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Abstract

The cerebral cortex is divided into many functionally distinct areas. The emergence of these areas during neural
development is dependent on the expression patterns of several genes. Along the anterior-posterior axis, gradients of Fgf8,
Emx2, Pax6, Coup-tfi, and Sp8 play a particularly strong role in specifying areal identity. However, our understanding of the
regulatory interactions between these genes that lead to their confinement to particular spatial patterns is currently
qualitative and incomplete. We therefore used a computational model of the interactions between these five genes to
determine which interactions, and combinations of interactions, occur in networks that reproduce the anterior-posterior
expression patterns observed experimentally. The model treats expression levels as Boolean, reflecting the qualitative
nature of the expression data currently available. We simulated gene expression patterns created by all 1:68|107 possible
networks containing the five genes of interest. We found that only 0:1% of these networks were able to reproduce the
experimentally observed expression patterns. These networks all lacked certain interactions and combinations of inter-
actions including auto-regulation and inductive loops. Many higher order combinations of interactions also never appeared
in networks that satisfied our criteria for good performance. While there was remarkable diversity in the structure of the
networks that perform well, an analysis of the probability of each interaction gave an indication of which interactions are
most likely to be present in the gene network regulating cortical area development. We found that in general, repressive
interactions are much more likely than inductive ones, but that mutually repressive loops are not critical for correct network
functioning. Overall, our model illuminates the design principles of the gene network regulating cortical area development,
and makes novel predictions that can be tested experimentally.
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Introduction

The mammalian cerebral cortex is a complex but extremely

precise structure. In adult, it is divided into several functionally

distinct areas characterised by different combinations of gene

expression, specialised cytoarchitecture and specific patterns of

input and output connections. But how does this functional

specification arise? There is strong evidence that both genetic and

activity-dependent mechanisms play a role in the development of

these specialised areas, a process also referred to as arealisation. A

genetic component is implicated by the spatial non-uniformity of

expression of some genes prior to thalamocortical innervation, as

well as the fact that altering expression of some genes early in

development changes area position in adult [for review see 1–8].

On the other hand, manipulating thalamocortical inputs, and

hence activity from the thalamus, can alter area size or respecify

area identity [for review see 1,4,8]. These results are accommo-

dated in a current working model of cortical arealisation as a

multi-stage process where initial broad spatial patterns of gene

expression provide a scaffold for differential thalamocortical

innervation [5]. Patterned activity on thalamocortical inputs then

drives more complex and spatially restricted gene expression

which, in turn, regulates further area specific differentiation. This

paper focuses on the earliest stage of arealisation: how patterns of

gene expression form early in cortical development.

Experiments have identified many genes expressed embryoni-

cally that are critical to the positioning of cortical areas in adult.

Although arealisation occurs in a two-dimensional field, most

experiments focus on anterior-posterior patterning and hence,

here we concentrate on patterning along this axis. From around

embryonic day 8 (E8) in mouse, the morphogen Fgf8 is expressed

at the anterior pole of the developing telencephalon (Figure 1A)

[2,3,5,7–11]. Immediately after Fgf8 expression is initiated in

mouse, four transcription factors (TFs), Emx2, Pax6, Coup-tfi and

Sp8 are expressed in gradients across the surface of the cortex

(Figure 1B) [2,3,5,8,11]. These four TFs are an appealing research

target because their complementary expression gradients could

provide a unique coordinate system for arealisation [5], equivalent

to ‘‘positional information’’ [12,13]. Altered expression of each of

Fgf8 and the four TFs shifts area positions in late embryonic stages

and in adult [14–29; but see also 30]. Furthermore, during

development, altered expression of each of these genes up- or

down-regulates expression of some other genes in the set along the

anterior-posterior axis (see Figure 2B for references). A large

PLoS Computational Biology | www.ploscompbiol.org 1 September 2010 | Volume 6 | Issue 9 | e1000936



cohort of experiments has given rise to a hypothesised network of

regulatory interactions between these five genes (Figure 2A).

However, only one of these interactions has been directly

demonstrated [24] and no analysis has been performed at the

systems level.

Interacting TFs are known to be able to form regulatory networks

that drive differential spatial development, fulfilling a role for which

morphogens are better known [31,32]. Feedback loops are the

crucial feature that enable the generation of spatial (and temporal)

patterns of expression of the genes in the network. Since TFs

regulate the expression of other genes, local differences in expression

of a set TFs are a powerful method of generating spatial patterns of

growth, differentiation and expression of guidance cues (and

therefore innervation), and developing more complex patterns of

gene expression. The arealisation genes form a regulatory network

with many feedback loops which is in principle capable of

generating spatial patterns. Establishing which interactions are

critical for correct arealisation is of great interest to the field, but

current experimental approaches are limited in their ability to

quickly assay the importance of each particular interaction.

Computational modelling of gene regulatory networks is

necessary because their complex behaviour is difficult to understand

intuitively. In addition, it offers several other benefits. Currently, the

many hypothesised interactions between arealisation genes are

represented as arrow diagrams like that seen in Figure 2A. Because

intuition tends to follow simple causal chains, the presence of many

feedback loops makes intuition about the overall behaviour of

complex systems unreliable [33–37]. Consequently, a more formal

description than an arrow diagram would test the current

conceptual model, and has the potential to give greater under-

standing and insight, as it has done for many other regulatory

networks [for review see 33–36,38–44]. The unambiguous

descriptions found in mathematical and computational models

offer the added benefit of making assumptions explicit and therefore

allowing greater scrutiny [45]. Computational experiments can also

be performed quickly and cheaply relative to laboratory experi-

ments and consequently can be useful for conducting thought

experiments which can then be tested experimentally [45,46]. In

this way, computational modelling and experiments can spur each

other on so that both are ‘‘improved in a synergistic manner’’ [36].

