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Abstract
Hydrothermal activity can generate numerous and diverse hydrocarbon compounds. However, little is known about the
influence of such hydrocarbons on deep-sea hydrothermal microbial ecology. We hypothesize that certain bacteria live on
these hydrocarbons. Therefore, in this study, the distribution of hydrocarbons and their associated hydrocarbon-degrading
bacteria were investigated at deep-sea hydrothermal vents at the Southern Mid-Atlantic Ridge, the Southwest Indian Ridge,
and the East Pacific Rise. A variety of hydrocarbon-degrading consortia were obtained from hydrothermal samples collected
at the aforementioned sites after low-temperature enrichment under high hydrostatic pressures, and the bacteria responsible
for the degradation of hydrocarbons were investigated by DNA-based stable-isotope probing with uniformly 13C-labeled
hydrocarbons. Unusually, we identified several previously recognized sulfur-oxidizing chemoautotrophs as hydrocarbon-
degrading bacteria, e.g., the SAR324 group, the SUP05 clade, and Sulfurimonas, and for the first time confirmed their ability
to degrade hydrocarbons. In addition, Erythrobacter, Pusillimonas, and SAR202 clade were shown to degrade polycyclic
aromatic hydrocarbons for the first time. These results together with relatively high abundance in situ of most of the above-
described bacteria highlight the potential influence of hydrocarbons in configuring the vent microbial community, and have
made the importance of mixotrophs in hydrothermal vent ecosystems evident.

Introduction

Hydrothermal activity can generate a variety of reduced
compounds, including low molecular weight hydrocarbons,
which can be produced abiotically through water–rock inter-
actions under high temperature and pressure [1–4]. It was
recently discovered that Fe2+ in hydrothermal systems is
oxidized by water formed oxygen to give magnetite (Fe3O4),

while the water is reduced to H2. Ultimately, the H2-depen-
dent reduction of CO2 leads to the generation of hydrocarbons
(C2–C11), methane, and aromatics using Fe3O4 as the catalyst
[5, 6]. Long carbon chain alkanes and polycyclic aromatic
hydrocarbons (PAHs) can also be generated in the deep
subsurface via thermogenic processes [2, 3, 7, 8]. For
instance, numerous hydrocarbons have been observed in the
vent fluids and sulfide deposits of the Rainbow vent field at
the north Mid-Atlantic Ridge (MAR), including C9–C14 n-
alkanes, C9–C13 branched alkanes, C9–C11 cycloalkanes,
C7–C12 nonaromatic hydrocarbons, naphthalene, methyl-
naphthalene, and C13–C16 PAHs (fluorene, phenanthrene, and
pyrene) [1]. Similarly, a high abundance of n-alkanes of
C15–C30 chains, and three- or four-ringed PAHs were detected
in the hydrothermal sediments from the Lost City vent field at
the northern part of the MAR [9].

The deep biosphere may be partially energetically supported
by hydrocarbons [10]; however, we know little about this
unique ecosystem. Deep-sea hydrothermal vent areas may
foster harvesting of deep matter and energy, by unique extre-
mophiles and provide clues to understand the coupling of deep-
sea life and abiotic and biotic processes under the seafloor.
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Recently, alkane oxidation genes that encode short-chain
alkane monooxygenases, degradation pathways for corre-
sponding alcohols, and short-chain fatty acids were found to be
abundant in the hydrothermal plume metatranscriptome and
metagenome, and these genes may be derived from the
uncultivated bacterial group SAR324 [11–13]. In addition, a
high diversity of alkane monooxygenases that were phylo-
genetically affiliated with enzymes involved in C1–C4 alkane
oxidation was observed in the Guaymas Basin hydrothermal
plume [14, 15]. Moreover, genes involved in anaerobic
hydrocarbon degradation were also detected among several
phyla in Guaymas Basin sediments, including Bacteroidetes,
Chloroflexi, Deltaproteobacteria, and the candidate phylum
Latescibacteria (WS3) [16]. Metagenomic and metatran-
scriptomic approaches revealed the presence of diverse methyl-
coenzyme M reductase-based alkane-oxidizing archaea,
including the multi-carbon alkane oxidizer Ca. Syn-
trophoarchaeum spp., anaerobic methane-oxidizing archaea
(ANME-1 and ANME-2c), and sulfate-reducing bacteria
(HotSeep-1 and Seep-SRB2) coexisting with sulfate-reducing
bacteria and showed the potential for alkane oxidization in
Guaymas Basin hydrothermal sediments [17]. However, these
advances are mainly based on metadata, while few
hydrocarbon-oxidizing microbes have been isolated from deep
ecosystems.

In the past decade, we have explored the bacterial
diversity involved in PAH degradation in deep-sea sedi-
ments of the MAR [18], the west Pacific [19, 20], and the
Arctic [21], as well as in the deepwater columns of the
southwest Indian Ridge [22].

