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ABSTRACT

Acute kidney injury (AKI) is the clinical term used for decline or loss of renal function. It is associated with chronic kidney
disease (CKD) and high morbidity and mortality. However, not all causes of AKI lead to severe consequences and some are
reversible. The underlying pathology can be a guide for treatment and assessment of prognosis. The Kidney Disease:
Improving Global Outcomes guidelines recommend that the cause of AKI should be identified if possible. Renal biopsy can
distinguish specific AKI entities and assist in patient management. This review aims to show the pathology of AKI,
including glomerular and tubular diseases.
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AKI PERSPECTIVE

Acute kidney injury (AKI), previously called acute renal failure
(ARF), is a condition of sudden kidney failure in patients with or
without preexisting chronic kidney disease (CKD); severe kidney
dysfunction within a few hours or days results in a significant
decrease (oliguria) or complete elimination of urine (anuria),
with electrolyte imbalance, often requiring hemodialysis.

While it is unclear when AKI was first recognized, inciden-
ces are scattered in the medical literature over the centuries
(http://www.renalmed.co.uk). Most experts agree that the pa-
thology was first described during World War II when four
cases of crush injury characterized by diffuse acute tubular
damage with pigmented casts followed by impaired renal
function were reported [1]. Homer W. Smith introduced the
term ‘ARF’ in 1951 [2]. In 2004, ARF was replaced by AKI [3, 4].
Before 2004 there were at least 35 ARF definitions. This situa-
tion of having various definitions has given rise to a wide
range of incidence estimates for AKI from 1 to 25% of intensive

care unit (ICU) patients and has led to mortality rate estimates
from 15 to 60% [5, 6].

AKI is now defined by the RIFLE criteria (risk, injury, failure,
loss, end-stage kidney disease) and is not just ARF. It incorpo-
rates the entire spectrum of the syndrome, from minor changes
in renal function to the requirement for renal replacement ther-
apy [7]. In practice, most nephrologists follow the Kidney
Disease: Improving Global Outcomes (KDIGO) criteria, which
recommend determining the cause of AKI whenever possible [5,
6]. The incidence of AKI on renal biopsy is not entirely known,
but is common either as an isolated finding or concurrent with
other diseases. This review is an account of the spectrum of en-
tities identified on renal biopsy from patients presenting with
AKI.

AKI clinical and pathologic classifications

It should be remembered that AKI is a clinical term.
Pathologists use descriptive pathologic findings that cumulate

Received: 06.04.2020; Editorial decision: 18.5.2020

VC The Author(s) 2020. Published by Oxford University Press on behalf of ERA-EDTA.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

526

Clinical Kidney Journal, 2021, vol. 14, no. 2, 526–536

doi: 10.1093/ckj/sfaa142
Advance Access Publication Date: 10 October 2020
CKJ Review

http://www.renalmed.co.uk
https://academic.oup.com/
https://academic.oup.com/
https://academic.oup.com/


to the term ‘acute tubular injury’ (ATI). Prerenal, intrarenal,
postrenal and even unilateral insults can cause ATI. A dissocia-
tion between structural and functional changes was first recog-
nized at autopsy of World War II soldiers with acute kidney
failure and death who were found to have mild kidney findings
(so-called shock kidneys) [1]. Examples of dissociation between
clinical symptoms and histopathological findings include prere-
nal AKI caused by volume depletion as in cardiogenic, allergic
or hemorrhagic shock. In such cases, ATI may be mild and/or
even absent. Postrenal AKI is caused by urinary flow obstruction
and can be unilateral or bilateral, e.g. unilateral hydronephrosis,
lithiasis and/or pyelonephritis. The recent AKI classification
that includes categories designated as declining renal function
(glomerular filtration rate) instead of renal failure are in range
and extent the histopathological ATI spectrum [6]. In practice, a
semiquantitative histopathological scoring of ATI as mild, mod-
erate or severe (or focal versus diffuse) is preferable instead of
the term acute tubular necrosis (ATN), which was previously
used despite the absence of necrosis in many cases.

Histopathological definitions of AKI

ATI is characterized by focal or diffuse tubular luminal dilata-
tion, simplification of the lining epithelium, loss of the brush
border in proximal tubules, loss of nuclei and/or the presence of
nucleoli (Figure 1A). Epithelial cell mitoses and cytoplasmic ba-
sophilia can also be seen and are thought to represent epithelial
cell regeneration. Both proximal and distal tubules can be af-
fected by ATI. ATN is characterized by focal or diffuse tubular
epithelial cell coagulative-type necrosis and detachment from
the basement membrane (Figure 1B and C). Epithelial cell necro-
sis consists of cytoplasmic swelling (oncosis), degeneration of
cytoplasmic organelles and a ghost-like tubular appearance
staining dark pink on hematoxylin and eosin (H&E) stain. ATN is
much less common compared with ATI and requires prolonged
and sustained tubular injury that is usually absent in acute AKI.
The exception is cortical necrosis caused by an acute ischemic
process, leading to degeneration of large number of tubules (co-
agulation necrosis). ATI and ATN may coexist (Figure 1C).