Here, we use the Boolean logical approach to model the arealisation

regulatory network. In this approach, variables representing genes and

proteins can take only two values, zero or one, representing gene and

protein activity being below or above some threshold for an effect.

While continuous models are more realistic, they have many free

parameters which are hard to constrain from experimental data, and

offer a formidable computational challenge to investigate systemati-

cally. In contrast, Boolean models can be used when only qualitative

expression and interaction data are available, as is the case for

arealisation. In Boolean models, at each point in time, the state of a

variable depends on the state of its regulators at the previous time step.

A set of logic equations capture the regulatory relationships between

Figure 1. Gene expression in the developing neocortex. (A) The anterior neural ridge or commissural plate (blue) is a patterning centre in the
developing forebrain that secretes the morphogen Fgf8. Since the protein is secreted, it is hypothesised that it diffuses to form a gradient [5]. The
directions A, P, D, V, M and L indicate anterior, posterior, dorsal, ventral, medial and lateral respectively. (B) These four transcription factors are
expressed in spatial mRNA and protein gradients across the developing forebrain. Many other genes with spatial patterns of expression have also
been identified [for review see 8]. (C) A schematic of the desired steady state expression levels in the anterior and posterior compartments in the
discretised Boolean model. A is adapted from Figure 1A in [4] and Figure 1 in [5], B is adapted from Figure 6A in [5].
doi:10.1371/journal.pcbi.1000936.g001

Author Summary

Understanding the development of the brain is an
important challenge. Progress on this problem will give
insight into how the brain works and what can go wrong
to cause developmental disorders like autism and learning
disability. This paper examines the development of the
outer part of the mammalian brain, the cerebral cortex.
This part of the brain contains different areas with
specialised functions. Over the past decade, several genes
have been identified that play a major role in the
development of cortical areas. During development, these
genes are expressed in different patterns across the
surface of the cortex. Experiments have shown that these
genes interact with each other so that they each regulate
how much other genes in the group are expressed.
However, the experimental data are consistent with many
different regulatory networks. In this study, we use a
computational model to systematically screen many
possible networks. This allows us to predict which
regulatory interactions between these genes are important
for the patterns of gene expression in the cortex to
develop correctly.

Gene Regulation of Brain Development
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variables and dictate how the system evolves in time. The Boolean

idealisation greatly reduces the number of free parameters while still

capturing network dynamics and producing biologically pertinent

predictions and insights [43,45,47]. In our model, we use only two

spatial compartments, one representing the anterior pole and another

representing the posterior pole. The anterior and posterior expression

levels after Boolean discretisation are shown in Figure 1C. More than

two expression levels and more than two spatial compartments would

be more realistic, but would result in an explosion in the number of

parameters currently unconstrained by experimental data. Having

only two expression levels and only two compartments allows us to

systematically screen a large number of networks, which would be

impossible in a more complex model.

In this paper, we simulate the dynamics of all possible networks

created by different combinations in interactions between Fgf8,

Emx2, Pax6, Coup-tfi and Sp8, and show that only 0:1% of these

networks are able to reproduce the expression patterns observed

experimentally. From this analysis, we identify structural elements

common to the best performing networks, as well as elements that

never appear in the networks that perform well. These results

reveal important logical principles underlying the cortical area-

lisation gene network, and suggest potential directions for future

experimental investigations.

Results

Simulation of the dynamics of 224 possible networks
revealed networks that reliably reproduced the
experimentally observed expression gradients

Experimental evidence indicates that Fgf8, Emx2, Pax6, Coup-tfi

and Sp8 regulate each other’s expression, but the actual structure

of the network is highly unconstrained by experimental data.

Figure 2. A network created by interactions between the five genes of interest as suggested by experiments. (A) Arrows (?) indicate
inductive or activating interactions, flat bars (a) indicate repressive interactions. Text in italics signifies genes while upright text signifies proteins.
Only the activation of Fgf8 by Sp8 (Sp8?Fgf8) has been directly demonstrated [24]. Other interactions have generally been inferred based on altered
expression patterns in mutants and therefore might be indirect. For example, the activation of Emx2 by Coup-tfi might be due to Coup-tfi repressing
Pax6 which in turn represses Emx2. This panel is adapted from Figure 6B in [5]. (B) References for each of the interactions in panel A. (C) The Boolean
logic equations for the network in panel A. F, E, P, C and S are the logical variables representing the genes Fgf8, Emx2, Pax6, Coup-tfi and Sp8 and F, E,
P, C and S are the logical variables representing the respective proteins. For a gene to be turned on at time tz1, its inductive regulators must be
present and its repressive regulators absent at time t.
doi:10.1371/journal.pcbi.1000936.g002
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Hence, we performed a systematic screen of the different possible

networks and then looked for common structural features in the

networks that perform poorly and well.

We analysed the dynamics of all networks created by different

combinations of 24 possible interactions between these five genes

and their respective proteins. In each network, Sp8?Fgf8 was

fixed since this has been directly demonstrated [24]. We also did

not consider positive interactions between species with opposing

expression gradients, or negative interactions between species with

the same gradient. For example, Emx2aPax6 and Fgf8?Pax6

were possible interactions, but Emx2?Pax6 and Fgf8aPax6 were

not. The 24 variable interactions generated 224~1:68|107

possible networks. The structure of each network was transformed

into a set of Boolean logic functions as described in the Methods.

We identified networks that proceeded from the state at the

anterior pole at E8 to the state at around E10.5, as well as from the

state at the posterior pole at E8 to the state at around E10.5. At

E8, of our genes of interest, only Fgf8 is active due to mechanisms

external to the network we are modelling [5,24,26], and only at

the anterior pole. Hence, in the Boolean model with binary

variables, Fgf8 gene and protein started in the active (‘1’) state in

the anterior compartment and inactive (‘0’) state in the posterior

compartment, while the other genes and proteins started in the

inactive state in both compartments. By E10.5, the expression

patterns seen in Figure 1 are present. That is, at the anterior pole,

Fgf8, Pax6 and Sp8 genes are active, while Emx2 and Coup-tfi are

inactive; at the posterior pole, Emx2 and Coup-tfi are active, while

Fgf8, Pax6 and Sp8 are inactive.

