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Abstract

Objective

The vast majority of known proteins have not been experimentally tested even at the level of

measuring their expression, and the function of many proteins remains unknown. In order to

decipher protein function and examine functional associations, we developed "Cliquely", a

software tool based on the exploration of co-occurrence patterns.

Computational model

Using a set of more than 23 million proteins divided into 404,947 orthologous clusters, we

explored the co-occurrence graph of 4,742 fully sequenced genomes from the three

domains of life. Edge weights in this graph represent co-occurrence probabilities. We use

the Bron–Kerbosch algorithm to detect maximal cliques in this graph, fully-connected sub-

graphs that represent meaningful biological networks from different functional categories.

Main results

We demonstrate that Cliquely can successfully identify known networks from various path-

ways, including nitrogen fixation, glycolysis, methanogenesis, mevalonate and ribosome

proteins. Identifying the virulence-associated type III secretion system (T3SS) network, Cli-

quely also added 13 previously uncharacterized novel proteins to the T3SS network, dem-

onstrating the strength of this approach. Cliquely is freely available and open source. Users

can employ the tool to explore co-occurrence networks using a protein of interest and a cus-

tomizable level of stringency, either for the entire dataset or for a one of the three domains—

Archaea, Bacteria, or Eukarya.
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Introduction

The next-generation sequencing revolution has resulted in exponentially-growing databases of

tens-of-thousands of protein sequences from thousands of organisms. The vast majority of

these proteins have not been experimentally tested [1], and experimental characterization of

all known proteins is essentially unfeasible [2, 3]. Thus, 72% of the orthologous clusters, or

protein families, at the MBGD database were annotated as “hypothetical” or “uncharacterized”

[4]. Functional predictions for the majority of the proteins thus rely on computational meth-

ods. However, although large scale functional annotation projects have been initiated and

many bioinformatics tools have been developed (e.g., [5, 6]), the function of most proteins

remains unknown. Based on the assumption that sequence similarity implies functional simi-

larity, conventional computational approaches to protein annotation were based mainly on

sequence similarity and the identification of annotated homologs [7]. Sequence similarity can

also be used in the context of a network, an approach that has been termed Sequence similarity

Network, or SNN [3, 8, 9]. These methods have the weakness of being influenced by the size of

the datasets, which has a negative effect on the performance of these tools (e.g. [10]), and, as

mentioned above, rely on annotated homologs. Another class of computational methods is

based on 3D protein structures or biophysical features. However, in spite of the progress in uti-

lizing structural approaches [11, 12], these methods require great computational resources,

rendering them unsuitable for large datasets. An alternative approach to function prediction is

to examine protein interaction networks, and determine proteins’ functions on the basis of the

proteins with which they come into physical contact [13]. However, investigating protein-pro-

tein interactions is slow and challenging at the experimental level, and direct genome-wide

experimentation of functional associations is not feasible in many organisms.

Functional links can also be identified computationally based on the principle of ’guilt by
association’. The assumption is that if proteins are inherited or lost from a large number of

genomes co-dependently, despite multiple evolutionary events of gene loss, speciation and lat-

eral transfer, then they are likely to interact functionally or physically [14]. One of the

approaches that are based on this principle is termed phylogenetic profiling, a method which is

based on the assumption that genes that are functionally related will be characterized by simi-

lar presence-absence patterns across different organisms [15, 16]. In light of the different pro-

cesses that interfere with the patterns of co-occurrence, such as gene loss and lateral transfer,

the conservation of a co-occurrence pattern across a large number of species may be taken to

indicate functional links between the proteins. Phylogenetic profiling methods have been pre-

viously used to predict functional interactions between proteins from the same multi-subunit

protein complex or biochemical pathway, to annotate uncharacterized proteins and to dis-

cover proteins underlying a specific phenotype [17–19]. Existing phylogenetic profiling tools

(e.g [18, 20] generally use a single protein as input, and find its network or clique. These meth-

ods have performed well for both eukaryotic and prokaryotic genomes. Some notable recent

examples include the identification of novel recombination repair genes [21], the pairing of

peptides to GPCR receptors [22], and the identification of secondary metabolic gene clusters

[23]. However, a key limitation of these methods is the computational complexity of the

related algorithms, and large-scale phylogenetic profiling for eukaryotic species has thus been

limited.