Intrarenal AKI is associated with numerous diseases, includ-
ing glomerular, tubulointerstitial and vascular. Intrinsic toxic
insults to tubular epithelial cells include heavy proteinuria, he-
maturia, interstitial nephritis and ischemia secondary to micro-
vascular (endothelial) injury, e.g. renal vasculitis and
thrombotic microangiopathies (TMAs). Glomerular diseases,
acute or chronic, can be complicated by ATI. Examples include
diabetic nephropathy, immunoglobulin A (IgA) nephropathy,

hypertensive kidney disease, myeloma cast nephropathy, trans-
plant rejection and TMAs.

A list of specific entities leading to intrarenal ATI is shown
in Table 1. The pathology of the most common entities is de-
scribed below.

ATI with distinct pathology

Rhabdomyolysis. Rhabdomyolysis causes ARF in 7–15% of all
AKI cases in the USA and affects 13–50% of hospitalized
patients, with worse prognosis and greater mortality in critically
ill patients [8]. In our recent study of renal biopsies accrued
from 2011 through June 2014 among 27 850 renal biopsies in our
search, 249 biopsies (�1%) were positive for myoglobin casts [9].
On H&E stain, myoglobin casts are focal, light pink, almost
translucent, but may vary from pink to dark red, granular or
chain-like clumps (Figure 2A). Myoglobin casts are difficult to di-
agnose accurately because they have overlapping morphology
with hemoglobin casts, myeloma casts and Tamm–Horsfall pro-
tein casts. Myoglobin immunohistochemistry is very helpful in
arriving at a definitive diagnosis, highlighting greater numbers
of injured tubules (not obvious on H&E) by staining luminal
deposits (casts) and/or proximal and occasionally collecting
duct epithelium (Figure 2B). Notably, ATI marked by the kidney
injury molecule-1 (KIM-1) antibody is more widespread,
highlighting the majority of tubules, compared with focal myo-
globin staining (Figure 2C). KIM-1 is not currently routinely used
to assess ATI in renal biopsies even though it is US Food and
Drug Administration approved as a biomarker believed to par-
ticipate in the process of both AKI and healing [10].

The pathogenesis of rhabdomyolysis is attributed to the re-
lease of myoglobin into the circulation, subsequently filtered by
the glomeruli and cleared in the tubules where it accumulates
either as tubular myoglobin casts or intraepithelial deposits
with either a ropey or finely granular appearance [9].
Diagnosing rhabdomyolysis clinically is complicated by fre-
quently absent classic clinical symptoms (triad of muscle pain,
weakness and dark urine) and/or nondiagnostic values of labo-
ratory tests such as creatine phosphokinase (CPK). CPK
increases within 12 h of the onset of muscle injury, has a serum
half-life of �36 h and declines 3–5 days after cessation of muscle
injury [11]. At the time of biopsy, CPK may already have dissi-
pated. The exact mechanism of ATI due to myoglobin pigment
deposits is still debated but it is thought that myoglobin itself
rarely leads to kidney injury in the absence of other risk factors
such as ischemia, volume depletion and hypotension. Acid
urine enhances the renal toxicity of myoglobin by converting

FIGURE 1: (A) ATI in proximal tubules shows luminal dilatation, simplification of the lining epithelium and loss of epithelial cell nuclei in some cells and loss of the

brush border. (B) ATN is defined by tubular epithelial cell necrosis (dark pink fragmented cytoplasm with no nuclei) and denudation of the basement membrane

(arrows). (C) ATI and ATN in the same renal biopsy. Arrow points to necrotic tubules. Dilated tubules are lined by a thin epithelial layer with no brush border.

H&E,�100.
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heme in myoglobin to ferrihemate (hematin), shown to produce
free hydroxy radicals that are directly toxic to renal tubular epi-
thelial cells or via renal vasoconstriction due to inhibition of ni-
tric oxide synthesis. In addition, the heme fraction of
myoglobin induces the release of free radicals, further contrib-
uting to ischemic tubular damage [9].

Underlying etiologies of myoglobin casts include drugs of
abuse (heroin, cocaine, opioids), infections [including human
immunodeficiency virus (HIV)], bacterial sepsis, chemotherapy
and immunosuppression (transplantation medicines, e.g. rapa-
mycin), dehydration (intense exercise), malignant hypertension,
trauma (surgery, traffic accidents) and myopathies [12] . The im-
portance of making the correct diagnosis of rhabdomyolysis has

prognostic implications. Full renal function recovery occurs in
about half of the patients; the rest remain dialysis dependent or
progress to CKD [9].

Hemoglobinuria and red blood cell casts, including
Coumadin nephropathy and hemosiderosis

Heme proteins can cause AKI via at least three mechanisms: di-
rect cytotoxicity of released hemoglobin products, decreased re-
nal perfusion and interaction of the intratubular hemoglobin
with Tamm–Horsfall protein (hemoglobin casts). Free hemoglo-
bin is bound to serum haptoglobin; when haptoglobin is

Table 1. Selected causes of AKI with distinct pathologic findings on renal biopsy

Pigment-induced AKI
Rhabdomyolysis
Hemoglobin cast nephropathy
RBC casts: anticoagulation (warfarin) nephropathy, hematuric syndromes, vasculitis
Hemosiderosis: hemochromatosis, sickle cell disease, blood transfusions, sepsis
Bile nephropathy (cholemic nephrosis): hepatic disorders and hepatotoxic drugs

