in a case report [68] and in three among the four patients
described in a case series [69]. The dose-limiting toxicity (DLT) to alectinib resulted from
a phase I study, led to 1 level of dose-reduction recommended for ongoing phase II [70]:
preliminary results from phase 2 showed 4% ORR (1 pt) and 52% DCR (13 pts) among
in twenty-five RET inhibitor-naïve patients treated with 450 mg alectinib twice daily [71].
Moreover, among the 165 patients with RET-rearranged NSCLC accrued in the global
retrospective registry (GLORY) [45], 53 patients (32%) were treated with RET MKIs. Of
them, ten patients received sunitinib and two reported partial response (22% ORR), one
of the two patients treated with nintedanib achieved a complete response, while none of
the patients treated with sorafenib (two patients), alectinib (two patients), ponatinib (two
patients) and regorafenib (one patient) experienced OR to these agents. Finally, conversely
to other multi-kinase RET-inhibitors, RXDX-105 is a MKIs with a high potency against RET
and BRAF while it is VEGFRs sparing [72]. Despite these factors, the overall activity of
RXDX-105 in patients with RET fusion-positive NSCLC did not differ substantially from
the activity of other MKIs. In a phase I/Ib trial [63] the reported ORR with RXDX-105,
in the cohort of RET inhibitor-naïve patients with RET fusion positive NSCLC, was 19%
(6/31). Interestingly, although KIF5B-RET is the most common RET fusion in NSCLC,
RXDX-105 demonstrated activity only in non-KIF5B-RET- containing NSCLC. In this trial
the response rate varied significantly from 0% in KIF5B-RET rearrangement NSCLCs to
67% in non- KIF5B-RET lung cancers. Interestingly, poor clinical outcomes have also been
reported in patients with NSCLC harboring KIF5B-RET rearrangement treated with other
above mentioned MKIs in several phase II trials [43,49,61,62], compared to patients with
non-KIF5B-RET NSCLC. However, in the GLORY study, the reported clinical benefits in
patients did not differ substantially based on different RET fusion identified [45] (Table 2).
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Table 2. Antitumor activity of multikinase inhibitors (MKIs) and RET-selective inhibitors in patients with RET-positive lung cancer. Data of principal clinical trials.

Drug Principal Kinase
Targets Type of Study

No. of pts with RET
Positive—NSCLC

Treated
ORR (%) DCR (%) DRR (%) Grade ≥ 3 AEs (%) Common Grade 3 or 4 TEAEs

(%)

Vandetanib VEGFR, EGFR, RET

Phase II trial [61] 19 47% 90% 53% 58%

Hypertension (58%) Rash
acneiform (16%)
Diarrhea (11%)

Prolonged QTc (11%)

Phase II trial [49] 17 18% 65% 22% 28%
Hypertension (17%)
Prolonged QTc (11%)

AST/ALT elevation (6%)

Retrospective
series [45] 11 18% 45% NA NA NA

Retrospective
series [65] 3 0% 33% 33% NA NA

Cabozantinib VEGFR2, MET, AXL,
c-KIT, FLT3, TIE-2, RET

Phase II trial [43] 26 28% 100% 73% 47%

AST/ALT elevation (16%)
Lipase elevation (15%)

Decreased platelet count (8%)
Hypophosphatemia (8%)

Retrospective
series [45] 21 33% 57% NA NA NA

Lenvatinib
VEGFR1-3, FGFR1-4,

PDGFR-A, c-KIT, RET

Phase II trial
[62,64] 25 16% 76% 64% 92%

Hypertension (56%)
Hyponatremia (20%)

Proteinuria (16%)
Pneumonia (16%)

Nausea (12%)

Retrospective
series [45] 2 50% 50% NA NA NA

Other MKIs

Sorafenib
VEGFR1-3, PDGFRB,

c-KIT, FLT3, BRAF,
c-RAF

Phase II trial [66] 3 0% 33% 33% 33% HFS (33%)
Infection (33%)

Retrospective
series [45] 2 0% 100% NA NA NA
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Table 2. Cont.