Here we present Cliquely, a new phylogenetic profiling tool for protein function prediction.

Cliquely uses highly-efficient algorithms, incorporating a dataset of protein sequences

obtained from 4,340 prokaryotic, 266 archaeal, and 166 eukaryotic, fully sequenced non-draft

genomes. Building on an existing orthology inference from the Microbial Genome Database

(MBGD), Cliquely avoids the difficult computational challenge of identifying orthology within
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thousands of genomes, focusing instead on efficiently utilizing orthology information for the

exploration of protein function and conservation, using a network approach. Unlike similar

tools [24, 25], Cliquely does not focus on model organisms but on a database encompassing

4,772 species. Generating a protein co-occurrence network based on phylogenetic profiles, Cli-

quely provides users with a way to explore functional relationships, using a user-defined simi-

larity threshold and fast computations. Supporting single-protein inquiries, Cliquely presents

researchers with an option of exploring cliques with respect to the entire dataset, or specifically

in the context of Bacteria, Archaea, or Eukaryota. Cliquely thus allows users to explore the co-

occurrence networks in the context of different levels of taxonomic resolution, and with

unprecedented data in terms of both species and proteins.

Materials and methods

Dataset

Fully-sequenced genomes were obtained from the Microbial Genome Database (MBGD,

http://mbgd.genome.ad.jp) on 2018. The data contained about 23 million proteins from 4,772

fully sequenced genomes, clustered to 404,947 orthologous groups. Raw data was obtained as a

cluster-based, extended-tab archive format, with orthologous clusters generally reflecting pro-

tein families. The data associates orthology information, organism identification and func-

tional parameters. Preprocessing consisted of reducing sequence data to a single sequence per

cluster chosen at random, and further eliminating unnecessary information as previously

described [26, 27]. After preprocessing, the data contained the original 404,947 cluster IDs and

the related protein IDs, with a single sequence representing each cluster and the associated

functional information.

Co-occurrence graph

Cliquely operates on presence/absence patterns of clusters, or protein families, across the

entire set of organisms at hand. These patterns can be represented as binary vectors of 0’s and

1’s, indicating absence and presence, respectively. These binary vectors are often referred to as

phylogenetic profiles [15], representing the phylogenetic distribution of orthologous clusters or

protein families across organisms. Cliquely operates by generating a co-occurrence graph and

quantifying the similarity or correlation between different proteins (or orthologous clusters)

through the comparison of their phylogenetic profiles.

Consider a pair of two protein families, or clusters, u and v. We define a measure, termed

Pco, which quantifies co-occurrence probabilities, i.e. the probability of presence of one protein

cluster given that the other protein cluster is present in the organism. A protein cluster is con-

sidered as present in an organism if at least one protein which belongs to the cluster is present

in the organism. Formally, for two clusters or protein families u and v, we define

Pcoðu; vÞ ¼ PðujvÞ � PðvjuÞ

In this equation, P(u|v) is the conditional probability for the presence of a protein from

cluster u in an organism, given that the organism has a protein from cluster v. Pco is guaranteed

to lie between 0 to 1 and is symmetric with respect to u and v. It reflects the probability of co-

occurrence, with high scores indicating high probability for co-occurrence. An example for Pco
calculation in a case of two protein clusters and 10 organisms is given in S2 Text.

Cliquley treats orthologous clusters as nodes in a fully connected weighted graph, G = (V,

E). Vertices in set V represent clusters or protein families, and Pco scores are used as weights.