Malignancy-induced AKI
Myeloma cast nephropathy
Proximal tubulopathy
Lysozyme nephropathy

Crystal-induced AKI
Calcium oxalate nephropathy: hereditary, dietary, ethylene glycol, various medicinal drugs, malabsorption, bowel obstruction or
small intestine/gastric bypass
Phosphate nephropathy
Cystinosis
2,8-dihidroxiadeninuria
Cholesterol crystals
Crixivan/indinavir crystals
Acute urate nephropathy

Drug-induced AKI
Isometric vacuolization/osmotic nephrosis, contrast nephropathy
Antibiotics: e.g. aminoglycosides, vancomycin
Immunotherapy-based agents
Illicit drugs: cocaine
Over-the-counter supplements
Chemotherapy drugs

Infection-induced AKI
Urinary tract obstruction
Sepsis
Pyelonephritis
Interstitial nephritis
Influenza types A and B (most common)
COVID-19
Parainfluenza virus
HIV
Coxsackievirus
Epstein–Barr virus
Echovirus
Cytomegalovirus
Adenovirus
Herpes simplex virus
Varicella-zoster virus
West Nile virus
Legionella

Generic ATN casts
TMA
Any glomerulonephritis
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FIGURE 2: (A) Myoglobin casts involve focal tubules and appear light pink on H&E (�100). Arrows point to myoglobin casts. (B) Myoglobin stains tubular casts brown

and may also stain tubular epithelial brush border and/or cytoplasm in a punctuate pattern. Immunohistochemistry (IHC) �100. (C) KIM-1, a marker for AKI, is overex-

pressed in injured and simplified (thin) tubular epithelium [same biopsy as in (B)]. KIM-1 IHC �200. (D, E) The biopsy shows ATI with focal translucent tubular casts (ar-

row in D). Hemoglobin IHC highlights the tubular casts (E). Myoglobin stain was negative. The patient in (D–E), a 72-year-old Caucasian man with severe coronary

artery disease, hypertension (HTN) and type 2 diabetes developed recurrent infection on his right foot, treated with intravenous piperacillin/tazobactam and developed

chills and shortness of breath. He also had hematuria and severe peripheral hemolysis. CPK was normal; creatinine increased to 7 mg/dL with low C3 and C4. Clinical

diagnoses included all comorbidities, but hemoglobin nephropathy was least expected. Hemoglobin IHC�100. (F) Patient with IgA nephropathy who presented with

hematuria and AKI. Renal biopsy shows tubular dilatation, simplification of the epithelium and multifocal luminal RBCs (H&E�100). (G) Large patch of subcapsular

proximal tubules packed with RBCs. Renal biopsy is from a 79-year-old white woman who presented with AKI on CKD. She has a histroy of atrial fibrillation on

Coumadin. (I) Faucet stain marking bilirubin casts (�100). The patient was a 50-year-old Caucasian man with kidney transplant and AKI. Serum creatinine was 3.9 mg/

dL and bilirubin and liver function tests were increased. (H) Marked tubular iron deposits with Prussian blue stain. The patient is a 60-year-old African American man

who presented with AKI, macroscopic hematuria, hemolysis 1þ and increased reticulocytes. He had a history of mitral valve replacement, congestive heart failure and

anemia. The differential diagnosis included cardiac valve defect, sickle cell disease and/or supratherapeutic international normalized ratio (H&E�100). (J–L) Diffuse

ATI and typical multiple myeloma casts that appear as partially crumbled luminal protein deposits admixed with inflammatory cells.
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FIGURE 2: Immunofluorescence shows kappa staining proximal tubule droplets and linear basement membrane staining (K). Lambda stain is entirely negative (L).

Biopsy was from a 65-year-old man with history of nephrolithiasis, status post stent placement, prostate cancer, hypertension and high free light chains who pre-

sented with AKI and serum creatinine 6.5 mg/dL. (M, N) Lysozyme nephropathy. Proximal tubules are filled with intensely staining protein droplets which on silver

stain are distinctly silver negative. Biopsy is of a 40-year-old African American man with history of sickle cell trait, smoking and CKD 3 (serum creatinine¼4.5 mg/dL),

who presented with hypercalcemia. Ruling out sarcoidosis was recommended (Silver and Lysozyme stains �200). (O) Isometric vacuolization in kidney allograft biopsy.

Tubules appear pale and edematous. Closer look shows evenly distributed round vacuoles. Patient had high tacrolimus levels. (P) Tenofovir toxicity in an HIVþ patient.

Arrows point to eosinophilic cytoplasmic inclusions within tubular epithelial cells (HþE�200). (Q–R) Light- and dark-field microscopy of calcium oxalate crystals. On