Other MKIs

Sunitinib VEGFR1-3, PDGFRB,
c-KIT, FLT3, RET

Retrospective
series [45] 10 22% 50% NA NA NA

Case report [67] 1 - - - - Fatigue
Thrombocytopenia

Ponatinib
BCR-ABL, FLT3, SRC,
c-KIT, FGFR, VEGFR,

PDGFR, RET

Retrospective
series [45] 2 0% 100% NA NA NA

Alectinib ALK, LTK, CHEK2,
FLT3, RET

Case series [60] 4 50% 75% 25% 25% Hyperbilirubinemia (25%)
Increased CPK (25%)

Retrospective
series [69] 4 50% 50% 0% 0% None

Phase II trial [71] 25 4% 52% 0% 4%

Neutropenia
Pneumonitis

Diarrhea
Hyponatremia
Increased CPK

Hyperbilirubinemia
(percentages NA)

Retrospective
series [45] 2 0% 0% NA NA NA

Case report [68] 1 - - - - None

Nintedanib PDGFRA-B, VEGFR1-3,
FGFR1-3

Retrospective
series [45] 2 50% 100% NA NA NA

Regorafenib VEGFR1-3, PDGFRB,
c-KIT, FGFR, RET, c-RAF

Retrospective
series [45] 1 0% 0% NA NA NA

RXDX-105 RET, BRAF Phase I/Ib
trial [63] 40

15%
(19% in

previous
untreated pts)

52% 5% NA

Hypophosphatemia
AST/ALT elevation

Rash
Diarrhea
Fatigue

(percentages NA)
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Table 2. Cont.

New RET-selective inhibitors

Selpercatinib RET Phase I/II
trial [73]

144 (105 evaluable
for response)

64%
(85% in

previous
un-

treated
pts)

92%
(95% in

previous
un-

treated
pts)

30% of
the safety
popula-

tion
(3/531

pts)

28%

AST/ALT elevation (23%)
Hypertension (14%)

Hyponatremia (6%) Lymphopenia
(6%)

Pralsetinib RET Phase I/II
trial [74] * 116

61%
(73% in

previous
un-

treated
pts)

93%

4% of the
safety

popula-
tion

(4/120)

28%

AST elevation (22%),
Hypertension (18%)
ALT elevation (17%)

Fatigue (15%)
Neutrophilia (15%)

Abbreviations: pts, patients; NSCLC, non-small cell lung cancer; ORR, objective response rate; DCR, disease control rate; DRR, dose reduction rate; AEs, adverse events; TEAEs, treatment-emergent adverse
events; AST/ALT, aspartate/alanine aminotransferases; HFS, hand-foot syndrome; CPK¸ creatinine phosphokinase; NA, not available. VEGFR, vascular endothelial growth factor receptor; EGFR, epidermal
growth factor receptor; RET, rearranged during transfection proto-oncogene; MET, MET proto-oncogene, receptor tyrosine kinase; AXL, AXL receptor tyrosine kinase; c-KIT, KIT proto-oncogene receptor tyrosine
kinase; FLT3, fms related tyrosine kinase 3; TIE2, tyrosine kinase with immunoglobulin-like and EGFR-like domains 2; FGFR, fibroblast growth factor receptor; PDGFRA(B), platelet derived growth factor
receptor alpha (beta); BRAF, v-raf murine sarcoma viral oncogene homolog B1; c-RAF, RAF proto-oncogene serine/threonine-protein kinase; BCR-ABL, breakpoint cluster region-Abelson murine leukemia viral
oncogene homolog 1; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; ALK, ALK receptor tyrosine kinase; LTK, leukocyte tyrosine kinase; CHEK2, checkpoint kinase 2. * preliminary data.
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4. New RET-Selective Inhibitors