We expect clusters of proteins that share a biological function or pathway to have similar
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phylogenetic profiles, and a Pco which is thus close to 1. Similarly, we expect proteins that lie

within the same biochemical network to have a Pco close to 1. Given the weighted graph, Cli-

quely identifies sub-graphs within this graph that are fully connected (i.e., each vertex in the

subgraph is connected to all other vertices of the subgraph). Such sub-graphs are also known as

cliques, and some cliques are defined as maximal, i.e., cliques that cannot be further extended.

Thus, Cliquely identifies maximal cliques in the graph that contain a protein of interest, or its

closest homolog in our dataset. The stringency of the association is determined by a single

parameter given by the user, which represents a Pco (i.e. edge-weight) threshold for the inclusion

of edges in the graph. Edges whose weights are smaller that this threshold will not be included

in the graph. Fig 1 illustrates the influence of this threshold on an identified clique.

The identification of maximal cliques is performed using the Bron–Kerbosch algorithm

[28] with pivoting and vertex-ordering. The Bron–Kerbosch algorithm has been shown to be

more efficient than other algorithms for sparse graphs, and was used to solve various problems

in computational biology (e.g., [29–32]). The worst-case time complexity of this algorithm is

O(3n/3), implying that running times for the full graph could be impractical on a personal com-

puter. Tighter bounds on worst-case running time can be obtained for sparse graphs, depend-

ing on the degeneracy of the graph.

Cliquely allows users to examine the properties of co-occurrence graphs, using the user’s

protein of interest and a specified co-occurrence probability threshold (Pco). To make the pro-

cess more efficient, the full graph encompassing the entire dataset is first pruned, removing

nodes and edges that are of no relevance to the entry (input) protein, and edges with weights

that are smaller than the chosen threshold (Pco). Graph pruning is performed as a four-step

process; Ignoring non-relevant organisms, Cliquely first aggregates protein families (i.e. clus-

ters) from organisms that have at least one member in the protein family (i.e. cluster) associ-

ated with the entry protein. Secondly, using the user-specified Pco threshold, protein families

(nodes) appearing in a fraction of the organisms that is smaller than Pco are removed. The

reduced set of protein families are then used as nodes in a preliminary graph. At the final stage

of graph construction, the preliminary graph is further pruned, removing edges whose weights

are below the given Pco threshold. Following graph pruning, the resulting graph is then passed

to the Bron–Kerbosch algorithm to identify maximal cliques. The results are presented to the

user both on the screen and as a text file. Users can then further explore the output cliques,

which may correspond to know or novel protein pathways and networks.

Software & user interface

Cliquely is designed to operate on the weighted graph described above, which is based on our

dataset. Construction of the full graph is computationally demanding, and is thus restricted to

Fig 1. A hypothetical network of 6 proteins with three different cutoffs of Pco: Pco = 1 solid line, Pco = 0.9 dashed

line, and Pco = 0.8 dotted line. Protein 1 is used as a query. A. The graph for the 6 proteins, all edges included. B. The

maximal Clique identified with Pco = 1 (in gray). The clique contains proteins 1–4. C. The maximal Clique identified

with Pco = 0.9 (in gray). The Clique contains proteins 1–5.

https://doi.org/10.1371/journal.pone.0264765.g001
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incremental updates. Assuming a pre-constructed graph, network exploration is based on sin-

gle-protein queries, and allows for the identification and exploration of cliques that may repre-

sent pathways or molecular complexes, and can thus reveal the functionality of the protein.

Users are offered a Windows-compatible downloadable software. Cliquely’s user interface is

user-friendly and straightforward (Fig 2). The graphical interface allows users to enter a query

protein in FASTA format, specify an edge-weight cutoff (Pco, probability of co-occurrence),

and define the maximal size and maximal number of cliques to be presented (Fig 1A). In addi-

tion, users can choose whether to explore a graph which is based on the entire dataset, or limit

their search to either Archaea, Bacteria, or Eukarya. The specified edge-weight cutoff should

lie between 0 and 1, and is used in order to prune the adjacency matrix of the graph. An exam-

ple for how edge-weights are calculated is given in the S2 Text. Graph pruning reduces run

time and memory requirements, and filters cliques that are not reliable. The output is pre-

sented to the user on screen (Fig 1B), listing identified cliques in separate lines. Cliques are

also printed to a csv file for future usage. The code behind Cliquely is freeware, and can be

obtained on Github (https://github.com/NoamAndRoy/Cliquely), along with a user manual

and running examples.