However, few studies have been conducted within or in
the vicinity of the hydrothermal vent field. In the past 10
years, we joined oceanic cruises and collected hydrothermal
vent samples from the Southern Mid-Atlantic Ridge, the
Southwest Indian Ridge, and the East Pacific Rise to
examine the diversity of bacteria that may be driven by
hydrocarbons in situ. Here we report the microbial diversity
of aliphatic and aromatic hydrocarbons degrading bacteria
in the vent plumes, chimney sulfides, and nearby sediments,
and confirm their activity under in situ conditions. The
results extend the body of knowledge of the potentially
hydrocarbon-utilizing microbial community inhabiting the
hydrothermal vent ecosystem, and promote understanding
of their interactions with extreme environments.

Materials and methods

Deep-sea sampling, chemicals, and enrichment
media

Samples and their descriptions are provided in Table S1 and
Fig. S1 and the Supplementary Materials and Methods.

Detailed descriptions of the chemicals and enrichment media
are also described in the Supplementary Materials and
Methods.

Hydrocarbon analysis

To determine the hydrocarbon concentrations in hydrothermal
plume samples, a method that combined stir bar sorptive
extraction, thermal desorption–gas chromatography–mass
spectrometry, and the Hydro-CARB® software package (IFP,
Rueil-Malmaison, France) was used. The details of these pro-
cedures are described in the Supplementary Materials and
Methods.

Enrichment of hydrocarbon-degrading bacteria at
high pressure

Deep-sea-mimicking cultivation was conducted under high
pressures and low temperatures in the chamber of a HP vessel
as described in the Supplementary Materials and Methods.

Stable-isotope probing experiments

Stable-isotope probing (SIP) experiments for the above
plume, sulfide deposit, and sediment enrichments were
performed with 13C-labeled alkanes and PAHs, yielding a
total of 12 samples. The details of these procedures are
described in the Supplementary Materials and Methods.

Isolation of heterotrophic hydrocarbon-degrading
bacteria

Serial dilutions of enrichments were streaked onto M2 agar
plates, then incubated at 15 °C until the formation of bac-
terial colonies was observed. Colonies exhibiting unique
morphological features were selected and re-streaked onto
M2 plates to obtain pure cultures that were then preserved at
−20 °C for further analyses.

Cultivation and isolation of chemoautotrophs from
hydrocarbon-degrading consortia

Cultures and isolates were identified as previously described
[23, 24], with slight modifications. The details of these pro-
cedures are described in the Supplementary Materials and
Methods.

Hydrocarbon degradation by consortia and isolates
under high hydrostatic pressures and low
temperature

The hydrocarbon degradation procedures are described in
detail in the Supplementary Materials and Methods.
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Analysis of bacterial community structures

A detailed description of the analysis of bacterial commu-
nity structures procedures is described in the Supplementary
Materials and Methods.

Nucleotide sequence availability

All of the Illumina sequence data from this study were
submitted to the NCBI Sequence Read Archive under
accession numbers SRR067098 and SRR10061063–
10061075. Sanger-sequenced 16S rDNA sequences from
the isolates were submitted to GenBank under accession
numbers KT581452–KT581573, KT596765–KT596769,
and MT084040–MT084046.

Results

Hydrocarbons in deep-sea hydrothermal field
samples

The concentration and composition of hydrocarbons were
measured in the samples from hydrothermal fields at the
southern Mid-Atlantic Ridge (SMAR), southwest Indian
Ridge (SWIR), and East Pacific Rise (EPR), and in vent
plumes, sulfide chimney samples, and sediments (Table S2).
In the five plume samples from SMAR, the total hydrocarbon
concentrations (THC) ranged from 462.6 to 742.1 μg·L−1

(Fig. 1a). In contrast, THC in the nearby non-plume deep-sea
water was only 10.3 μg·L−1 (Table S2). In the chimney sulfide
samples, THCs were present at concentrations of 17.1, 15.3,
and 13.2 μg·g−1 (dry weight) in the SMAR, EPR, and SWIR
samples, respectively (Table S2), with PAHs, n-alkanes
(C14–C28), and branched alkanes (C16–C20) as the major
components (Fig. 1b). In the hydrothermal sediments, the
THCs ranged from 2.9 to 3.9 μg·g−1 (dry weight), with high
concentrations of polycyclic aromatic hydrocarbons containing
2–5 rings detected in all of the sediment samples; however,
only a few types of alkanes were detected, and these were
present at low concentrations (Fig. 1c and Table S2).