None of the drugs described so far have been designed to preferentially bind to RET
and, probably due to poor pharmacokinetic features and off-target side effects, were associ-
ated with modest clinical activity. It has been hypothesized that RET-specific antagonists
could have achieved better clinical outcomes in patients harboring RET-rearranged NSCLC.
Recently, two highly potent and selective RET TKIs, selpercatinib (LOXO-292) and pralse-
tinib (BLU-667), have been developed and their activity has been investigated in early
phase trials. These agents, specifically tailored to target the activated forms of RET while
sparing other kinases, offer the potential for a better clinical efficacy with a more satisfac-
tory side effect profile. Selpercatinib has > 100-fold selectivity against VEGFR2 [75] and
pralsetinib has 87-fold selectivity against VEGFR2 and 20-fold selectivity against JAK1 [74].
Furthermore, both are effective in inhibiting the RETV804L/M gatekeeper mutants and
they are effective in the central nervous system [76]. Preclinically, selpercatinib (LOXO-292)
demonstrated potent RET-selective antitumor activity both in in vitro and in vivo models,
against both RET wild-type RET and RET alterations, with minimal activity against other
kinase targets [75,77]. In a clinical setting, recent results from phase 1/2 LIBRETTO-001
trial [73] reported that selpercatinib achieved durable ORs in patients with advanced
NSCLC marked by RET gene fusions. Of the first 105 enrolled patients with RET fusion-
positive NSCLC, previously treated with platinum-based chemotherapy, the ORR was 64%,
including two patients (2%) with a complete response and 65 patients (62%) with partial
response. The median duration of response was 17.5 months and the median PFS was
16.5 months. The objective intracranial response was 91% (10/11 pts) among this cohort.
Notably, in the subgroup of 39 previously untreated patients, the ORR was 85% without
median PFS or OS reached at the intermediate follow-up of 9.2 months. Antitumor activity
of selpercatinib was observed regardless of the specific RET fusion partner. The most com-
mon severe AEs were hypertension, hepatotoxicity, hyponatremia and lymphopenia, dose
reduction was warranted in 30% of patients, but only 2% discontinued selpercatinib due to
a drug-related AE. Results from LIBRETTO-001 trial led to the FDA-approval of selperca-
tinib for patients harboring RET-positive NSCLC, in May 2020. An ongoing phase III trial
(NCT04194944) [78] is evaluating selpercatinb versus platinum-based chemotherapy (CT)
with or without immunotherapy (IT) in treatment-naïve patients with advanced RET-fusion
positive NSCLC. The next-generation TKI pralsetinib (BLU-667), selectively developed to
target RET, demonstrated meaningful preclinical activity in a wide variety of tumors with
activated RET kinase [79,80]. Preliminary data from the ongoing phase 1/2 ARROW trial
(NCT03037385) demonstrated potent and durable activity and tolerability of pralsetinib in
the cohort of patients with advanced RET-fusion positive NSCLC [74]. Among 116 patients
with RET-positive NSCLC, 80 patients had received prior platinum treatment and 26 pa-
tients were treatment-naïve: the ORRs were 61% and 73%, respectively, with a DCR of 93%
in the overall population. Furthermore, ORR was similar regardless of RET fusion partner
(72% of patients had KIF5B-RET fusion NSCLC, 16% had CCDC6-RET fusion NSCLC and
12% presented other fusion) or central nervous system (CNS) involvement (56%). Most
treatment-related AEs were grade 1–2 and included anemia, hepatotoxicity, constipation
and hypertension. Discontinuation of treatment due to side effects was reported in 4%
of patients of the safety population (all tumor types) [81]. In September 2020 pralsetinib
received FDA-approval for the treatment of RET-fusion positive NSCLC patients. The
international randomized phase III AcceleRET Lung study (NCT04222972) [82] is currently
evaluating pralsetinib compared to standard of care as first-line in RET-positive metastatic
NSCLC (Table 2).