Results

Number of (maximal) cliques and clique size distribution

To illustrate the application of Cliquely, we explored co-occurrence graphs for the entire data-

set, consisting of a set of 4,772 fully sequenced non-draft genomes, and more than 23 million

proteins divided into 404,947 orthologous clusters. of cliques that may represent pathways or

molecular complexes. The properties of maximal cliques were examined across the entire

graph as well as separately for the three domains—Archaea, Bacteria, and Eukarya—using a

threshold of Pco = 1. The list of all cliques for Pco = 1 can be downloaded from https://github.

com/Cliquely/Cliquely. The median maximal clique size was 3 for Archaea, 4 for Bacteria, and

3 for Eukarya. The means vary considerably between the three groups, 5.85±10.05, 56.21

±133.56, and 155.5±557.10 for Archaea, Bacteria, and Eukarya, respectively. Due to the differ-

ences stemming from larger (maximal) cliques, we also examined maximal clique size distribu-

tions specifically for maximal cliques of size 2 to 10 (Fig 3), binning together cliques of size

>11. Focusing on this range (2 to 10), the means were 3.39±1.97, 3.43±2.1, and 3.36±1.98, for

Archaea, Bacteria, and Eukarya, respectively. Within this range of maximal cliques, the

Fig 2. Cliquely’s user interface. A. The input window, which allows users to specify a sequence of interest, the

parameter of probability indicating an edge-weight threshold, the maximal number of cliques and maximal clique size,

and a dataset of reference (All, Archaea, Bacteria, or Eukarya). B. The output obtained for the example shown in A

(two cliques were identified).

https://doi.org/10.1371/journal.pone.0264765.g002
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obtained distributions were compared using t-test and found to be similar, although Archaea

show higher rates of small maximal cliques and lower rates of large (>11) maximal cliques

(Fig 3).

The results presented in Fig 3 illustrate that the distributions of maximal clique sizes for

Eukarya and Bacteria are more similar to each other than to the distribution for Archaea. The

same trends were observed for lower thresholds of Pco (results not shown).

We also examined the overall number of cliques per genome, again separately for each

domain. Unlike the distributions of clique sizes, the distributions of the number of cliques

show remarkable differences between the three domains. Bacteria generally have less cliques

per genome than Archaea, and Archaea have less cliques per genome than Eukarya. The

average numbers of cliques per genome is 6.60±6.84 for Bacteria, 24.49±10.58 for Archaea,

and 124.4±30.01 for Eukarya, with medians of 4, 23, and 126, respectively. A two-sided t-test

demonstrated that the three groups are significantly different from each other (p-value of

1.88�10–68 for Bacteria vs. Archaea, 5.9�10–103 for Bacteria vs. Eukarya, and 1.6�10–98 for

Archaea vs. Eukarya). To control for differences that stem from differential genome size, we

also examined the number of cliques normalized to genome size (Fig 4, presenting the number

of cliques per 1000 genes per genome). Overall, the complexity of Eukarya organisms is dem-

onstrated both by the number of cliques per genome as well as by the larger sizes of the identi-

fied cliques.

The variation in genome sizes between the three domains, and the correlation between the

number of cliques and the number of proteins per genome is also demonstrated in S1 Fig.

Validation: Exploring known biological networks with Cliquely

Cliquely was validated by examining known networks from various pathways, such as nitrogen

fixation, nitrification, methanogenesis and the mevalonate pathways, and ribosome proteins.