When the Boolean update functions describing a network were

applied stochastically, many networks reached multiple steady states

with fixed probabilities. In these cases, we calculated the average

gene and protein levels, weighted by the probability of ending in a

particular state, and thus each Boolean variable could be between 0

and 1. We say that a network reliably reaches a desired steady state

if it does so with a greater than 50% probability. From this, it follows

that networks that reliably reach both the anterior and posterior

steady states from the respective starting states have differences in

activity between the anterior and posterior poles than span 0.5, as in

Figure 1C. We define these networks as good.

A previously hypothesised regulatory network does not
satisfy our criteria for reproducing the experimental
observations

To give a specific example, we present the dynamics of a

regulatory network previously hypothesised based on experimental

observations [5,8], seen in Figure 2A. The network was converted

into the set of Boolean logic equations described in Figure 2C. We

found that this network had a 100% chance of following the

desired trajectory from the posterior starting state to the posterior

steady state. In constrast, it had only a 38% chance of following

the desired anterior trajectory from the anterior starting state to

the anterior steady state. This poor anterior performance arises

because of Fgf8 auto-induction and the Fgf8/Sp8 inductive loop,

as we will explain later in more detail. While this network

produced the correct activity gradients overall, as seen in

Figure 3A, it does not satisfy our criteria for doing so reliably

Figure 3. Performance of a previously hypothesised network, and all possible networks. (A) The average expression in the anterior and
posterior compartments in the experimentally hypothesised network in Figure 2. This network does not satisfy our criteria for reliable performance
because the gradients do not span 0.5. (B) Each network followed the desired anterior state trajectory and the desired posterior state trajectory with
a fixed probability plotted on the two axes of this graph. We defined good networks as those with a greater than 50% chance of following both the
desired anterior trajectory of states as well as the desired posterior trajectory of states. These networks lie in the upper, right quandrant of this graph
(blue plusses). All other networks (black crosses) did not satisfy our criteria for reliably reproducing the experimentally observed patterns of gene
expression. The point corresponding to the experimentally hypothesised network in Figure 2 is coloured green. The red plus corresponds to the two
best performing networks in Figure 7B and C. The black contour lines are lines of constant network performance.
doi:10.1371/journal.pcbi.1000936.g003
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because the gradients do not span 0.5; the anterior levels of Fgf8,

Pax6 and Sp8 are too low (v0:5), while the anterior levels of Emx2

and Coup-tfi are too high (w0:5). The fact that this network did not

reach our criteria for reproducing the experimental observations,

even though all interactions have been observed indirectly, shows

clearly that intuitions about the dynamics of regulatory networks

with feedbacks can be unreliable.

Only a small percentage of networks satisfied our criteria
for reproducing the experimental observations

Of all possible networks, we found that 0.1% of networks

(1:00|104) had a greater than 50% chance of proceeding from

the anterior starting state to the anterior steady state, as well as a

greater than 50% of proceeding from the posterior starting state to

the posterior steady state. In a plot of the probability of following

the desired anterior trajectory through state space against the

probability of following the desired posterior trajectory, these good

networks lie in the upper right quadrant (Figure 3B).

To assess the similarity of the structures of the good networks,

we calculated the average distance from each of the good networks

to the best performing network and compared this to the average

distance from all networks (Figure 4). The distance is defined as the

number of different interactions [48]. The good networks differ to

the best network by an average of 7:3+2:1 interactions, while all

possible networks differ by an average of 12:0+2:4 interactions.

This indicates that the structures of the good networks are

restricted in the space of all possible networks. We then set out to

understand which network interactions characterised the good and

bad networks.

There were many combinations of interactions that did
not appear in networks that performed well

Careful examination of the interactions present and absent in

the good networks allowed us to identify several combinations of

interactions that were never present in good networks. Networks

containing nodes with no regulators obviously performed poorly.

Figure 5A shows their position on the plot of probability of

following the desired anterior trajectory though state space against

the desired posterior trajectory. In a similar vein, networks where

Fgf8 was not upstream of at least one of the four TFs also

performed poorly (Figure 5B), because the starting states of the two

compartments only differed in Fgf8 activity. In addition, networks

with auto-inductive interactions all performed poorly (Figure 5C).

This occurs because any node with auto-induction is either locked

into its initial state or becomes inactive if it has other regulatory

requirements that are not satisfied. Consequently, the desired

trajectories cannot occur with a greater than 50% probability in

both compartments. By similar reasoning, nodes with inductive

loops also performed poorly (Figure 5D), as do networks with

isolated repressive loops (Figure 5E).

We also identified several higher order combinations of

interactions that rarely appeared in networks that could produce

the average expression gradients observed experimentally. For

these higher order combinations, we could not deduce an intuitive

explanation for why they caused networks to perform poorly.

Some of these combinations are listed in Table S1. Removal of

networks containing these interactions further narrowed the space

of possible networks as seen in Figure 6. In total, the criteria

outlined so far reject 99.96% of the networks investigated, leaving

6980 networks.

Some interactions were more likely than others to occur
in the networks that performed well

By analysing the remaining networks, we identified certain

interactions that were more likely than others. Of the remaining

networks, 84% (5849 of 6980), satisfied our criteria for reliably

following the desired trajectories to produce the average expression

gradients observed experimentally. Surprisingly, among these good

networks, no single interaction was universally present or absent,

except those already identified as deterimental (Table 1, third

column). In fact, among the remaining, good networks, all

interactions occurred at about the frequency expected from all the

remaining networks (Table 1, third column compared to second

column). In general, the repressive interactions were more likely

than inductive ones. The interactions Fgf8aEmx2 and Fgf8aCoup-tfi

were the most likely interactions, occuring in 80% of all remaining

networks that performed well. Next, Emx2aSp8 and Coup-tfiaSp8

occurred in 66% of good networks. The interactions Pax6aEmx2

and Pax6aCoup-tfi occurred in 55% of all good networks, while

Emx2aPax6 and Coup-tfiaPax6 occurred in 54% of all good

networks.