Bacterial diversity in the hydrothermal plume in situ

The bacterial community composition of the plume samples
of the newly discovered hydrothermal field named Deyin-1
on the south MAR (15°S) is shown in Fig. 2. In the rising
plume sample (SAP-1_S), the 16S rRNA gene sequences
related to gamma-proteobacteria (31.5%) and epsilon-
proteobacteria (19.2%) were highly abundant (Fig. 2).
Among the detected gamma-proteobacteria, levels of the
following genera were relatively high Alcanivorax (7.4% of

the total), Glaciecola (6.7%), Marinobacter (3.7%), SUP05
clade sequences (3.7%), Cycloclasticus (2.3%), and Alter-
omonas (1.8%) (Fig. 2). Among the epsilon-proteobacteria
sequences, the genera Sulfurimonas (11.9%), Sulfurovum
(4.9%), and Arcobacter (2.1%) were present at relatively
high concentrations (Fig. 2a). Additionally, the SAR324
clade (4.4%) of delta-proteobacteria and the SAR202 clade
(3.2%) of Chloroflexi were detected in the rising plume
sample (Fig. 2).

In the two neutrally buoyant plume samples (SAP-2_S to
5_S), which were collected far from the vent compared with
the samples described above, the sequence reads mainly cor-
responded to gamma-proteobacteria (34.3–47.2%), epsilon-
proteobacteria (5–8.8%), and alpha-proteobacteria (8.1–10.3%)
(Fig. 2). The abundance of epsilon-proteobacteria decreased
and alpha-proteobacteria appeared. The gamma-proteobacteria
were mainly composed of Alcanivorax (9.2–10.3%), Cyclo-
clasticus (2.2–3.9%), Glaciecola (5.1–11.4%), Marinobacter
(2.2–3.1%), the SUP05 clade (0.6–2.2%), and Alteromonas
(0.6–3.2%), among which the first two are well known for
alkane and PAHs degradation. The epsilon-proteobacteria
mainly were mainly composed of Sulfurimonas (3.5–6.8%),
Sulfurovum (0.3–1.6%), and Arcobacter (0.9–1.8%). Notably,
the genus Erythrobacter of alpha-proteobacteria also occurred
as a dominant member, accounting for 6.6–8.5% of the total
bacterial 16S rRNA gene sequences. In addition, clade
SAR324 of delta-proteobacteria and clade SAR202 of Chlor-
oflexi also occurred as the dominant bacteria in situ, compris-
ing 4.1–5.8% and 0.9–1.7% of the total 16S rRNA sequence
reads, respectively.

Hydrocarbon biodegradation in the hydrothermal
plume

To confirm the bacteria were utilizing hydrocarbons from
the hydrothermal plumes, enrichment with a mixture of n-
alkanes and PAHs as the carbon and energy sources was
conducted while mimicking the deep-sea conditions of high
static pressure and low temperature. Quantification showed
that both alkanes and PAHs could be degraded significantly
by the five plume-derived enrichment consortia (SAP-1 to
SAP-5) under 20MPa and at 10 °C. Specifically, nearly all
n-alkanes were removed after 60 days, with the degradation
percentages of 91.7–96.5% (Table S3), while 74.6–84.1%
of the total PAHs were removed (Table S3).

Further, bacteria capable of hydrocarbon degradation were
retrieved by SIP-sequencing. Four genera of bacteria were
enriched with alkanes and the PAHs mixture as follows:
Alcanivorax (14.1–22.3%), Marinobacter (7.9–13.1%),
Cycloclasticus (9.4–14.3%), and Erythrobacter (7.7–13.7%)
(Fig. 2). Unexpectedly, the previously recognized chemoau-
totrophic bacteria were also retained in all of the SIP com-
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munities, including the genus Sulfurimonas and the SUP05
and SAR324 clades.

Bacterial diversity in hydrothermal chimneys

The detailed bacterial diversity of black smoker chimney
samples collected from three active hydrothermal fields
in the SWIR, SMAR, and EPR are shown in Fig. 3.

Despite the great geographic distance, the bacterial composi-
tions at the three sites were similar, being mainly composed
of Sulfurovum, Sulfurimonas, Thiomicrospira, Nitrospira,
Desulfurobacterium, Thermodesulfatator, Desulfobulbus,
Pseudoalteromonas, Marinicella, Gallionella, Marinobacter,
Halomonas, and Alcanivorax, although they did vary to some
extent. Additionally, the SAR202 clade was prevalent the
indigenous consortia of all three sulfide chimneys.
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Hydrocarbon-degrading bacteria from the
hydrothermal chimneys