5. Immune Checkpoint Inhibitors (ICI) and Chemotherapy (CT)

Only a few retrospective analyses based on limited amounts of patients have explored
the effect of ICI as a single agent, suggesting a lack of benefits from this strategy. Particu-
larly data from 4 retrospective analysis revealed similar characteristics among RET positive
patients (i.e., young age, female gender, mainly non- or former smokers, adenocarcinoma
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histotype and low expression of Programmed Death Ligand 1 (PD-L1) with disappointing
PFS (2.1 to 7.6 months) and a median OS of 12.3 months. Moreover, the median OS was not
reached in patients who underwent ICI earlier in their clinical history [83–86]. A correlation
between different fusions in NSCLC, gender and PD-L1 or TMB expression with a poor
outcome in female that frequently express the KIF5B-RET rearrangement associated with
a high rate of PD-L1 had been identified [34,83]. Moreover, the role of GDNF secreted
by cells in micro-environment as stimulus in PD-L1 cell expression via JAK/STAT1 in
HNSCC has been demonstrated [87]. These evidence suggest, as already well-known,
the lack of benefit from ICI single agent in driven-mutation NSCLC and the lack of pre-
dictive value of PD-L1. The encouraging results from the IMpower150, a phase III trial
designed to evaluate a first line combination of ICI and CT also in patients with EGFR
and ALK driver alterations, open to the opportunity to explore this therapeutic option
also in rearranged RET patients [88]. However, the appearance of resistance mutations
to MKI and TKI, the paucity of data on treatment with ICI alone, the lack of favorable
data on the immunochemotherapy combination as well as the impossibility of adequate
stratification of patients who could benefit from these treatments, suggests the need to
try combination therapies including targeted therapies and ICI as in some recent experi-
ences in RET positive HCC [89]. CT alone deserves a historical mention due to its role in
the last decades as a therapeutic strategy in RET rearranged NSCLC. Data from GLORY
global single database about the impact of this strategy in RET fusion positive NSCLC
suggested a partial efficacy of the platinum combination with pemetrexed as first line
(PFS 6.3 months–OS 23.6 months) [45]. Few data in the second line, and the advent of
drugs with recent FDA approval (https://www.fda.gov/drugs/resources-information-
approved-drugs/fda-approves-pralsetinib-lung-cancer-ret-gene-fusions accessed on 8 Jan-
uary 2021) (https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-
selpercatinib-lung-and-thyroid-cancers-ret-gene-mutations-or-fusions accessed on 8 Jan-
uary 2021), relegate platinum based plus pemetrexed combination in subsequent lines, and
in any case, after selective targeted therapies and available new drugs in clinical trials [86].

6. Resistance

Broadly speaking, a well-established mechanism of TKIs resistance is the development
of secondary (or acquired) resistance mutations within the target kinases. These secondary
somatic mutations, dynamically evolved under the selective pressure of specific TKI, enable
the persistent activation of the kinases despite the presence of inhibitors. Typically, in
oncogene-addicted NSCLCs, acquired mutations occur at the gatekeeper position or at
the solvent front area of the kinase. These alterations confer resistance through steric
interference that hinder the accessibility of drugs to the kinase ATP-binding pocket or alter
the conformation of the kinase when non-contact residues are involved. Both gatekeeper
and solvent front mutations have been described in different types of oncogene-driven
NSCLCs. Examples of gatekeeper mutations are T790M in EGFR-mutant NSCLC, L1196M
in ALK-rearranged NSCLC and L2026M in ROS-1 positive NSCLC, while typical solvent
front mutations are G1202R in ALK-rearranged NSCLC and G2032R in ROS-1 positive
NSCLC [90–93]. As regards RET-positive cancers, RET gatekeeper mutations at the V804
residue (V804L and V804M) primarily occur as germline mutations in sporadic medullary
thyroid cancers and in about 2% of MEN2 where they act as primary driver mutations and
cause intrinsic resistance to several MKIs [94]. Importantly, V804M and V804L mutations
also represent the two best known secondary somatic mutations that emerge during
MKIs therapies and confer resistance to treatment. Preclinically, V804M/L mutant models
resulted in pan-resistance to several MKI, such as cabozantinib, vandetanib, lenvatinib
and partially ponatinib, in different studies [58,80,95]. V804M/L mutations have also been
reported in clinical experiences to confer resistance to vandetanib in RET-positive NSCLC
patients [96,97].