Though many different networks performed well, we now

discuss the best performing networks as an illustrative example.

The two best performing networks both followed the desired

anterior trajectory 74% of the time and the desired posterior

trajectory 74% of the time. They are marked in red in Figure 3B

and reliably produced the average expression gradients observed

experimentally (Figure 7A cf. Figure 1C). Figure 7B and C show

the structures of these two networks. Note that the six most likely

interactions from the third column of Table 1 are present in these

networks, as well as several less common interactions. However,

many networks with similar structures also produced the correct

average expression gradients, while some with quite different

structures did too. Thus, although the networks that reproduced

the experimentally observed expression gradients were constrained

in structure compared to all possible structures, there was still a

remarkable diversity in these networks.

In general, repressive interactions were more prevalent in the

networks that performed well than inductive interactions. This is

evident in the probabilities of each interaction being present

(Table 1, third column), as well as a set of networks that performed

Figure 4. Distribution of the structural difference between the
best network and the good networks, as well as the best
network and all networks. The distance between two networks is
the number of interactions differing between them. The good networks
are constrained in their structure so that there is less difference
between them and the best network than between all networks and
the best network.
doi:10.1371/journal.pcbi.1000936.g004
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similarly to the best performing network, that are illustrated in

Figure 8A. In these 64 networks, the six most common interactions

in the good networks were all required to be present. All other

repressive interactions, which created reciprocal repressive loops,

could be present or absent without greatly affecting network

performance. The only inductive interaction appearing in this set

of networks was Fgf8?Pax6, and it was present in all 64 networks.

All inductive interactions between the four TFs were required to

be absent along with Pax6?Fgf8, all auto-inductive loops and

Fgf8?Sp8 which created an inductive loop.

Discussion

The roles of different genes
Current experimental evidence indicates that the gene network

that regulates cortical area development has multiple feedback

pathways and consequently, it is difficult to understand intuitively.

Using a Boolean logic model, we simulated many different possible

networks and identified many structural requirements on the

networks to ensure good performance.

Our analysis suggests differing roles for the different genes in the

network. We show that Fgf8 expression at the anterior pole, a

putative cortical patterning centre, may be sufficient to drive the

correct spatial patterning of the transcription factors Emx2, Pax6,

Coup-tfi and Sp8, if simple interactions between these transcription

factors exist. This is an example of how a transient signal, in this

case Fgf8 expression initiated by external regulators, can be

converted into a durable change in the developing brain [49].

In our simplified model, Emx2 and Coup-tfi, which are both

expressed in high posterior–low anterior gradients, play the same

role in the network. This means that if Emx2 and Coup-tfi are

swapped in any network, the dynamics of the network don’t

change. This is evident in the higher order interactions that rarely

appear in good networks, listed in Table S1, as well as the two best

performing networks in Figure 7B. In reality, Coup-tfi has a sharper

anterior-posterior expression gradient than Emx2 and the two TFs

Figure 5. Some combinations of interactions that never appear in good networks. Each panel shows the probability of following the
desired anterior state trajectory against the probability of following the desired posterior state trajectory for all 224 networks that we considered. In
each panel, we highlight in red networks that contain a particular combination of interactions. All other bad networks are marked with black crosses,
all other good networks are marked with blue pluses. (A) In red are networks containing nodes with no regulators. These entered the anterior steady
state or posterior steady state but not both. (B) In red are networks with Fgf8 only downstream of the four TFs (Fgf8aEmx2, Fgf8?Pax6, Fgf8aCoup-tfi
and Fgf8?Sp8 all absent). Because the only difference in the starting state between the two compartments was Fgf8 activity, these networks could
not enter both the anterior and posterior steady states with w50% probability. (C) Marked in red are networks with auto-induction. Networks with
Emx2, Pax6, Coup-tfi or Sp8 auto-induction entered the anterior steady state or the posterior steady state but not both. Networks with Fgf8 auto-
induction could reliably enter the posterior steady state but not the anterior steady state. To enter the anterior steady state, they required Sp8 to
become and remain active before the state of Fgf8 was updated. Because nodes were updated asynchronously in a random order, this could not
occur with w50% probability. (D) In red are networks containing inductive loops. These also could not enter the anterior steady state with w50%
probability by similar reasoning to C. (E) In red are networks containing isolated repressive loops (that is, X repressing Y was the only regulation of Y
and Y also repressed X). These also could not reproduce the average gradients observed experimentally.
doi:10.1371/journal.pcbi.1000936.g005
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are expressed in opposing gradients along the medial-lateral axis.

Experiments suggest that Emx2 promotes posterior area identity

while Coup-tfi represses anterior area identity [6]. Therefore, we

expect that they are not redundant as our model suggests, but play

different roles through differing downstream targets.

Interactions we predict are likely
Our screen of possible networks identified interactions that we

predict are more likely to be present in the arealisation regulatory

network than others, and are therefore good experimental targets

for further study. In general, we predict that repressive interactions

are particularly important in this network. This is consistent with

data showing that repressive cascades are important for spatial

differentiation in other systems [50,51]. The interactions we predict

are most likely include several interactions that have previously been

hypothesised based on experiments. Our analysis predicts that

Fgf8aEmx2 and Fgf8aCoup-tfi are the most likely direct interactions,

consistent with many previous suggestions [20,21,27,52–54]. Since

Sp8 induces Fgf8, repression of Sp8 by Emx2 has been proposed as a

mechanism by which Fgf8 expression can be contained to the

anterior pole [24]. Our analysis predicts that repression of Sp8 by

Emx2 or Coup-tfi, or both, is quite likely. Currently, possible

repression of Sp8 by Coup-tfi has not been discussed in the

experimental literature. Reciprocal repression between Emx2 and

Pax6 has been frequently discussed as potential regulatory

interaction [5,7,11,23,55,56; but see also 2]. Our analysis predicts

that these interactions are approximately equally likely. However, it

also predicts that reciprocal repression loops in general are not

critical for correct functioning of the network.