To identify the hydrocarbon-degrading microbes inhabiting the
hydrothermal chimneys, enrichment with a hydrocarbon mix-
ture was conducted under hydrostatic pressures (20–35MPa)
and 10 °C according to the water depths and in situ tempera-
tures, after which the hydrocarbon biodegradation capability of
the hydrothermal chimney-derived consortia was tested. Within
20 days, 55–66% of the total n-alkanes and 20–35% of the total
PAHs had been degraded. At day 40, 77–89% of the total n-
alkanes and 44–52% of the total PAHs had been degraded,
while at day 60, 92–97% of the total n-alkanes and 76–78% of
the total PAHs had been degraded (Table S4). To define what
types of bacteria in hydrothermal chimneys were hydrocarbon
degraders, SIP-Seq data analysis was conducted after enrich-
ment with 13C-labeled hydrocarbons for 60 days under 30MPa
at 10 °C. The results revealed that the SIP community mainly

contained the following genera: Marinobacter (27.7–36.3%),
Sulfurimonas (14.1–17.7%), Halomonas (5.2–24.3%), and
Pseudoalteromonas (7.3–9.6%), as well as bacteria of clade
SAR202 (6.2–10.4%) and clade SAR324 (3.1–12.3%). Among
these, Marinobacter had the highest abundance, followed by
Sulfurimonas and Halomonas. Congruent with the in situ
diversity, despite the large geographic distance, quite similar
degrading bacterial communities were obtained from the three
global ocean hydrothermal chimney samples. Detailed com-
positions of the above hydrocarbon-degrading consortia are
shown in Fig. 3.

Bacterial diversity in hydrothermal sediments

Bacterial compositions of the five hydrothermal sediment
samples collected from the SWIR, SMAR, and EPR sites are
shown in Fig. 4. The following bacteria were characterized as
the dominant members in the five sediments based on their 16S
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rRNA gene abundance: Nitrospira (6.3–9.1%), Erythrobacter
(1.8–4.9%), Burkholderia (2.3–9.3%), Alcanivorax (1.4–3.9%),
Marinobacter (1.5–3.4%), Rhodococcus (0.5–3.5%), Halomo-
nas (1.3–3.2%), Pseudomonas (0.7–3.9%), Pusillimonas
(0.5–3.5%), Acinetobacter (0.6–1.8%), and the SAR202 clade
(0.7–2.7%) (Fig. 4). In addition, the bacterial no-rank OM1
clade, S085 clade, JG30-KF-CM66 clade, Acidobacteria,
Anaerolineaceae, Hyphomicrobiaceae, Rhodospirillaceae,
Aminicenantes, Gemmatimonadetes, Gemmatimonadaceae,
and unclassified gamma-proteobacteria frequently occurred in
different sediment samples (Fig. 4).

Bacterial PAHs biodegradation in hydrothermal
sediments

All five hydrothermal sediment consortia enriched with PAHs
showed obvious degradation activity under 35MPa and at 10
°C (Table S5). In addition, all five types of added PAHs of
2–5 rings were significantly degraded. At day 90, naphthalene

was totally degraded, while 82–89% of fluoranthene, 87–91%
of phenanthrene, 80–94% of pyrene, and 38–50% of benzo[a]
pyrene was degraded (Table S5).

To identify the key PAH degraders among the asso-
ciated bacteria, the above SIP samples were enriched with
the PAH mixture for 90 days under 35 MPa and 10 °C,
then further processed by SIP-Seq. The results revealed
nine bacterial genera were retained as 13C-labeled bacterial
members in all degradation communities of the five sedi-
ment samples; namely, Erythrobacter, Halomonas, the
SAR202 clade, Alcanivorax, Marinobacter, Burkholderia,
Pseudomonas, Pusillimonas, and Rhodococcus (Fig. 4).
However, the abundance of these organisms varied among
samples, with the first four being the most abundant
members. Nevertheless, these labeled bacteria were all
suggested to be key PAH degraders, such as Pusillimonas
and Rhodococcus in the two SWIR consortia S7 and S8
and Marinobacter in consortium SMAR (S21) and
EPR (S35).
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Isolation of chemoautotrophs from enrichment
cultures

The once recognized chemoautotrophic bacteria, including
the SAR324 clade, SUP05 clade, and Sulfurimonas,
occurred as dominant members of the above hydrocarbon-
degrading consortia of vent plumes and sulfides, and were
confirmed by SIP-Seq. To better characterize their roles,
further enrichment and pure culture isolation and further
testing were conducted to determine their potential for
hydrocarbon degradation. Thirty-seven out of 1536 culture
wells from the above hydrothermal plume and chimney
hydrocarbon enrichments were positive for growth, with
sulfur oxidation occurring after 21 days. Moreover, four of
the cultures had identical 16S rRNA gene sequences and
were identified as members of Sulfurimonas, named strain
Sulfurimonas sp. hwp1, hwp2, hwp3, and hwp4 (Fig. 5).
Two cultures were identified as a delta-proteobacteria
related to the SAR324 group, and named SAR324 strain
hwp5 and strain hwp6 (Fig. 6). In addition, one culture was
identified as a member of the SUP05 clade, named
SUP05 strain hwp7 (Fig. 7).