HþE, the crystals are colorless and birefringent under dark field. Renal biopsy is from a 75-year-old woman with metabolic acidosis and AKI. She had history of large

amounts of vitamin C ingestion (�200). (S) Calcium phosphate nephropathy shows blue staining tubular deposits on HþE. Biopsy is from a 58-year-old Caucasian man

with no history of diabetes or HTN, creatinine 1.1 mg/dL and excessive use of anti-acid medications (�200). (T) TMA-induced AKI. The glomerulus shown is ischemic

and contains lysed RBCs and a thrombus in the afferent arteriole. Diffuse ATI with luminal RBCs is present. Biopsy from a 21-year-old Caucasian woman, 1-month

postpartum, who presented with AKI, anemia thrombocytopenia, fever, elevated LDH are creatinine 24 mg/dL (Hþ E�200).
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saturated, free plasma hemoglobin dissociates to dimeric mole-
cules that filter more easily through the glomeruli. Hemoglobin
is taken up by the megalin–cubilin receptors on the apical sur-
face of tubular epithelium and deposits into proximal tubules
[9]. Intracellular hemoglobin dissociates into heme and globin
and heme is degraded by heme oxygenase (HO). The inducible
HO-1 isoform increases rapidly, accompanied by increased in-
tracellular ferritin. These intracellular reactions lead to binding
of iron to ferritin. Even though the response is aimed to dimin-
ish damage to cytoplasmic organelles, mitochondrial injury
occurs by impairment of mitochondrial oxygenation. Tubular
epithelial cell apoptosis, oxidative stress and release of pro-
inflammatory cytokines follow. Other organs, such as the liver
and lungs, are more likely to be affected because the hemoglo-
bin–haptoglobin complex is too large to be filtered by the glo-
merulus. Therefore hemoglobin deposits rarely cause AKI.

On light microscopy, hemoglobin casts appear pale or granu-
lar and closely resemble myoglobin casts. Occasionally hemo-
globin appears light brown. Immunohistochemistry with
antibodies to hemoglobin is the only way to reliably distinguish
from myoglobin casts (Figure 2D and E). Of note, renal biopsies
with myoglobin-positive casts may also have evidence of hemo-
lysis in the background. Intact red blood cells (RBCs) also stain
with hemoglobin stain (internal control). Strenuous exercise,
hemolysis secondary to infection (case shown in Figure 2D and
E), incompatible blood transfusion and hematologic disorders
are common causes of hemoglobinuria [13, 14]. Another
reported cause of hemoglobinuria is transurethral prostate re-
section when distilled water is used as an irrigant [15].

Gross or microscopic hematuria manifested by large
amounts of RBCs in the urine may cause ATI by tubular obstruc-
tion. Hematuric syndromes, e.g. IgA nephropathy (Figure 2F), or
minimal change disease presenting with hematuria, vasculitis
and anticoagulation are the most frequent causes of obstructive
ATI caused by RBC casts.

Anticoagulation nephropathy has potentially fatal conse-
quences, particularly in patients with CKD. Clinical presentation
with AKI is sometimes without overt creatinine changes, thus
so-called warfarin nephropathy can be clinically overlooked.
The incidence and severity were only recently recognized [16,
17]. Renal biopsy typically shows large numbers of intratubular
RBC casts associated with tubular epithelial thinning, luminal
dilation and loss of brush border (Figure 2G).

Hemosiderosis is a known complication of chronic hemo-
lytic anemias, including paroxysmal nocturnal hemoglobinuria,
and mechanical cardiac valves with residual valvular regurgita-
tion or perivalvular leak. ATI is due to hemosiderin, an iron
storage complex. The breakdown of heme gives rise to biliverdin
and iron. Released iron is trapped and stored as hemosiderin in
tissues. Hemosiderin is also generated from the abnormal meta-
bolic pathway of ferritin. With H&E, hemosiderin stains as brown
and granular deposits within tubular epithelial cells. Prussian
blue iron specifically stains hemosiderin deposits (Figure 2H).
Additional causes of hemosiderosis include sepsis, iron overload
as in hereditary hemochromatosis and multiple transfusions for
sickle cell disease. Some cases of infectious hemosiderosis may
be reversible. For example, while Clostridium difficile–induced he-
molysis may be complicated by hemoglobinuria-induced ATI,
rarely is hemosiderosis reported; these deposits may resolve
with resolution of the infection [18]. Supratherapeutic doses of
Coumadin and other blood thinners (e.g., dabigatran) should also
be excluded in patients with artificial valves or heart disease
since anticoagulation is routinely prescribed.

BILE CAST NEPHROPATHY (CHOLEMIC
NEPHROSIS)

Bile cast nephropathy is an infrequent cause of ATI, typically
observed in patients with liver disease and jaundice. There is a
spectrum of histopathological findings in renal biopsies ranging
from mild ATI to epithelial cell swelling and bile cast formation
[19, 20]. The casts may vary in color from yellow to brown to
green and stain dark green with Hall stain (Figure 2I). At autopsy
of severely jaundiced patients, kidneys have a green discolor-
ation. This is due to conversion of bilirubin to biliverdin after
formalin fixation. Green streaks of bile casts may be seen
grossly.

Numerous hepatic disorders in children and adults including
biliary cirrhosis (alcoholic cirrhosis in particular), bile duct atre-
sia, nonalcoholic hepatitis, sclerosing cholangitis, shock liver,
hepatotoxic drugs (including anabolic steroids), fulminant auto-
immune hepatitis and intrahepatic malignancy can lead to bile
cast nephropathy. Hepatic disease may cause prerenal, intrare-
nal and rarely postrenal ATI. The umbrella term ‘cholemic ne-
phrosis’ is used to cover the spectrum of etiologies. Prerenal AKI
is due to nonvolume responsive hepatorenal syndrome causing
rapid renal failure in patients with acute or chronic renal fail-
ure. Most authors agree that bile casts require sustained liver
disease and high levels of serum bilirubin. The term bile cast
nephropathy is used when bile or bilirubin casts obstruct the
nephrons, usually the distal tubules. Whether bilirubin itself
causes direct injury to tubular epithelia or additional factors
(vasoconstriction and volume depletion) contribute to precipita-
tion of bile in the tubules is debated [21].