In addition to gatekeeper mutations, solvent-front mutations at the G810 residue
(G810A and G810R) and other mutations like S904F and I788N may be involved in sec-

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pralsetinib-lung-cancer-ret-gene-fusions
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pralsetinib-lung-cancer-ret-gene-fusions
https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-selpercatinib-lung-and-thyroid-cancers-ret-gene-mutations-or-fusions
https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-selpercatinib-lung-and-thyroid-cancers-ret-gene-mutations-or-fusions


Cancers 2021, 13, 1091 12 of 23

ondary resistance. The G810A solvent-front mutation has been identified as a novel
resistance mutation to vandetanib in cell lines expressing KIF5B-RET. However, although
the RET G810A mutant cells conferred resistance to vandetanib, they acquired novel sensi-
tivity to other MKIs, such as lenvatinib and ponatinib [58]. The missense S904F mutation
occurs in the activation loop of the kinase domain, and is able to increase the autophos-
phorylation activity of RET kinase and confer resistance to vandetanib in vitro through
an allosteric effect and has been also reported as a mechanism of acquired resistance in a
patient with NSCLC harboring CCDC6-RET fusion after treatment with vandetanib [98].
Noteworthy, S904F mutation has also been described as a germline oncogene mutation
with a high transforming activity, and implicated in the development of medullary thyroid
cancer [99]. Moreover, in vitro analysis of KIF5B- or CCDC6-RET-rearranged cells identi-
fied I788N somatic mutation as a mechanism of acquired resistance to different MKIs, such
as cabozantinib, vandetanib and AD80, but not to ponatinib [100].

Beyond the acquisition of secondary resistance mutations, another mechanism of
acquired resistance in oncogene-driven NSCLC is the reactivation of different intracel-
lular pathways, bypassing signals mediated by targeted receptor-kinase [90,101]. In
RET-rearranged tumors examples of these intracellular reactivated networks include
RAS/MAPK signaling, which has been reported to confer resistance to MKI AD80 in
RET-rearranged cell lines and to MKI ponatinib in preclinical patient-derived models
of RET-fusion positive lung adenocarcinoma [100,102]. The retained activation of EGFR
and AXL signaling may contribute to the acquired resistance to MKIs, by up-regulating
downstream signaling through MAPK and PI3K/AKT, respectively [102–104]. EGFR in-
creases phosphorylation of RET in cell lines with neuroendocrine features and expression of
Achaete-scute homolog 1 (ASCL1) suggesting a close cross-talking between both the RTKs
and the interesting chance of combining different selective TKIs [105]. Also, the NRAS
p.Q61K oncogenic mutation proved to represent another mechanism of acquired resis-
tance to RET inhibition, again through MAPK and PI3K/AKT signaling reactivation [102].
Moreover, the increased Src activation has been reported as a further mechanism of ac-
quired resistance to different MKIs by activating RET downstream effector ERK1/2 in
RET-rearranged lung adenocarcinoma [106]. Finally, the MDM2 (a p53 antagonist) am-
plification has also been identified as a potential mediator of both intrinsic and acquired
resistance to cabozantinib in patients with RET-rearranged lung cancers [107].

The next-generation RET-selective inhibitors selpercatinib and pralsetinib have been
developed to surpass the limitations of MKIs both by sparing non-RET target kinases and
by overcoming most common MKIs resistance mutations. These drugs have demonstrated
equipotent and selective preclinical activity against RET rearrangements and mutations,
including CCDC6-RET fusion, KIF5B-RET fusion, RET-activating mutations (C634W and
M918T) and RET mutations at the gatekeeper residue (V804 L/M/E) [77,80]. Thanks to a
different binding mode from MKIs, new selective RET inhibitors can avoid interference
from the gatekeeper mutations, however they remain susceptible to secondary resistance
from non-gatekeeper mutations. Moreover, new mechanisms of resistance have been
described in preclinical models and in clinical experiences and represent an ongoing area
of research. Recent studies reported that mutations at solvent front (G810R/S/C/V),
hinge (Y806C/N) and β2 strand (V738A) sites within the RET kinase domain can mediate
acquired resistance to selpercatinib and pralsetinib in RET fusion-positive NSCLC and
in RET-mutant medullary thyroid cancer [108,109] (Table 3). A recent multi-institutional
study analyzed tumor and plasma biopsies from 18 patients with RET-rearranged NSCLC
after treatment with selpercatinib and pralsetinib to characterize mechanisms of acquired
resistance. The analysis detected the solvent front G810C/S mutations in two cases (10%)
and identified MET amplification as recurrent mechanisms of resistance (three patients,
15%), and additionally described KRAS amplification in one resistant case [110]. In addition,
MET amplification has been described in a NSCLC patient in a recently published case
report [111]. These evidence are in line with the knowledge that tumor cells through
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primary or secondary mechanisms of adaptations, overcome the inhibition with the re-
activation of other signaling up- or downstream pathways.