Hydrocarbon degradation by chemolithoautotrophs

The hydrocarbon degradation potential of pure cultures of
Sulfurimonas spp., and the SAR324 and SUP05 clades were
evaluated further under high HPs and low temperatures
using hydrocarbon as the sole carbon and energy sources

(adequate O2, remove CO2 and thiosulfate). All four isolates
of Sulfurimonas and two isolates of SAR324 that were
tested exhibited vigorous growth in the short chain length
alkane assays using 13C-labeled n-hexane and n-octane
under high HPs and low temperatures (Table 1 and Fig. S2).
In addition, they also exhibited growth in the medium chain
length alkanes of 13C-labeled n-decane and n-dodecane
under high pressure and low temperature, but this was
comparatively weak (Table 1 and Fig. S2). Only the isolates
of SAR324 (strain hwp5 and hwp6) exhibited weak growth
in the 13C-labeled n-hexadecane (Table 1 and Fig. S2). All
four Sulfurimonas isolates exhibited weak growth under
high HPs and low temperatures in the PAH assays using
13C-labeled naphthalene and phenanthrene, respectively
(Table 1 and Fig. S2). None of the isolates grew with n-
tetracosane, pyrene, or benzo(a)pyrene (Table 1). None of
all tested hydrocarbons could be utilized by isolate hwp7 of
SUP05 (Table 1).

All four Sulfurimonas isolates exhibited hydrocarbon
degradation and degrade n-alkanes of C6–C16 as well as
naphthalene and phenanthrene (Table 1). These phylotypes
were closely related to the predominant members (>99.7%
homology with 450 bps 16S rRNA) in plumes and sulfides
in situ as well as those in the hydrocarbon-degrading con-
sortia. Based on the OTU sequences and our isolates, a
phylogenetic tree was constructed with references of the
type strains (Fig. 5). The results showed that the four iso-
lates were affiliated with four species, among which strain
hwp4 isolated from the chimney of the new hydrothermal
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field Deyin in the southern MAR represented a novel species
forming a separate cluster with the homologue OTU1193
from the same chimney sample and OTU1172 from the
plume also located at Deyin (pink in Fig. 5), in addition to
other members identified in situ (labeled blue). Moreover,
strain hwp2 represented a novel species with 96.6%
homology to the full-length 16S of Sulfurimonas para-
lvinella, whereas the strain hwp3 and hwp4 belonged to
Sulfurimonas autotrophica and S. paralvinella, respectively.

Despite the significant divergence in phylogeny, all four
isolates possessed the same characteristics with respect to
hydrocarbon utilization.

Similarly, SAR324 isolates hwp5 and hwp6 also exhib-
ited positive alkane degradation (Table 1). Both were iso-
lated from the Deyin field plume and shared 97.85%
homology of the 16S rRNA gene, representing two poten-
tial novel species. A phylogenetic tree was constructed
based on the 16S rRNA gene sequences of this study and
the other four sequences retrieved from GenBank (Fig. 6).
The phylogenetic result showed that this group in our study
samples was quite diverse. The two isolates correspond to
the predominant members represented by OTU2178 in the
MAR plume and OTU2943 in the MAR sulfides and
hydrocarbon-degrading consortia, respectively (Fig. 6).
Among the tested n-alkanes from C6 to C32, both isolates
could grow with n-hexane, octane, decane, dodecane, and
hexadecane (Table 1), while they failed to grow with all
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Fig. 5 Sulfurimonas distribution among consortia and phyloge-
netic analysis of 16S rRNA gene phylotypes. Phylogenetic tree
showing the diversity of 16S rRNA gene sequences from OTUs and
isolates of Sulfurimonas identified in this study. The tree was con-
structed using neighbor-joining methods and the Kimura 2-parameter
model, as implemented in the MEGA 5.0 software package. The tree is
based on partial 16S rRNA gene sequences from this study and their
closest type strains. Only bootstrap values ≥50% (based on 1000
bootstrap replicates) are shown at the nodes. The scale bar represents
0.05 nucleotide changes per site. Sulfurimonas OTU distribution
among the different hydrocarbon-enrichment consortia and indigenous
consortia. Only OTUs representing >1% of the communities in at least
one sample are included in the visualization. OTU representative
sequences are shown in the Supplementary Information.
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Fig. 6 SAR324 distribution among consortia and phylogenetic
analysis of 16S rRNA gene phylotypes. Phylogenetic tree showing
the diversity of 16S rRNA gene sequences from OTUs and isolates of
SAR324 identified in this study. The tree was constructed using
neighbor-joining methods and the Kimura 2-parameter model, as
implemented in the MEGA 5.0 software package. The tree is based on
partial 16S rRNA gene sequences from this study and their closest type
strains. Only bootstrap values ≥50% (based on 1000 bootstrap repli-
cates) are shown at the nodes. The scale bar represents 0.05 nucleotide
changes per site. SAR324 OTU distribution among the different
hydrocarbon-enrichment consortia and indigenous consortia. Only
OTUs representing >1% of the communities in at least one sample are
included in the visualization. OTU representative sequences are shown
in the Supplementary Information.
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tested odd alkanes of C11, C15, and C17, or with long-chain
n-alkanes above C20 (data not shown). These isolates
could not grow with any tested PAHs either (Table 1).
Interestingly, SUP05 isolate hwp7 was closely related to the
predominant members in plumes in situ, as well as
the hydrocarbon-enrichment consortia, represented by
OTU2265 and OTU2477 (Fig. 7); however, this organism
was negative for hydrocarbon degradation (Table 1). Our
isolate hwp7 together with other OTUs formed an inde-
pendent cluster in the tree, neighboring with the cluster
represented by the previously reported isolate Candidatus
Thioglobus autotrophicus strain EF1 (Fig. 7). The two
isolates showed 97.5% identity in the full-length 16S rRNA
gene sequence, indicating they represent two potential novel
species of the genus Thioglobus.