Interactions we predict are unlikely
Our screen of networks also predicts several single interactions

and many combinations of interactions that are unlikely to occur in

the arealisation regulatory network since they usually lead to poor

performance. The lack of an intuitive explanation of why some of

the combinations of interactions degrade network performance

demonstrates the complexity of the network dynamics, and why

computational modelling of these networks gives insights not

available through intuition. Several of the interactions that we

predict are unlikely have previously been hypothesised based on

experiments. In particular, Fgf8?Sp8 has been proposed by

Sahara et al. [24] but our simulations predict that this interaction

creates an inductive loop which is detrimental to network

performance. The experimental evidence for this interaction is

that ectopic expression of Fgf8 in the telencephalon by in utero

electroporation at E11.5 induced ectopic expression of Sp8 at

E13.5 [24]. However, the target tissue contained an active

regulatory network that could have indirectly initiated expression

of Sp8 after perturbation by ectopic Fgf8. Direct auto-induction of

any of the five genes prevented networks from being able to

recreate the experimental expression patterns. Auto-induction of

Fgf8 has previously been hypothesised based on experiments

implanting Fgf8-coated beads in the chick midbrain [57], limbs

[58] and telencephalon [52], but our model predicts the resulting

induction of ectopic Fgf8 is unlikely to be direct. It could be

occurring indirectly through an active regulatory network

perturbed by ectopic Fgf8. For example, in the forebrain, if

Emx2 does limit the region of Fgf8 expression by repressing Sp8

inducing Fgf8 (Emx2aSp8?Fgf8, [24]) and Fgf8 represses Emx2,

then ectopic Fgf8 protein could induce the transcription of ectopic

Fgf8 mRNA. A more definitive test of Fgf8 auto-induction would

require to addition of ectopic Fgf8 the absence of Sp8 or Emx2.

Changes in Fgf8 expression would need to be examined after

E12.5 because Fgf8 expression in the forebrain appears to be

initiated by regulators outside the network studied here and only

maintained by Sp8 [26].

Relation to other modelling work
To date, we are only aware of one paper modelling cortical

arealisation [59]. The model starts with expression gradients of

Figure 6. Some higher order combinations of interactions rarely appear in good networks. Each panel shows the probability of following
the desired anterior state trajectory against the probability of following the desired posterior state trajectory for all 224 networks that we considered.
In each panel, we highlight in red networks that contain particular combinations of interactions. All other bad networks are marked with black
crosses, all other good networks are marked with blue pluses. (A) In red are networks containing any of the combinations of three interactions listed
in Table S1. (B) In red are networks containing any of the combinations of four interactions that we found caused networks to perform badly.
doi:10.1371/journal.pcbi.1000936.g006
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Fgf8, Emx2 and Pax6, which are maintained by regulation of each

other. It then goes on to simulate the formation of area-specific

thalamocortical connections. In contrast, this paper focuses on

modelling pattern generation by the gene regulatory network, and

at present does not consider the later process of thalamocortical

innervation where less data are available to constrain models.

This paper draws on the ideas used in other Boolean modelling

papers in different systems, but a systematic analysis of possible

regulatory networks is novel. Although algorithms exist for reverse

engineering the Boolean expressions and hence the structure of

regulatory networks [60,61], they require data on the time course

of expression levels. For example, Laubenbacher and Stigler [61]

tested a reverse engineering algorithm by reconstructing a well-

characterised network. They showed that their algorithm only

worked well when it used time series data from mutant animals, as

well as wild type time series. Currently, these data are unavailable

for the system we have investigated for either wild type or mutant

animals.

More recently, Wittmann et al. [62] used Boolean modelling to

infer regulatory relationships governing the spatial patterning of

genes at the midbrain-hindbrain isthmus. They were able to use a

spatial, rather than temporal pattern to infer minimal Boolean

equations using reverse engineering strategies from digital

electronic engineering. Compared to the gene expression patterns

at the isthmus however, the arealisation expression patterns are

much simpler and consequently do not provide us with many

constraints for the reverse engineering algorithm. In any case, for

more complex modelling Wittmann et al. added additional

interactions hypothesised in the literature. In contrast, our

simulation of an experimentally hypothesised network gave a

negative result, which led to our systematic screening all possible

networks. Our goal was to explore the space of possible networks

rather than identify one individual network that could produce the

desired results as Wittmann et al. did, when many other sufficient

networks likely exist.

Albert and Othmer [63] explored a single well-characterised

network (the Drosophila segment polarity network) in great detail.

Using Boolean analysis, they were able to reproduce mutants and

predict novel mutants. Unfortunately, mutants in the arealisation

genes exhibit a phenotype of shifted expression gradients of the

other genes (see Introduction). These results cannot be reproduced

in the two compartment, two level model used in this paper (see

Methods, Spatial Compartments for more detail).

An extended model with additional spatial compartments and

expression levels, or continuous expression levels would be able to

incorporate the mutant data. However, these types of models have

many more parameters that cannot be constrained by the

qualitative experimental data available in this case. Any systematic

exploration or optimisation of parameter space for the large

number of possible networks we simulate in this paper would be

computationally impossible. For example, an ordinary differential

equation model using Michaelis-Menten kinetics has two param-

eters per interaction (the Hill coefficient and the Michaelis

constant), as well as a degradation rate and a constitutive activity

rate for each species [35,43], none of which are constrained by

experimental data.