MYELOMA CAST NEPHROPATHY AND
RELATED DISORDERS

About 50% of patients with multiple myeloma develop renal dis-
ease. AKI is increasingly recognized as the first presentation of
multiple myeloma [22, 23]. The most common pathologic find-
ings on renal biopsy are myeloma cast nephropathy, light chain
proximal tubulopathy and light chain deposition disease
(LCDD). Light microscopy can be unimpressive, but immunoflu-
orescence is usually diagnostic. AKI complicating multiple mye-
loma is associated with worse 1-year survival and reduces the
therapeutic options available to patients [22].

Myeloma casts are typically periodic acid–Schiff (PAS) nega-
tive and appear as fractured or crackled paper-like proteina-
ceous deposits. Tubular casts are engulfed by giant cells or are
admixed with inflammatory cells, sometimes mimicking acute
pyelonephritis or interstitial nephritis (Figure 2J). Other times,
paraprotein casts are devoid of an inflammatory component,
are pale and translucent, mimicking rhabdomyolysis casts.
Monoclonality is determined by immunofluorescence staining
for kappa and lambda light chains. Tubular epithelial injury
presents as epithelial simplification, epithelial cell necrosis or
giant cell formation. Less frequently, paraproteins take the form
of crystal deposits within tubular epithelium or in the lumen
(with or without Fanconi syndrome) [24]. Light chain proximal
tubulopathy (Figure 2K and L) is characterized by tubular epithe-
lial cytoplasmic droplets staining with monoclonal light chains,
either kappa or lambda [25, 26]. Light chain proximal tubulop-
athy may appear as generic ATI on light microscopy and, unless
carefully examined and interpreted by experienced renal path-
ologists, can be easily overlooked. In the absence of ATI, mono-
clonal light chains within the tubular epithelium may
alternatively represent physiologic proteinuria due to
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overproduction of a monoclonal light chain. A third pattern of
myeloma injury is the so-called monoclonal light chain deposi-
tion disease, characterized by linear staining of the glomerular
basement membranes, tubular basement membranes or both,
with either kappa or lambda restriction by immunofluores-
cence. In rare cases, multiple myeloma pathologies involving
the kidney (e.g. cast nephropathy and LCDD) are concurrently
present (case shown in Figure 2 J–L) [27]. Additional pathologies
such as plasma cell infiltrates and amyloidosis concurrent with
cast nephropathy or other combinations are also possible. AKI
is invariably in the background.

HEMATOLOGIC MALIGNANCIES AND TUMOR
LYSIS- AND LYSOZYME-INDUCED ATI

About two-thirds of critically ill patients with hematological
malignancies develop AKI at some point during the course of
their disease or following treatment. AKI secondary to malig-
nancy may manifest alongside malignant infiltrates involving
the kidney parenchyma (malignant plasma cells, leukemia/lym-
phoma infiltrates) or be precipitated by tumor cell lysis.
Hemodynamic compromise (ischemic ATI), chemotherapy-
induced (toxic ATI) and tumor lysis syndrome are part of the
spectrum of oncologic AKI [28].

An exceptional type of ATI associated with malignancy is
lysozyme nephropathy due to release of lysozyme from malig-
nant cells [29, 30]. Lysozyme is produced in low levels by granu-
locytes, monocytes and histiocytes. In the kidney, it is stored in
proximal tubules within lysosomes. The enzyme is excessively
produced in pathologic conditions such as the myelomonocytic
cells of chronic myelogenous leukemia (CML).

It is also associated with high macrophage turnover and se-
cretion of lysozyme in the serum (such as in patients with sar-
coidosis). Lysozyme filters through the glomeruli and is
absorbed by tubular epithelial cells, which hold high affinity for
lysozyme. Plasma levels decrease after treatment of CML and
perhaps other conditions so that lysozyme-induced AKI may
not be clinically apparent or with blood tests. A renal biopsy
may then be performed. The unique constellation of histopath-
ological findings includes intensely eosinophilic and silver-neg-
ative protein droplets in proximal tubules. On electron
microscopy, membrane-bound lysosomal inclusions are identi-
fied. Staining with lysozyme confirms the diagnosis (Figure 2M
and N). Nonspecific staining for Congo red may be seen.

ISOMETRIC VACUOLIZATION, OSMOTIC
NEPHROSIS, CONTRAST MEDIA AND
MITOCHONDRIAL INJURY-INDUCED ATI

Isometric tubular vacuolization is a distinct form of ATI charac-
terized by focal or diffuse bubbly appearing tubules (Figure 2O).
The isometric-appearing vacuoles in most cases are due to
swollen lysosomes (seen by electron microscopy) or swollen mi-
tochondria (see below) [31]. This is typically an acute toxicity of
calcineurin inhibitors (CNIs), particularly in renal allografts [32].
Cyclosporine, tacrolimus, intravenous IgG, dextran and osmoti-
cally active substances can cause similar pathology. Low-
osmolar and iso-osmolar radiographic (contrast) media such as
iotrolan and iodixanol (but also high-osmolality agents) cause
intracellular vacuolization in tubular epithelial cells. It is hy-
pothesized that these agents may interfere with physiologic
protein reabsorption and are facilitated by hypoxia (patients
with diabetes, atherosclerosis, CKD) [33]. The finding of