Hydrocarbon degradation by heterotrophic isolates
under high pressures

A total of 126 heterotrophic strains were isolated from the
above hydrocarbon-enrichment consortia, and most could
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Fig. 7 SUP05 distribution among consortia and phylogenetic
analysis of 16S rRNA gene phylotypes. Phylogenetic tree showing
the diversity of 16S rRNA gene sequences from OTUs and isolates of
SUP05 identified in this study. The tree was constructed using
neighbor-joining methods and the Kimura 2-parameter model, as
implemented in the MEGA 5.0 software package. The tree is based on
partial 16S rRNA gene sequences from this study and their closest type
strains. Only bootstrap values ≥50% (based on 1000 bootstrap repli-
cates) are shown at the nodes. The scale bar represents 0.05 nucleotide
changes per site. SUP05 OTU distribution among the different
hydrocarbon-enrichment consortia and indigenous consortia. Only
OTUs representing >1% of the communities in at least one sample are
included in the visualization. OTU representative sequences are shown
in the Supplementary Information.
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grow with hexadecane or PAH as the sole carbon and
energy source. These organisms were affiliated with 16
genera, including Alcanivorax, Acinetobacter, Alteromonas,
Bacillus, Citreicella, Dietzia, Erythrobacter, Halomonas,
Idiomarina, Marinobacter, Microbacterium, Novo-
sphingobium, Sphingobium, Pseudomonas, Pusillimonas,
and Spongibacter (Table S6).

Thirteen of the isolates could grow with 13C-labeled
n-hexadecane as the sole energy source under 35MPa at
10 °C as determined by cell density OD600 (Fig. S3B), and
the degradation was confirmed by quantification using the
13C isotope (Fig. S3A). Based on their 16S rRNA sequen-
ces, these isolates were identified as Alcanivorax dieselolei
strain S19-9, Alcanivorax sp. strain YLF38, Alcanivorax
venustensis strain RY-9, Bacillus safensis strain S21-L1,
Halomonas titanicae strain RY-7, Marinobacter bryo-
zoorum strain TG8-3, Marinobacter hydrocarbonoclasticus
strain S19-1, Marinobacter segnicrescens strain S19-13,
Marinobacter vinifirmus strain S19-10, Oceanicola marinus
strain 22F16, Oceanicola nanhaiensis strain 1F26, Rhodo-
coccus yunnanensis strain YLF8, and Pusillimonas sp.
strain S7-N8 (Fig. S3A, B).

In the PAH assays, eight isolates exhibited noticeable
growth under high HP and low temperature within 60 days
based on 13C6-labeled phenanthrene analysis (Fig. S3C),
while significant degradation occurred within 120 days
under the same conditions (Fig. S3D). These isolates were
identified and named as Erythrobacter sp. strain S35-N8,
Erythrobacter sp. strain S21-N3, Pusillimonas sp. strain S7-
N8, E. flavus Y strain LF25, Marinobacter algicola strain
YLF36, M. hydrocarbonoclasticus strain S19-1, B. safensis
strain S21-L1, and B. safensis strain S8-L9.

Interestingly, Erythrobacter sp. S21-N3 and Pusillimonas
sp. S7-N8 exhibited vigorous growth using various PAHs
including naphthalene–13C6, phenanthrene–13C6, pyrene–
13C6, fluorene–

13C6, and benzo[α]pyrene–13C6 (Figs. S3E, F,
and S4).

Discussion

Previous studies of microbial vent communities have
mainly focused on chemolithoautotrophic organisms. These
studies have shown that chemoautotrophic bacteria such as
Sulfurimonas and clades of SAR324 and SUP05 were
ubiquitous in the global deep-sea hydrothermal ecosystem
and commonly recognized as the sulfur-oxidizing chemo-
lithoautotrophs responsible for to the primary production of
vent ecosystems. Although various hydrocarbons can be
generated from the deep subsurface processes, little is
known about their contribution to the determination of vent
bacterial diversity. During our investigation, it is quite
unexpected to find that fundamental chemoautotrophs such

as Sulfurimonas and the SAR324 clade were capable of
degrading hydrocarbons and active under simulated extreme
conditions.