Using query proteins from different organisms (Table 1 & S1 Table), we ran Cliquely with a

range of possible threshold values for co-occurrence (Pco). As can be seen in Table 1, the cli-

ques identified by Cliquely included known proteins from these pathways (Table 1; see also

S1–S3 Tables). For example, using as query the sequence of NifD, a protein involved in the

Fig 3. Maximal cliques’ size distributions. Size distributions were examined separately for Archaea, Bacteria and

Eukarya, using a threshold of Pco = 1. Cliques of size>11 were binned together.

https://doi.org/10.1371/journal.pone.0264765.g003
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nitrogen fixation pathway, Cliquely revealed two cliques of proteins belonging to the nitrogen

fixation path, including the proteins NifB, NifK, NifD, NifH, NifE NifN, and NifX. Using

MvaD–a protein involved in the mevalonate pathway–as a query, Cliquely identified a clique

with three additional proteins, mevalonate kinase, HMG-CoA reductase, and phosphomevalo-

nate kinase, all of which are known to be part of this pathway. Another interesting example is

the clique of AmoA, AmoB and AmoC, the three small subunits of the enzyme ammonia

monooxygenase, playing an essential role in the nitrogen cycle (Klotz et al. 1997). Cliquely cor-

rectly identified all three proteins–and only those proteins–as part of a clique, when presented

with the AmoB sequence as a query.

Further accuracy analyses were carried out for the bacterial chemotaxis pathway. These

analyses demonstrate that accurate results can be achieved for range of Pco thresholds (ranging

from 0.6 to 0.85) efficiently (see S1 Text, S2 and S3 Tables) with an observable negative correla-

tion between Pco and the number of cliques. Thus, low cutoffs result in the identification of

larger cliques. See S1 Text.

Fig 4. Number of cliques per genome per 1,000 genes. The number of cliques in each genome was normalized per

1,000 genes, to control for genome size differences between the three domains.

https://doi.org/10.1371/journal.pone.0264765.g004

Table 1. Validation runs of Cliquely, using a single protein as query. Representative proteins in the network are not necessarily the only ones discovered by Cliquely.

Stringency is controlled by the parameter Pco. See S1 Table for full outputs of these runs.

Query protein / species Pathway Pco
threshold

No. of

cliques

Genomes per

clique

Proteins per

clique

Representative proteins in clique

NifD / Nitrogen

fixation

0.65 2 262 5 NifB, NifK, NifD, NifH, NifE

Methanocella arvoryzae 236 3 NIFD, NifN, NifX

MvaD / Mevalonate 0.65 1 811 3 Mevalonate kinase, HMG-CoA reductase

Phosphomevalonate kinaseAcidianus hospitalis
AmoB / Nitrification 0.6 1 18 3 AmoA, AmoC

Cenarchaeum symbiosum
McrA / Methanosphaera
stadtmanae

Methano-

genesis

1 1 82 12 McrB, McrC, McrD, MMP5, MMP6, MMP7

L10 / Acidilobus
saccharovorans

Ribosome 1 1 392 7 L18, L32, L15, L30, S8

https://doi.org/10.1371/journal.pone.0264765.t001
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Exploring new horizons: The type III secretion system

Following validation, we examined cliques identified by Cliquely at various thresholds (1, 0.9

and 0.7) for the entire graph (i.e., with no entry protein). As demonstrated in the previous sec-

tion, many of the Cliquely’s identified cliques correspond to known networks and pathways

(glycolysis, ribosome, etc., see Table 1), but several cliques identified on the full graph con-

tained mostly uncharacterized proteins. We examined some of these less-characterized net-

works, to illustrate the utility of Cliquely.