Table 3. Mechanisms of resistance and IC50 (µM) for each drug.

Mutation Status Cabozantinib
[112]

Vandetanib
[112]

Lenvatinib
[112]

Ponatinib
[112]

Selpercatinib
[109]

Pralsetinib
[109]

Gatekeeper V804M 4.26 5.83 5.42 0.0339 0.0559 0.0168
V804L 3.22 6.10 10.60 0.43 [60] 0.0172 0.0018

Solvent front

G810A 0.22 2.76 0.11 0.008 [60] - -
G810R - - - - 2.744 2.650
G810S 1.05 5.47 0.67 - 0.8802 0.3906
G810C - - - - 1.227 0.6417

Other

S904F - 0.908 [98] - - - -
Y806C - 0.933 [113] - - 0.1744 0.2958
Y806N 4.76 5.86 1.93 - 0.1498 0.2925
V738A 1.20 1.05 2.35 - 0.2388 0.1775

The IC50 values are mean (95% confidence interval). In red: resistant; in green: non-resistant. Values refers to BaF3 cell line, exception for
Vandetanib Y806C value obtained in HEK 293.

In addition to the importance of the rising mutation or activation of alternative path-
way via amplification, the moderating role of the microenvironment should be taken in
consideration [114]. For instance, in an in vitro experiment in which human umbilical
vein endothelial cells (HUVECs) have been used to mimic the tumor microenvironment
GDNF was able to stimulate the hepatic growth factor (HGF) production and consequently
the phosphorylation of its main receptor MET [115]. As GDNF is highly expressed in
NSCLC [116], we could hypothesize in RET inhibitors resistant cancer cells harboring MET
amplification, a cross-talking between tumor microenvironment and TK receptors. GDNF
upregulates PD-L1 involved in local immune activity and leaning immune evasion [87].
With this in mind, the importance of targeting receptors or the ligand as per GDNF and
understand how to modulate the cancer microenvironment is clear. To further complicate
the phenomena of resistances, attention has been recently drawn to cancer cells’ regulatory
functions of miRNAs. In RET positive MTC, among several miRNAs identified, eight were
up-regulated and one of them, miR-153-3p, was found to have tumor suppressor function,
increasing the antiproliferative efficacy of cabozantinib by acting on factors involved in the
mTOR pathway [117]. In NSCLC some experiences outline for miR-153-3p the function of
a favorable prognostic factor when highly expressed, able to overcome of resistances to
TKIs in mutated EGFR cell lines [118,119]. Mechanisms of regulation of endocytosis and
RTKs cell trafficking are emerging news in pro-proliferative cancer cells behavior [120].
Several papers describe how alteration in RTKs degradation through endosomes and fi-
nally lysosomes, may affect cell proliferation, survival and migration [121]. Although it is
intuitive that a lack of degradation of the RTKs could prolong the signaling, surprisingly
also the intracellular accumulation inside the vesicles responsible for their removal, creates
a feedback that increases the leading signals as per ERK1/2 or Akt in NSCLC [121,122].
In RET rearranged cell lines the expression of Golgi-Localized, Gamma Ear-Containing,
ARF-Binding Protein 3 (GGA3), promote an everlasting recycling of the isoform RET51 on
cell surfaces, promoting pro migratory functions via p-Akt [123] (Figure 2).
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Figure 2. Most common mechanisms of resistance of multikinase inhibitors (MKIs) and new selective RET-inhibitors
selpercatinib and pralsetinib.