Interestingly, although the bacteria of the SUP05 clade
were dominant members of all of the plume-derived
hydrocarbon-degrading consortia, the purified isolate
(strain hwp7) failed to degrade any tested hydrocarbons.
However, genome analysis showed that the strain hwp7
genome harbored multiple genes encoding enzymes
involved in aromatic or alkane carbon catabolism, including
proteins with predicted functions in aromatic ring hydro-
xylation, alicyclic rings oxidation, catechol degradation,
phenylpropionate degradation, fatty aldehydes oxidation,
and fatty carboxylic acids oxidation (data not shown).
Because it can grow without nutrient supplements such as
vitamins and amino acids in medium of thiosulfate oxidi-
zation, we speculate that the SUP05 strain hwp7 may utilize
the intermediate metabolites of hydrocarbons of other bac-
teria instead of via syntrophism.

The SAR324 group of delta-proteobacteria is ubiquitous
in global oceans [14], and is one of the most abundant
microbial groups in deep-sea hydrothermal plumes [15, 25].
To date, none of the bacteria comprising this group have
been isolated, although it is well known as a sulfur-
oxidizing bacterium [14]. Recently, metagenomic and
metatranscriptomic analyses showed that the particulate
hydrocarbon monooxygenase (pHMO), which is believed to
be responsible for oxidizing short-chain alkanes of C2–C4,
is present and expressed in the Guaymas Basin hydro-
thermal plume [11]. In the present, SAR324 not only
occurred as one of the most abundant bacteria in situ, but
also constituted the majority of the hydrocarbon SIP con-
sortia from hydrothermal plumes and chimneys. Notably,
two SAR324 isolates numbered hwp5 and hwp6 were iso-
lated and 16S rRNA genes showed high similarity (98.8 and
98.3%) to SAR324 from the Guaymas Basin hydrothermal
plume. Moreover, they both exhibited degradation activity
on n-alkanes with chain lengths of C6–C16, but failed to
grow with long chain alkanes of C20–C32. This degradation
capability may be attributed to the genome encoded cyto-
chrome P450, which catalyzes the hydroxylation of medium
chain alkanes [26, 27]. We suspect that they can also oxi-
dize short chain alkanes (C2–C4) because the corresponding
gene encoding pHMO was found in their genomes (data not
shown). To the best of our knowledge, this is the first report
of a SAR324 group delta-proteobacteria being capable of
alkane degradation, which highlights their role in alkane
oxidation in natural environments. Moreover, the success of
a pure culture will help us gain insight into the metabolic
mechanisms and environmental interactions of these
organisms in global oceans.

Bacteria of the genus Sulfurimonas are commonly iso-
lated from sulfidic habitats, and numerous 16S rRNA
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sequences related to Sulfurimonas have been identified in
hydrothermal deep-sea vents, marine sediments, pelagic
water columns, and terrestrial habitats [28]. Although Sul-
furimonas species play important roles in chemoautotrophic
processes in some habitats [28, 29], some species can grow
with organic substrates, such as Sulfurimonas sp. CVO, and
Sulfurimonas gotlandica can use acetate in addition to
carbon dioxide and bicarbonate as a carbon source [30, 31].
Sulfurimonas denitrificans can grow with a formate,
fumarate, yeast extract, and alcohol mix as electron donors,
while S. gotlandica can grow with formate, acetate, yeast
extract, pyruvate, and amino acid mix as electron donors
[31]. In this study, four isolates of Sulfurimonas could all
grow well with C6–C12 n-alkanes as an electron donor and
carbon source, and they were capable of degrading naph-
thalene. To the best of our knowledge, this is the first report
of this genus being capable of utilizing hydrocarbons. In
addition, these isolates can also oxidize reduced sulfur
compounds. The versatility in mixotrophic metabolisms
may explain the ubiquity of Sulfurimonas in the global
hydrothermal vent biosphere. Mixotrophs in vent sur-
roundings are probably common; therefore, investigations
of other microbial taxa are needed.