Communication between cells
In this paper, we have not considered any communication

between cells since we model only two compartments at the

anterior and posterior poles. However, communication between

cells may occur and may be useful. Although we find that many

networks can produce the experimentally observed average

expression patterns, we find that in most cases, each network

has more than one accessible steady state from each of the starting

states. We speculate that this may be resolved by cell-cell signalling

of some kind, most likely by Fgf8, which is known to be a secreted

molecule. Such signalling could lock the regulatory networks of

nearby communicating cells into the same state. Fgf8 movement

by diffusion or some other kind of transport might also generate

the smooth gradients of the TFs. An investigation of the effects of

Fgf8 diffusion would require a more complex model with more

than two discrete expression levels and more than two compart-

ments.

Conclusions
Overall, our exploration of the dynamical consequences of

different structures of the network consistent with experimental

data predicts constraints on the structure of the real network. The

Boolean approach we used is well suited to the qualitative data

currently available, and permitted us to screen a large number of

networks. Our results may be used as a starting point for future

more realistic models of the gene networks regulating cortical

arealisation because the narrowed pool of possible networks may

Table 1. Probability of interactions being present in all
remaining networks, compared to remaining networks that
perform well.

Interaction

P(present) in
all remaining
networks (%)

P(present) in all
remaining good
networks (%)

FaE 80 80

FaC 80 80

EaS 66 66

CaS 66 66

PaE 55 55

PaC 55 55

EaP 54 54

CaP 54 54

S?P 53 51

F?P 44 46

EaF 42 43

CaF 42 43

SaE 36 39

SaC 36 39

C?E 29 31

E?C 29 31

P?F 23 18

P?S 13 15

F?F 0 0

E?E 0 0

P?P 0 0

C?C 0 0

S?S 0 0

F?S 0 0

All interactions in the good networks occur at about the expected frequency,
which means that it is difficult to identify any further combinations of
interactions that ensured networks performed badly or well. Despite this, we
can still use the probabilities of individual interactions among the remaining
good networks as an indicator of which interactions are likely and unlikely to
occur in the gene network regulating cortical arealisation.
doi:10.1371/journal.pcbi.1000936.t001
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make it feasible to investigate parameter space systematically in a

more realistic model with many more free parameters. From an

experimental perspective, data on the time course of expression

levels at different spatial locations, or even accurate relative

protein levels would provide useful constraints to future models.

We show here though that even a simple Boolean model reveals

logical principals underlying the genetic regulation of cortical

arealisation, and may be used to guide future experiments.

Figure 7. Best performing networks. (A) In the best performing networks, the average activity of the genes and proteins of interest in the
anterior and posterior compartments formed gradients in the same direction as those observed in mouse (cf Figure 1C). (B) The structure of the two
best networks. The purple boxes with names in italics represent genes and the blue ellipses with names in upright text represent proteins. Each of the
gene?protein interactions has been condensed into a green box to simplify the diagram and avoid intersecting edges. Each edge between the
rounded green boxes indicates how the protein in the source box regulates the gene in the target box. The two best networks performed equally
well. However, some other networks with quite different structures also performed nearly as well.
doi:10.1371/journal.pcbi.1000936.g007

Figure 8. A selection of networks that produced the correct average expression gradients and have common structural elements.
(A) The structure of the networks. The purple boxes with names in italics represent genes and the blue ellipses with names in upright text represent
proteins. Each of the gene?protein interactions has been condensed into a green box to simplify the diagram and avoid intersecting edges. Each
edge between the rounded green boxes indicates how the protein in the source box regulates the gene in the target box. The solid lines indicate
interactions that must be present while the dashed lines indicate interactions that can be present or absent. The 6 dashed interactions means that
this diagram represents 26~64 different networks. (B) The performance of these 64 networks (red pluses) on a plot of probability of following the
desired anterior state trajectory against the probability of following the desired posterior state trajectory. All other good networks are marked with
blue pluses, all bad networks with black crosses.
doi:10.1371/journal.pcbi.1000936.g008
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Materials and Methods

Networks simulated
We examined the dynamics of all possible networks created by the

five genes and five proteins of interest in anterior-posterior patterning

of cortical areas: Fgf8, Emx2, Pax6, Coup-tfi and Sp8 and their

respective proteins. The induction of Fgf8 by Sp8 has been directly

demonstrated [24], and therefore, this interaction was fixed in all the

simulated networks. Genes were also always fixed to induce their

corresponding protein. To narrow the number of networks

considered, other interactions were either inductive (?) or repressive

(a), depending on the anterior-posterior expression patterns observed

experimentally (shown in Figure 1). For example, because Emx2 and

Pax6 are expressed in counter gradients, we considered the

interactions Emx2aPax6 and Pax6aEmx2 but not the interactions

Emx2?Pax6 and Pax6?Emx2. This gave 24 possible interactions,

summarised in Table 2, which have not been directly demonstrated.

Hence, we considered all 224~1:68|107 networks formed by

different combinations of the possible interactions.

Converting a network into Boolean logic functions
Each network was turned into a set of Boolean logic functions

using the logical operators AND and NOT. Repressive interac-

tions were incorporated with a negation (NOT operator). We

assumed that if a gene has multiple regulators, all regulatory

conditions must be met, and so we combined their action with a

logical conjunction (AND operator). For example, the network in

Figure 2A was transformed into the set of Boolean functions in

Figure 2C. According to these equations, the state of a gene or

protein at time tz1 is governed by the state of its regulators at

time t. A protein will only be active if its corresponding gene is

active at the previous time step, and a gene will only be active if

the transcriptional activators of that gene are active at the previous

time step and the inhibitors are inactive.