One of the identified cliques for Pco = 1 contained 46 proteins that perfectly co-occurred in

136 genomes, i.e. whenever one of the network’s proteins was present, all the other 45 proteins

were present as well, and whenever one of the proteins was absent, all the others were absent

as well. This clique was ubiquitous in–and unique to–the bacterial family Chlamydiaceae,

which includes two genera: Chlamydia and Chlamydophila. Six of the clique’s proteins were

known to be connected to the type III secretion system (T3SS), including two structural pro-

teins, FliF and FliH, forming parts of the injectisome [33, 34]. Of the remaining 39 clique pro-

teins, 33 were uncharacterized (i.e. hypothetical). In order to validate the novel T3SS

functional assignment of these proteins, the clique was assessed by three different bioinfor-

matic tools that discover T3SS effectors by comparing their sequences with a sequence data-

base of known T3SS effectors. Combined, these tools confirmed 35 of the 46 proteins to be

T3SS (Table 2). By using one of the known T3SS proteins from the clique (RT28_RS03915

from Chlamydia avium) as query, we additionally compared Cliquely to two more tools:

another phylogenetic profiling software called ProtPhylo [18], and the software STRING, that

identifies networks based on chromosomal proximity and RNA co-expression [35]. ProtPhylo

discovered 39 of the 46 proteins as a network, whereas STRING discovered none. A search of

the EffectiveDB database (https://effectors.csb.univie.ac.at) found that different Chlamydia
strains contain a total of between 100–300 T3SS effector proteins in their genomes. Additional

validation of Cliquely is presented in S2 and S3 Tables.

Discussion

The vast amount of protein sequence data accumulating in public databases has the potential

to improve our understanding on non-model organisms, protein functions and interactions,

and more. However, such insights usually are limited by what we already know about protein

function. Computational methods such as Cliquely can facilitate this understanding by pre-

dicting protein functions for previously unannotated sequences. Cliquely was developed to

simplify the task of elucidating protein function, via a straight-forward identification and

exploration of co-occurrence patterns and motifs in a co-occurrence graph. Cliquely treats the

problem of identifying co-occurrence patterns as a maximal clique problem, and provides

users with a practical method for investigating protein function based on co-occurrence. Phy-

logenetic profiles capture functional constraints, and can be used to explore the functional

properties of protein sequences. While other tools are available for investigating protein func-

tion, the user-friendly Cliquely revealed protein function for proteins misidentified by other

tools, was found to be computationally efficient on a large dataset, and offers a friendly inter-

face. The code of Cliquely is open source, and users have the option of altering the tool to bet-

ter suit their needs.

Our analysis with Cliquely found that eukaryotic genomes have significantly more cliques

than prokaryotic ones, and that the size of these cliques is both higher and more diverse. This

can be attributed to the generally larger and more complex genomes of Eukarya, as well as

their abundance of pseudogenes. Within the prokaryotes, however, the differences are harder

to explain. Archaea and Bacteria share a common gene-dense genome architecture, with about
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Table 2. Comparison of network discovery and functional assignment tools using phylogenetic profiling, T3SS sequence recognition, chromosomal proximity (pro)

and coexpression (coe). Tools used were used: EffectiveT3 (http://effectors.org), BPBAac (http://biocomputer.bio.cuhk.edu.hk/T3DB/BPBAac.php), BEAN (http://

systbio.cau.edu.cn/bean/index.php), STRING (https://string-db.org), ProtPhylo (http://www.protphylo.org/Phylogenetic.php).

Phylogen. profiling Sequence recognition Pro coe

Chlamydia avium locus tag NCBI annotation Cliquely ProtPhylo EffectiveT3 BPBAac BEAN STRING