7. Combination Strategies and Future Perspectives

According to recent experiences, resistance mechanisms to selective RET inhibitors
seem to be driven mainly by off-target RET-independent mechanisms, such as MET or
KRAS amplifications [110,111] while on-target resistance mutations within RET kinases
after progression to selpercatinib or pralsetinib are identified less frequently in RET aberrant
NSCLC. As a consequence, new treatment approaches focus on the possibility to target RET-
independent resistance drivers through the combination of anti-RET therapy with other
targeted agents. Preclinical studies show that the combination with the MKI vandetanib
and the mTOR inhibitor everolimus is active against CCDC6-RET-positive LC-2 lung
cancer cell lines and results superior to monotherapy. Everolimus targets the PI3K/AKT
pathway, reactivation of which has been associated with acquired resistance to MKIs [102].
Significant antitumor activity of everolimus plus vandetanib has been demonstrated also in
patients with RET rearranged NSCLC, with responses observed in all the six patients treated
within the combination therapy [124]. This combination strategy showed to increase the
CNS penetration and resulted particularly active against brain-metastatic RET-rearranged
NSCLCs [125]. Another promising combination therapy consists in targeting both RET
activated-kinase and MET amplification. In four RET-fusion positive NSCLC patients
treated with selpercatinib in the LIBRETTO-001 trial, in which MET amplification has been
validated as a targetable mediator of resistance to RET-directed therapy, combined therapy
with selpercatinib and the MET/ALK/ROS1 inhibitor crizotinib was administered. In this
case series, the combination strategy demonstrated anecdotal evidence of clinical activity
and tolerability and a 10 months-lasting response was reported with the two agents [126].
Several other combined therapies have been tested in preclinical RET altered cancer models
and in early phase trials in patients with RET-positive thyroid carcinomas. Treatment
with RET small interfering RNA (siRNA) and irinotecan (CPT-11) has been reported
to suppress RET expression and to inhibit the growth of medullary thyroid carcinoma
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(MTC) xenografts via a synergic apoptotic effect [127]. The synergic antitumor activity
of serine/threonine-protein kinase BRAF inhibitors (RAF256 and ZSTK474) and PI3K
inhibitors (ZSTK474 and BEZ-235) on RET mediated signaling and proliferation in thyroid
carcinoma cell lines harboring RET activating mutation has been described [128,129].
Combined blockade of RET and Src pathways through treatment with RPI-1 and dasatinib
reduced cell proliferation in papillary thyroid carcinoma-cell lines expressing RET [130].
Moreover, association of the MKI sorafenib and a MEK inhibitor (AZD6244) demonstrated
synergy in MTC cells in vitro [131], while sorafenib combined with the farnesyltransferase
inhibitor tipifarnib has been evaluated in a phase I trial, showing activity in patients with
RET-mutated MTC [132]. Other evidence also suggest that some repurpose drugs, such as
nicotinamide, may have efficacy in RET cancer cells [133], while the use of the antibody
conjugated RET-maytansine has demonstrated to be a promising strategy [134,135]. A
couple of experiences in MTC and osteosarcoma cell lines has drawn the attention to
the ability of piperine and ribociclib to inhibit Akt and ERK 1/2 via enhancement of
activating transcription factor 4 (ATF4), suppressing RET stimuli [136,137]. In addition
to combination strategies, new TKIs of different chemical scaffolds can be developed to
inhibit new adaptive kinase mutants. In preclinical studies, the novel and potent RET/SRC
inhibitor TPX-0046 demonstrated remarkable activity against the solvent front mutation
KIF5B-RET G810R, developed as on-target resistance to selpercatinib and pralsetinib. TPX-
0046 is a selective next-generation RET/SRC inhibitor, that was rationally designed with
a novel macrocyclic structure and developed against various RET mutations, especially
solvent front mutations [138]. BOS172738 is another novel RET inhibitor with nanomolar
potency against RET and approximately 300-fold selectivity against VEGFR2 and it is
currently being studied in a phase I trial (NCT03780517) [139].