There is very little information is available about the inter-
actions of heterotrophic bacteria with hydrocarbons in deep-sea
hydrothermal environments. Prior to this study, two mesophilic
Proteobacteria, Salinisphaera hydrothermalis, and Parvibacu-
lum hydrocarboniclasticum were isolated from deep-sea
hydrothermal vents on the EPR and were capable of growth
on n-alkanes as their sole carbon source [32, 33]. In addition,
isolates of Alcanivorax andMarinobacter were recovered from
hydrothermal environment samples of the 9°N EPR and the
37°N MAR [34]. However, their degradation capacity under
in situ conditions remains untested. This study confirmed
diverse heterotrophic bacteria inhabiting global deep-sea
hydrothermal environments, possibly using hydrocarbon
degradation as an energy source. By mimicking in situ con-
ditions, we confirmed their capacity of active degradation of
various hydrocarbons at HPs (2000–3500m water depth) and
low temperature. Marinobacter spp., Halomonas spp., and the
SAR202 clade predominated bacterial communities in the
hydrocarbon-degrading SIP consortia from the SMAR, SWIR,
and EPR sulfide chimneys, respectively. Alcanivorax spp.,
Marinobacter spp., Cycloclasticus spp., and the SAR202 clade
dominated the hydrocarbon-degrading SIP community of
hydrothermal vent plumes. Erythrobacter spp., Alcanivorax
spp., Halomonas spp., and the SAR202 clade were the
most predominant members of the PAH-degrading consortia
from all hydrothermal sediments, while Pusillimonas was
the predominant genus in the SIP consortium from SWIR
sediments at 49°E (S7). Notably, the above hydrocarbon-
degrading bacteria also occurred the dominant members of the
indigenous bacterial community from hydrothermal samples,

suggesting they interacted with vent effluents and surrounding
environments by utilizing hydrocarbons generated from deep
subspaces.

SAR202, which is a cluster of uncultured bacteria
affiliated with the phylum Chloroflexi, are medium-sized,
free-living heterotrophic organisms [35–38]. Even in sedi-
ments at the bottom of the Challenger Deep of the Mariana
Trench, SAR202 is the dominant population of bacterial
communities [39]. Recently, Landry and colleagues ana-
lyzed five single-amplified genomes of the SAR202 clade
and found that they encoded several families of oxidative
enzymes such as ring-hydroxylating and ring-cleavage
dioxygenases, cytochrome P450 and monooxygenase,
which were believed to participate in hydrocarbon degra-
dation [40]. In the present study, the SAR202 clade com-
prised 1.0–3.5% of the total bacterial 16S rRNA gene
abundance in all tested samples. Further, bacteria of the
SAR202 clade were the dominant population (about
6.0–14.5%) in all of the aforementioned hydrocarbon-
degrading SIP consortia. Remarkably, the SAR202 clade
became the dominant member in all five sediment-derived
PAHs enrichments from SMAR, SWIR, and EPR (Fig. S5).
Although the hydrocarbon metabolism of the SAR202 clade
is still unknown, our results indicated that the SAR202
clade can degrade hydrocarbons, especially PAHs, and they
might play a role in the degradation of recalcitrant organic
matter in deep-sea hydrothermal fields. However, the bac-
teria of the SAR202 group need further investigation to
confirm their ability for hydrocarbon degradation with pure
cultures, which have yet to be developed.

Among these heterotrophic bacteria, Pusillimonas and
Erythrobacter are less often reported in hydrocarbon
degradation. Indeed, this is the first report of Pusillimonas
being capable of PAH degradation. The isolate Pusillimo-
nas sp. S7-N8 from our sediment enrichments showed only
96.7% similarity of the 16S rRNA gene with that of
Pusillimonas noertemannii BN9(T) (Table S5). This organ-
ism exhibited vigorous growth on alkanes and PAHs under
high HPs and low temperature (Fig. S4). This is the first
member of the genus Pusillimonas as a PAH-degrader. In
the present study, Erythrobacter bacteria, which typically
inhabit marine surface environments, were found to be are
one of the predominant bacteria in vent plumes accounting
for 6.6–8.5% of the total 16S rRNA gene sequences.
Intriguingly, the isolate of Erythrobacter showed a wide
PAHs degradation range covering 2–5 fused rings, includ-
ing naphthalene, phenanthrene, pyrene, fluorene, and benzo
[α]pyrene. Moreover, the novel species from our enrich-
ments, Erythrobacter atlantica sp. S21-N3 [41], could grow
well on PAHs at 30MPa (5 °C).

In summary, various hydrocarbons were found in global
deep-sea hydrothermal environments, and they had a
unique composition pattern in vent plumes compared to
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chimney sulfides and sediments. Correspondingly, various
hydrocarbon-degrading bacteria were found in these
hydrothermal samples. Interestingly, the chemoautotrophic
bacteria clade SAR324 and Sulfurimonas were capable of
degrading either alkanes and/or PAHs. In addition, het-
erotrophic bacteria belonging to the genus Alcanivorax,
Cycloclasticus, Marinobacter, Halomonas, Pusillimonas,
and Erythrobacter were found in situ as dominant members
capable of hydrocarbon oxidation. The results of the pre-
sent study demonstrate that the deep-sea hydrothermal vent
ecosystem fosters unique mixotrophic bacteria, in addition
to obligate heterotrophs and chemolithotrophs.
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