RT28_RS00170 Membrane protein + +

RT28_RS00425 Membrane protein + + +

RT28_RS00455 Membrane protein + + +

RT28_RS00505 Membrane protein + + + +

RT28_RS00510 Membrane protein + +

RT28_RS00565 Hypothetical protein +

RT28_RS00700 Divalent regulator A + +

RT28_RS00735 Hypothetical protein + + + +

RT28_RS00740 Membrane protein + + + +

RT28_RS02550 Hypothetical protein + + +

RT28_RS01210 Late transcription unit B + +

RT28_RS01400 Crp/Fnr transcrip. regulator +

RT28_RS01430 Membrane protein + + + +

RT28_RS01580 Hypothetical protein + + + +

RT28_RS01585 Hypothetical protein + + + +

RT28_RS01760 Membrane protein + + +

RT28_RS01895 Membrane protein + + + +

RT28_RS02010 Membrane protein + + +

RT28_RS02110 Hypothetical protein + + + +

RT28_RS02315 Hypothetical protein + +

RT28_RS02465 T3S low calcium chaperone + + + + +

RT28_RS02480 T3SS translocator CopD2 + + + + +

RT28_RS02555 Hypothetical protein + + + +

RT28_RS02950 Hypothetical protein + + +

RT28_RS03100 Hypothetical protein + +

RT28_RS03270 Hypothetical protein + +

RT28_RS03915 T3SS effector + +

RT28_RS03300 T3 flagellar biosynthesis + + + + +

RT28_RS03310 Hypothetical protein + +

RT28_RS03330 T3SS effector + + +

RT28_RS03335 T3SS effector + + +

RT28_RS03470 Membrane protein + + + +

RT28_RS03480 Periplasmic protein + +

RT28_RS03530 Hypothetical protein + + +

RT28_RS03635 Histone + + +

RT28_RS03685 Hypothetical protein + + +

RT28_RS03730 Putative lipoprotein + + +

RT28_RS03785 Membrane protein + + + +

RT28_RS03925 Lipoprotein + +

RT28_RS03950 Hypothetical protein +

RT28_RS04015 Hypothetical protein + + + +

RT28_RS04125 Membrane protein + + +

RT28_RS04170 Hypothetical protein + + +

RT28_RS04300 Hypothetical protein + + + +

RT28_RS04435 Hypothetical protein + + +

RT28_RS04595 Hypothetical protein + +

https://doi.org/10.1371/journal.pone.0264765.t002
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1000 genes per 1 million basepairs; yet for an unknown reason, Bacteria seem to be much

more diverse in terms of rDNA phylogeny and genome size [36]. The range of clique sizes is

much higher in Bacteria than in Archaea, which may be explained by their higher overall

diversity. On the whole, an archaeal genome possesses about six times more cliques than a bac-

terial one. It is important to keep in mind that if, for example, a bacterial genome has only one

clique, it does not mean that it possesses only a single metabolic pathway or informational pro-

cessing machinery; what it does mean is that the proteins comprising the other pathways in

the genome have diverged—in sequence and/or content—between bacterial strains to such a

degree that they are no longer recognized as a single clique. This result is also is in line with the

higher diversity and malleability of the bacterial genome, with specializations to specific eco-

logical niches facilitated by high mutation rates [37]. In contrast, mutation in Archaea may be

much slower [38], allowing pathways from archaeons in different niches to be more similar

than their bacterial counterparts [39]. As for clique size, archaeal genomes have somewhat

fewer large cliques (>10 proteins) than bacterial ones. Again, this does not mean that meta-

bolic pathways (for example) in Archaea are smaller or less complex than their bacterial coun-

terparts, only that these pathways may share (on average) less proteins with other strains.

Using a large dataset of more than 23 million protein sequences, we tested the computa-

tional efficiency of Cliquely, and validated the obtained biological results. Cliquely identified

known networks from various pathways, and revealed the biological function and modality for

previously unannotated proteins belonging to the T3SS system, identifying 33 previously

uncharacterized proteins as part of this network. This achievement demonstrates one impor-

tant application of Cliquely: finding new target proteins for antibiotic treatment of infectious

diseases. The dramatic rise of antibiotic resistance among bacterial pathogens, which has

evolved against nearly every clinically used antibiotic, means that standard antibiotic drugs

become less effective. Found in dozens of Gram-negative pathogens, the T3SS virulence factor

is an attractive target for novel antimicrobial drugs which will inhibit the pathogen from

injecting effector proteins into the cytosol of host cells, thus preventing their ability to cause

disease and harm the host [40]. Despite this potential, very few T3SS inhibitors have advanced

into clinical trials [41], to some extent due to the fact that new proteins are not easily identifi-

able as belonging to the T3SS. It is our hope that with Cliquely, large-scale bioinformatic

screening of protein co-occurrence networks may help to advance both biological research

and clinical applications.