Finally, further new molecules selectivity designed against RET have been tested
or are currently under investigation in several preclinical trials (Table 4) [133,140–144].
In the past 10 years, several efforts have been made to discover highly selective small
molecule RET inhibitors [145]. RET inhibitors based on heterocycles including benzimida-
zole, quinoline and pyrazolopyrimidine are reported in literature. These RET inhibitors
are classified according to their hinge binder chemotypes as: pyrimidines, including
the pyrazolopyrimidines, pyrimidine oxazines, quinazolines, 4-aminopyrimidines and 4-
aminopyridines; indolinones; 5-aminopyrazole-4-carboxamides; 3-trifluoromethylanilines;
imidazopyridines, imidazopyridazines and pyrazopyridines; nicotinonitriles; pyridones
and 1,2,4-triazoles. Wang et al. [133] synthesized various nicotinamide analogs based on
the scaffold of benzamide aminonaphthyridine HSN356, which was reported to inhibit RET
kinase [142]. HSN608, the nicotinamide analog of HSN356 exerts strong RET inhibition
and also inhibit RET(V804M/L) and RET(S905F) mutants better than alectinib, sorafenib,
vandetanib and apatinib, and comparable to BLU667. Recently N-phenyl-7,8-dihydro-
6H-pyrimido[5,4-b][1,4]oxazin-4-amine derivatives [143] have been reported as a new
class of RET inhibitors and in particular 17d derivative, 1-(5-(tert-butyl)isoxazol-3-yl)-3-(4-
((6,7,8,9-tetrahydropyrimido[5,4-b][1,4]oxazepin-4-yl)amino)phenyl)urea, potently inhibits
RET and its drug resistance mutants RET-V804M and RET-V804L. Lakkaniga et al. [144]
investigated a series of pyrrolo[2,3-d]pyrimidine-based derivatives and identified a lead
compound, named 59, a type 2 inhibitor of RET, which shows low nanomolar potency
against RET and RET V804M and additionally proposed a binding pose of 59 in RET
pocket. Furthermore, new compounds targeting RET and VEGFR2 are emerging. The
group of Moccia et al. [141] identified the clinical drug candidates Pz-1 and NPA101.3,who
by lacking the structural liability for demethylation showed a selective inhibitory profile
for both VEGFR2 and RET (WT and V804M).
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Table 4. Candidates in preclinical setting.

Drugs In Vitro In Vivo References

RET
IC50

VEGFR2
IC50

RET V804M
IC50

Xenograft Mouse Model

Pz-1 <0.001 µM <0.001 µM <0.001 µM 10 mg/kg/day per os
inhibition of tumor growth [140]

NPA-101.3 0.001 µM 0.003 µM 0.008 µM 10 mg/kg/day per os
inhibition of tumor growth [141]

HSN356 - - - - [142]

HSN608 3.16 nM - - - [133]

17d 0.01 µM - 0.015 µM * 10–30 mg/kg/day inhibition of tumor growth [143]

59 0.0068 µM - 13.51 nM - [144]

* 0.009 µM in the V804L.

8. Conclusions

In the past decades RET oncogene has emerged as a critical tumorigenesis driver.
RET mutations and rearrangements now represent a well-established mechanism that
drives tumor growth across several types of neoplasms, including thyroid and lung can-
cer. Treatment with non-specific MKIs in RET fusion-positive NSCLC achieved modest
clinical outcomes and limited response durability, especially when compared with those
achieved by targeting oncogenic drivers other than RET. The two highly selective RET
inhibitors, pralsetinib and selpercatinib, were specifically developed to spare non-RET
target kinases and to overcome resistances to MKIs. These next-generation compounds
have received FDA breakthrough designation and have been approved for clinic use based
on the results of the LIBRETTO-001 and ARROW trials. Although these agents have been
developed to overcome MKIs limits and have demonstrated remarkable clinical activity,
new mechanisms of acquired resistance have already been reported. The emergence of
off-target RET-independent mechanisms of resistance to pralsetinb and selpercatinib has
highlighted the necessity to test further next-generation agents and to explore new thera-
peutic strategies, including concurrent inhibition of RET and parallel signaling pathways
of resistance.
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