isometric tubular vacuolization is nonspecific, but important to
recognize, in order to prompt identification of a triggering agent
and drug discontinuation, possibly reversing ATI. Recovery
from the tubular injury will wean the patient off dialysis in
many cases. The vacuoles may fade away or persist due to
poorly understood mechanisms. Background disease such as di-
abetes and kidney ischemia may contribute to persistent vacuo-
lization. Cyclosporine toxicity causes mitochondrial swelling
(megamitochondria). Mitochondrial enlargement is responsible
for the vacuolated cytoplasmic appearance as evidenced by
electron microscopy. It was more common in the early era of cy-
closporine therapy, but since regular drug monitoring was
established, acute cyclosporine toxicity has become rare. The
most common mitochondrial toxicity currently seen is with an-
tiretroviral medications (tenofovir and related drugs) [34]. On re-
nal biopsy, mitochondrial toxicity manifests with either
isometric vacuolization or more rarely with giant mitochondria
with abnormal cristae (dysmorphic), appearing as eosinophilic
cytoplasmic inclusions in tubular epithelial cells on H&E
(Figure 2P).

ATI ASSOCIATED WITH CRYSTALLOPATHIES

Calcium oxalate is the most common type of crystal nephropa-
thy on renal biopsy (Helen Liapis,unpublished results). The ex-
tent of oxalate crystals varies from a few foci to massive
amounts. Acute presentation shows colorless crystals in tubules
and/or the interstitium associated with varying degrees of tubu-
lar injury, usually ATI without necrosis. Oxalate crystals, color-
less on H&E, polarize under dark-field microscopy (Figure 2Q
and R). Under normal conditions, calcium and oxalate form a
complex in the colon and are excreted in the feces. In the ab-
sence of or with reduced luminal calcium, free oxalate
increases, leading to enhanced absorption by the colonic epithe-
lium and ultimately calcium oxalate crystals deposit in the kid-
ney. Fat and/or bile acid malabsorption also facilitate oxalate
uptake by colonic epithelial cells.

Entities leading to renal oxalosis include enteric hyperoxalu-
ria (e.g. Crohn’s disease, celiac sprue, pancreatic insufficiency,
gastric/small intestine bypass or resection, chronic pancreatitis
or malabsorption syndromes), vitamin B6 deficiency, ethylene
glycol toxicity, excess ingestion of vitamin C, a plethora of die-
tary products rich in oxalic acid (e.g. dark leafy vegetables, rhu-
barb, star fruit, tea, spinach, sesame seeds, almonds, beets,
buckwheat flour, chocolate soy milk; www.OHF.org/docs/
Oxalate2008.pdf), hereditary hyperoxalurias and ATI itself
(Table 1). Other risk factors include the absence of enteric
oxalate-degrading bacteria (i.e. Oxalobacter formigenes), aspergil-
losis and drugs (Orlistat, Praxilene). The insults can be irrevers-
ible and may be fatal in a fraction of patients [35, 36].

In transplant renal biopsies, secondary causes of renal oxa-
losis include prolonged tubular injury, chronic pancreatic allo-
graft rejection in kidney–pancreas recipients, hypocitraturia
secondary to CNIs and mycophenolate mofetil (MMF)-induced
malabsorption syndrome secondary to prolonged diarrhea. The
anesthetic methoxyflurane is also reported to cause AKI sec-
ondary to oxalate nephropathy.

Other drugs can cause ATI with unique crystalline deposits
beyond oxalate; for example, indinavir (not shown here).

Calcium phosphate is the second most common crystallop-
athy seen on renal biopsy. The deposits are usually focal and
stain blue on H&E (Figure 2S) and black with von Kossa stain.
Heavy deposits (nephrocalcinosis) are seen with primary or
secondary hypercalcemia, including sarcoidosis, vitamin D
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intoxication, milk-alkali syndrome, ingestion of phosphate-
containing medications [antacids, soft drinks, bowel prepara-
tions (e.g. oral sodium phosphate)—also called phosphate
nephropathy] and stone disease [37]. Once again, drugs may be
the culprit causing phosphate crystal deposits (bisphospho-
nates, ganciclovir and others).

Some unique causes of crystal deposition associated with
AKI will be briefly mentioned here. These include cholesterol
embolism presenting with AKI and cystinosis, a defective trans-

port of cystine across lysosomal membranes resulting in sys-
temic accumulation of cystine crystals, including in the kidney
(glomeruli, tubules and interstitium). Cysteine crystals are diffi-
cult to identify in tissue because they dissolve during formalin
processing.

Cholesterol crystals appear as empty spindle-shaped spaces
(clefts) within vascular lumens surrounded by inflammatory
cells. AKI and diffuse ATI are invariably present.