Supporting information

S1 Fig. Number of cliques vs. number of protein families in different genomes. The plot

presents the relationship between the number of protein clusters (i.e. gene families) and the

number of identified cliques in the genome.

(PDF)

S1 Table. Validation runs on Cliquely, using single proteins as queries. We ran Cliquely

with a range of possible threshold values of co-occurrence (Pco) using different single proteins

as queries. Inputs and full outputs are presented. The identified cliques include known pro-

teins from these pathways. NifD—the nitrogen fixation pathway. MvaD—the mevalonate path-

way. AmoB—the nitrification pathway. McrA—the methanogenesis pathway. L10—the

Ribosome pathway.

(XLSX)

S2 Table. True positives and false positives in Cliquely’s cliques for CheA. Compared to

KEGG’s bacterial chemotaxis pathway (pathway 02030). Probability (Pco) is Cliquely’s
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probability cutoff; Number of proteins is the clique size; the columns Che, MCP, Fli and Mot
give the number of proteins from each of these groups appearing in the identified clique; True
positive is the percentage of proteins in Cliquely’s clique that are part of the KEGG pathway.

False positive is the percentage of proteins in Cliquely’s clique that do not appear in the KEGG

pathway. The pathway can be viewed at https://www.genome.jp/pathway/map02030+K03407.

The table demonstrate that as Pco decreases, Cliquely identifies more cliques, and the number

of proteins per cliques increases (in this example, an average of 3, 9, 16, 18, 29, 30 proteins per

clique were identified for Pco values of 0.85, 0.8, 0.75, 0.65, 0.6, respectively). True positive per-

centage decreases with Pco (an average of 100%, 83%, 76%, 77%, 68%, 44% for Pco values of

0.85, 0.8, 0.75, 0.65, 0.6, respectively), and false positive percentage increases (an average of

0%, 17%, 24%, 32%, 56% on average for Pco values of 0.85, 0.8, 0.75, 0.65, 0.6, respectively). A

false positive here does necessarily imply an erroneous identification, but rather that the pro-

tein identified by Cliquely as connected to CheA does not appear in the small KEGG pathway

02030.

(PDF)

S3 Table. ProtPhylo output for CheA. Che proteins are marked in bold. CheA was used as

query for the phylogenetic profiling software ProtPhylo (http://ido.helmholtz-muenchen.de/

protphylo/Phylogenetic.php), using default parameters. 121 proteins were determined to

accompany CheA, with increasing Hamming Distance (HD) between the phylogenetic profile

of CheA and that of a second protein. This distance is in fact the number of organisms (out of

2048 in the ProtPhylo database) for which the presence/absence of the two proteins does not

agree. Smaller Hamming Distance implies a more similar evolutionary history. As an example,

in 108 out of 2048 organisms CheW does not share the presence/absence pattern of CheA.

Notably, the two tools operate very differently–while Cliquely identifies groups of proteins (or

protein families) that operate together (many-to-many relationship), ProtPhylo examines only

one-on-one relationships between the query protein and a second protein. Thus, it is not sur-

prising that Cliquely retrieves the main protein groups in the relevant pathway (bacterial che-

motaxis) within the identified cliques, in accordance KEGG map 02030 (https://www.genome.

jp/pathway/map02030+K03407)–while ProtPhylo identifies many more proteins that have a

similar phylogenetic profile, but are not necessarily part of the same pathway.

(PDF)

S1 Text. The computational efficiency of Cliquely.

(PDF)

S2 Text. Calculation of Pco.
(PDF)
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