Implicit in these functions are several assumptions [63]: (1) if the

regulatory requirements for transcription or translation to occur

are satisfied, then the mRNA or protein is synthesised in one time

step, (2) mRNA decays within one time step if the necessary

regulatory requirements do not continue to be satisfied, and (3)

active protein decays within one time step. Albert and Othmer

[63] tried relaxing these assumptions and found that it did not

change the steady states. We did not consider the OR logical

operator, which corresponds to the situation where only one

regulatory condition (or a subset of conditions) must be satisfied to

set a gene to the active state, or other logical operators. While it

would obviously be possible to relax these assumptions, this would

cause a large increase in the complexity of the model and a

combinatorial explosion in the number of parameters to

investigate, making it harder to analyse and derive conclusions

from the model.

Spatial compartments
Since we were interested in anterior-posterior patterning, it was

necessary to have a spatial dimension in the model. This was

incorporated by considering two compartments, one anterior, one

posterior. The regulatory networks, and therefore logic functions,

operating in the two compartments were the same. The difference

between the two compartments was their initial conditions

(outlined later). There was no signalling between compartments.

There are several reasons why signalling between compartments

was not incorporated into the model. Firstly, there is currently no

experimental evidence for long range communication between

cells via our molecules of interest. As discussed in the Introduction,

Fgf8 is a secreted protein, and it is hypothesised to diffuse, but only

its mRNA expression has been characterised. Even if it does

diffuse, it is unlikely to be present at high concentration at the

posterior pole, represented in our model by the posterior

compartment. Gradients of TF mRNA (and presumably protein)

must form by some mechanism other than diffusion and here we

assume the TFs act on each other independently in each

compartment.

Given the lack of signalling between compartments, and the fact

that in Boolean models, each gene and protein can only have the

state ‘0’ or ‘1’, two compartments with different initial conditions

were sufficient to completely explore the system. Additional

compartments between the anterior and posterior extremes would

have to start with the same initial conditions as either the anterior

or posterior compartment. Without communication between

Table 2. Summary of all the considered interactions.

Regulator Target gene or protein

Fgf8 Fgf8 Emx2 Emx2 Pax6 Pax6 Coup-tfi Coup-tfi Sp8 Sp8

Fgf8 +

Fgf8 z { z { z

Emx2 +

Emx2 { z { z {

Pax6 +

Pax6 z { z { z

Coup-tfi +

Coup-tfi { z { z {

Sp8 +

Sp8 + { z { z

All possible combinations of these interactions form the space of networks whose dynamics were simulated. Text in italics signifies genes while upright text signifies
proteins. A ‘z’ indicates an inductive interaction while a ‘{’ indicates a repressive interaction. The table is sparse because we assume that proteins can’t regulate
proteins and a gene can only regulate its corresponding protein. The circled interactions (+) were present in every network because these have been directly
demonstrated by experiments. These include each gene producing its respective protein and Sp8 activating Fgf8. The other 24 interactions are possible but have not
been directly demonstrated. We simulated the dynamics of the 224 networks formed by all combinations of the possible interactions.
doi:10.1371/journal.pcbi.1000936.t002
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compartments, these hypothetical additional interior compart-

ments would follow the same dynamics as an exterior compart-

ment with the same starting state. Hence, they would not provide

any extra information to constrain the structures of the arealisation

network.

A consequence of this two-level, two-compartment model is that

we cannot simulate the mutant phenotypes of shifting expression

gradients (see Figure 2B for references). In the current model, an

expression gradient is represented by a protein in the active state in

one compartment and in the inactive state in the other

compartment. The only other possible expression patterns are

active–active or inactive–inactive, which are not shifted gradients.

Initial states and desired steady states of each
compartment

The difference between the two compartments was their initial

state, and we were interested in which steady state they each ended

up in given the different initial states. We describe the state of the

system with a ten-tuple of 1’s and 0’s representing the state of the

network nodes [Fgf8, Fgf8, Emx2, Emx2, Pax6, Pax6, Coup-tfi, Coup-

tfi, Sp8, Sp8]. For example, the state [1,1,0,0,0,0,0,0,0,0] denotes

Fgf8 gene and protein are active, while all other genes and proteins

are inactive. This corresponds to the starting state in the anterior

compartment at around E8, where Fgf8 expression is thought to be

initiated via a mechanism external to the regulatory network we are

modelling [5,24,26]. We assume that the expression of the other

four genes is controlled by the regulatory network we are modelling.

In the posterior compartment, we assume that the expression of all

five genes is controlled by the modelled regulatory network and so

this compartment starts in the state [0,0,0,0,0,0,0,0,0,0]. The

Boolean versions of the desired anterior and posterior steady states

are seen in Figure 1C and are given in tuple notation as

[1,1,0,0,1,1,0,0,1,1] for the anterior compartment and [0,0,1,

1,0,0,1,1,0,0] for the posterior compartment. We were interested

in networks which flowed from the anterior starting state

[1,1,0,0,0,0,0,0,0,0] to the anterior steady state [1,1,0,0,1,1,0,0,

1,1], as well as from the posterior starting state [0,0,0,0,0,0,0,0,0,0]

to the posterior steady state [0,0,1,1,0,0,1,1,0,0].

Creating and analysing state tables
The binary tuple representation of states emphasises the fact

that Boolean networks are finite state machines whose steady states

can be readily determined. Initially, we determined the steady

states of each network by creating a state table for each network.

This is a list of all possible states of the network ( [0,0,0,0,0,0,0,0,-

0,0], [0,0,0,0,0,0,0,0,0,1],…, [1,1,1,1,1,1,1,1,1,1]) and the corre-

sponding next state when the Boolean rules were applied. Steady

states were those that did not change under the Boolean rules.

Unfortunately however, this analysis could not reveal which

networks proceeded along the desired trajectories through state

space. Trajectories can be traced in state tables, but such

trajectories assume that all nodes update synchronously so that

trajectories are deterministic. Synchronous updating has been used

previously in Boolean modelling [63] but synchronous trajectories

frequently end up in artefactual cyclic attractors [35,49,64]. In

reality, it is highly unlikely that multiple species in a network would

change their state at exactly the same time. Rather, these systems

are stochastic, with nodes updated asynchronously, and this has

consequences for the dynamics of the system.