The mechanisms of crystallopathy-associated AKI remains
an enigma [38, 39]. The fate of crystal deposition may be depen-
dent on recruitment of phagocytes enabling crystal clearance
from the interstitium, while intratubular deposits may dissolve
or clear with urinary flow. Studies show that renal crystal
deposits may be a transient phenomenon and disappear at a
later time. For example, in rat and human kidneys, calcium oxa-
late and calcium phosphate crystals translocate into the inter-
stitial space where infiltrating mononuclear cells contribute to
crystal disintegration and clearance [36–38]. Recently the NLRP3
inflammasome was shown to trigger inflammation and AKI in
oxalate nephropathy, raising the hypothesis of innate immu-
nity possibly involved in this and other crystallopathies [38].
Resolution of inflammation and crystal removal may halt the

deleterious chronic effects of crystal deposition within the kid-
ney. There is clinical evidence from AKI recovery in humans
that repair of injury is possible via a macrophage phenotype
switch toward anti-inflammatory M2 macrophages [39].

AKI due to adenine phosphoribosyltransferase (APRT) defi-
ciency is characterized by excessive production of 2,8-dihydrox-
yadenine (DHA). This is an autosomal recessive disorder due to
complete loss of APRT. It manifests with AKI episodes, progres-
sive CKD and nephrolithiasis. Renal biopsy reveals round,
brown DHA crystals that polarize, mimicking oxalate. The diag-
nosis is confirmed by the absence of APRT enzyme activity in
red cell lysates or identification of biallelic pathogenic variants.
A low-purine diet, ample fluid intake and allopurinol therapy
improve outcomes [40, 41].

Acute uric acid nephropathy typically presents with oliguric
or anuric AKI and is most frequently associated with massive
tumor lysis [42]. The chronic effects of uric acid nephropathy
are known for granuloma formation (gouty nephropathy) and
interstitial fibrosis.

INFECTION–RELATED AKI

Infections can cause obstructive AKI and ATI/ATN through
white cell tubular cast formation or direct invasion of the micro-
organisms into the tubular epithelia. An associated interstitial
nephritis is invariably present [35]. Examples include ATI in the
setting of polyomavirus, cytomegalovirus, coronaviruses (in-
cluding influenza and coronavirus disease 2019 (COVID-19) or
adenovirus nephropathy in transplant or immunocompromised
patients (Table 1) [43].

TMA ASSOCIATED WITH ATYPICAL
HEMOLYTIC SYNDROME SYNDROMES,
ANTIPHOSPHOLIPID SYNDROME,
PREECLAMPSIA, DRUG TOXICITY

TMAs are life-threatening entities and have characteristic pa-
thology of thrombi involving glomerular capillaries and/or arte-
rioles (Figure 2T). Clinically, severe AKI is a frequent presenting
symptom, while thrombocytopenia, peripheral schistocytes, el-
evated lactate dehydrogenase and decreased haptoglobin may
be nondiagnostic. causing atypical hemolytic syndrome (aHUS).
Antiphospholipid syndrome falls in the category of aHUS and
on renal biopsy the findings range from subcortical necrosis to
focal TMA. Renal biopsy pathology explains the acute presenta-
tion, demonstrating hemorrhagic ATN in severe cases or diffuse
ATI adjacent to ‘focal’ thrombotic lesions. The emphasis here is
on focal TMA manifesting either as single glomerular capillary
thrombosis or endothelial swelling and narrowing of the arte-
rioles, sometimes lacking bona fide thrombi. The main injury in
TMA is endothelial and ATI is secondary to ischemia and RBC
lysis. Mural fragmented RBCs in small arterioles may be present,
but these are sufficient for histopathologic diagnosis of TMA.
Preeclampsia, postpartum TMA and other causes of aHUS dur-
ing or after pregnancy have emerged as significant AKI causes,
frequently and definitively diagnosed best with renal biopsy.
The nephrologists’ reaction to the renal biopsy findings in these
cases, typically young women, may be surprise, followed by am-
biguity regarding appropriate and immediate potentially
lifesaving patient management [44]. This complex clinical set-
ting requires both hematology and nephrology consultation.

The current COVID-19 pandemic brought to light the delete-
rious effects of viruses to endothelia, manifesting in the kidney
as TMA, but also systemically (e.g. strokes) [45].

Last but not least, chemotherapy agents and monoclonal
antibodies, e.g. immune checkpoint inhibitors, that target inhib-
itory receptors expressed on T cells and currently used for solid
tumors or hematologic malignances are increasingly reported
as causes of TMA-induced AKI. Other side effects to explain AKI
in such patients include interstitial nephritis and generic
ATI [46].

AKI pathophysiology

An increased understanding of the pathophysiology underlying
AKI was revealed in the last few decades through molecular and
animal studies that show oxidative stress [47], endothelial in-
jury [48], mitochondrial injury (best described in the HIV) popu-
lation treated with antiretroviral medications] [49] and innate
immunity as central mechanisms [50], discussed briefly below.

AKI, previously thought to be a relatively benign process
without significant long-term sequelae, is now considered a
long-term risk factor for CKD, particularly in older patients with
coexisting comorbidities, particularly sepsis, affecting 40–70% of
patients in the ICU [51, 52].