Simulating the networks with asynchronous updating
Assuming fully asynchronous updating of nodes enabled the use

of the Markov chain formalism to describe and analyse the

network dynamics [65]. The transition matrix T of a Markov

chain contains the probability of transition from each state to other

states in state space. We used the deterministic state table

described above to calculate the transition matrix, T, of each

network, assuming that each individual node changed state with

equal probability. For example, a deterministic transition from

[1,1,0,0,0,0,0,0,0,0] to [1,1,0,0,1,1,0,0,0,0] translated to a sto-

chastic transition to state [1,1,0,0,1,0,0,0,0,0] or [1,1,0,0,0,1,0,

0,0,0], each with a 50% probability. We found that most networks

formed reducible Markov chains, with more than one steady state,

each a part of a closed class of states. In general, the anterior and

posterior starting states were transient states that could end up at

more than one steady state. The probability of ending up at

different steady states from a transient state could be calculated

analytically [65] or by performing the simple computation:

s(n)~Tns(0) ð1Þ

where s(n) is the distribution of states of the system at time step n.

Note that s is different to the state tuple notation used so far.

Instead, it is a column vector of length 2No: nodes~210. The

probability of being in state [0,0,0,0,0,0,0,0,0,0] is given by

element s1, the probability of being in state [0,0,0,0,0,0,0,0,0,1] is

given by element s2, and so on. The two compartments in our

model each started in a single state, not a distribution of states.

Hence, the anterior starting state [1,1,0,0,0,0,0,0,0,0] correspond-

ed to an s-vector with a probability of one at element s769 and zero

probability elsewhere, and the posterior starting state [0,0,0,0,

0,0,0,0,0,0] corresponded to an s-vector with a probability of one

in element s1 and zero probability elsewhere. The element si(n)
gives the probability of finding the system in state i at time step n.

Since our networks always ended up in a distribution of steady

states, if n was large enough, the computation of Equation 1

determined the probability of ending up at different steady states

from the starting state s(0). In our analysis, since we knew the

steady states of each Markov chain from the state tables, we

iteratively calculated s(n)~Ts(n{1) until there was a 99.99%

chance of being in the steady states.

In many cases, there was a distribution of steady states. As each

compartment represented many cells, the steady state probability

distribution could be interpreted as the distribution of states across

an inhomogeneous cell population [66]. Hence, we calculated the

average amount of each species in a compartment as the sum of

steady states of each compartment weighted by the probability of

entering that steady state.

Analysing the similarity between different groups of
networks

We quantified the structural difference between two networks as

the number of interactions differing between them. We refer to

this as the distance between networks because if the network

structure is notated as a vector, then our measure of difference

between two networks is the Manhattan distance between the two

vectors. Because there are 24 possible interactions, the maximum

distance between two networks is 24, which occurs if all

interactions that are present on one network are absent in the

other and vice versa.

Identifying good and bad networks and good and bad
combinations of interactions

We were interested in networks that reliably followed a

trajectory from the anterior starting state to the anterior steady

state, as well as from the posterior starting state to the posterior
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steady state. We defined the overall performance index of a

network, P, as the minimum of the probability of following the

desired anterior trajectory and the probability of following the

desired posterior trajectory. If a network proceeded along each of

the desired trajectories more than 50% of the time, then this was

sufficient to give the average expression gradients observed

experimentally. This is equivalent to Pw0:5. Graphically, we

represent the performance of different networks on plots of

probability of proceeding from the anterior starting state to the

anterior steady state, against probability of proceeding from the

posterior starting state to the posterior steady state (for example,

see Figure 3B). On these plots, networks that reliably produce the

experimentally observed expression gradients (Pw0:5) fall in the

upper, right quadrant.

Finally, we found combinations of interactions that made a

network perform universally poorly or well. We did this by

examining the distribution of P for networks with particular

combinations of interactions. We started by looking at P for all

networks with each single interaction, compared to without. We

then looked at all combinations of interactions being present or

absent for all combinations of two, three and four interactions. If

all the networks containing a particular combination of interac-

tions had Pw0:5, then that set of networks was classified as good.

Conversely, if the majority of networks containing a particular

combination of interactions had Pv0:6, and only a few networks

with 0:5vPv0:6, then that set of networks was classified as bad.

Supporting Information

Table S1 Higher order combinations of interactions that rarely

appear in good networks.

Found at: doi:10.1371/journal.pcbi.1000936.s001 (0.04 MB PDF)
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(2007) COUP-TFI regulates the balance of cortical patterning between frontal/

motor and sensory areas. Nat Neurosci 10: 1277–1286.

24. Sahara S, Kawakami Y, Belmonte JCI, O’Leary DDM (2007) Sp8 exhibits
reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior

cortical area patterning. Neural Develop 2: 10.

25. Leingärtner A, Thuret S, Kroll TT, Chou SJ, Leasure JL, et al. (2007) Cortical
area size dictates performance at modality-specific behaviors. Proc Natl Acad

Sci U S A 104: 4153–4158.

26. Zembrzycki A, Griesel G, Stoykova A, Mansouri A (2007) Genetic interplay
between the transcription factors Sp8 and Emx2 in the patterning of the

forebrain. Neural Develop 2: 8.

27. Cholfin JA, Rubenstein JLR (2008) Frontal cortex subdivision patterning is
coordinately regulated by Fgf8, Fgf17, and Emx2. J Comp Neurol 509: 144–155.

28. Faedo A, Tomassy GS, Ruan Y, Teichmann H, Krauss S, et al. (2008) COUP-

TFI coordinates cortical patterning, neurogenesis, and laminar fate and
modulates MAPK/ERK, AKT, and beta-catenin signaling. Cereb Cortex 18:

2117–2131.
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