Therapeutic or illicit drugs and toxins represent external
insults. Numerous drugs can cause ATI/ATN. The most com-
mon are antibiotics (e.g. vancomycin), chemotherapeutics, an-
giotensin-converting enzyme inhibitors, lithium and over-the-
counter supplements. Similar patterns of tubular injury have
been reported in association with illicit drugs such as opioids
and synthetic cannabinoids (Spice, K2, etc.) [49, 53–55]. Drugs
are such a common cause of ATI/ATN that, above and beyond
any other causes, drug exposure should first and foremost be
clinically excluded.
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Interesting mechanisms of infection-induced ischemic AKI
continue to be found. For example, neutrophil extracellular
traps damage the kidney through neutrophil arginine deimi-
nase 4 [56, 57].

Animal models of AKI

A significant amount of research has been directed at investi-
gating AKI pathophysiology and developing AKI therapeutics in
animal models [58, 59]. However, none of these therapies have
translated into clinical care to date. One of the most widely
used animal models of AKI is the ischemia–reperfusion model.
A warm ischemia–reperfusion study is typically performed by
unilateral or bilateral clamping of the renal vasculature for 30–
45 min followed by reperfusion for 1–2 days [59, 60]. This model
was extensively studied in pigs, dogs, rabbits, rats and mice.
Toxin exposure is a known cause of AKI and has been used to
study AKI pathophysiology in vivo. Cisplatin, folic acid, aristolo-
chic acid and warfarin are common nephrotoxins utilized to in-
duce AKI in animal models [51–65]. Rhabdomyolysis is a specific
clinical condition that may be reproduced in animals using a
glycerol model of AKI. Glycerol injected into the hind leg
muscles of rats produces rapid AKI and rhabdomyolysis [66, 67].
The unilateral ureteral obstruction model is a reproducible ani-
mal model whereby a single ureter is ligated, resulting in me-
chanical stress and inflammation in one kidney. This model is
used to study the AKI to CKD transition. Sepsis is another well-
documented cause of AKI [51, 68]. Studying this process in ani-
mals may be performed by lipopolysaccharide injection or by
using the more clinically relevant cecal ligation and puncture
(CLP) model [69, 70]. Although the CLP model is more typical of
the human condition, it is less reproducible and more techni-
cally challenging. Animal models are a useful tool to investigate
the pathophysiology of AKI. However, the dearth of new clini-
cally useful therapeutics developed using these animal models
highlights the disconnect between human clinical AKI and pre-
clinical studies. This underscores the point that clinical AKI in
humans is a diverse process with multiple etiologies and vary-
ing pathophysiology such that single treatment options are un-
likely to prove effective.

AKI biomarkers

Current clinical practice utilizes serum creatinine and urine
output to identify patients with AKI, regardless of the underly-
ing etiology. A significant achievement has been standardizing
AKI diagnostic criteria by the KDIGO [5, 71, 72]. Serum creatinine
may not increase until days following injury, may change in
cases without structural kidney damage and may not change
despite injury in patients with significant renal reserve [73–75].
Due to these known imperfections, a troponin-like biomarker
for AKI is desired. The hope is to facilitate early diagnosis in or-
der to implement current management strategies aimed at pre-
venting further injury. Earlier diagnosis may facilitate
reexamination of therapeutics that previously failed clinical tri-
als, possibly due to delayed treatment using creatinine for ther-
apeutic initiation.

The last decade has seen a significant effort to identify sen-
sitive and specific urine and plasma AKI biomarkers. AKI bio-
markers may be functional (cystatin C), related to damage
(myo-inositol oxygenase, N-acetyl-b-glucosaminidase, glutathi-
one S-transferase, alkaline phosphatase), inflammatory (inter-
leukins-18, -6, -10 and -5), upregulated in the proximal tubule
following injury (KIM-1), upregulated in the distal tubule

following injury (neutrophil gelatinase–associated lipocalin) or
cell cycle arrest indicators (tissue inhibitor metalloproteinase-2
and insulin-like growth factor binding protein-7) [76, 77].
Despite extensive research and development of standardized
assays for some biomarkers, AKI biomarkers have predomi-
nantly been restricted to research use and have not yet perme-
ated clinical practice. One reason for this discrepancy is the use
of creatinine as a flawed gold standard for biomarker qualifica-
tion [76]. Another drawback is their lack of specificity for renal
disease [7]. One biomarker, myo-inositol oxygenase, is report-
edly restricted to renal tissue and shows promise as a renal-
specific proximal tubular damage indicator but has yet to un-
dergo significant investigation [76]. Utilizing other criteria such
as need for dialysis and mortality has helped to identify bio-
markers that complement clinical assessment [78–80]. Despite
these shortcomings, recent studies indicate a possible role for
biomarkers in discriminating true AKI from prerenal azotemia,
hepatorenal syndrome and cardiorenal syndrome [78]. Future
studies will need to assess the ability of AKI biomarkers to im-
prove patient outcomes in order to be widely adopted in clinical
practice [77].

CONCLUSIONS

The pathology of AKI is as diverse as the entities causing it.
Renal biopsy illuminates this diversity and provides specific di-
agnoses using available immunohistochemical or histochemi-
cal stains to complement routine pathologic evaluation.
Interpretation and effective consultation require highly skilled
and sophisticated renal pathologists and clear communication
with the treating nephrologists. Renal biopsy pathology is fre-
quently the fastest and most accurate procedure in determining
the specific cause of AKI, as shown below. Furthermore, in spite
of the existing clinical AKI criteria and worldwide validation,
there is still inconsistency in the application of criteria con-
founded by the limitations of serum creatinine and urine output
as AKI biomarkers.
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