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Abstract: Dengue is a viral disease that primarily affects tropical and subtropical regions and is
especially prevalent in South-East Asia. This mosquito-borne disease sometimes triggers nationwide
epidemics, which results in a large number of fatalities. The development of Dengue Haemorrhagic
Fever (DHF) is where most cases occur, and a large portion of them are detected among children
under the age of ten, with severe conditions often progressing to a critical state known as Dengue
Shock Syndrome (DSS). In this study, we analysed two separate datasets from two different countries–
Vietnam and Bangladesh, which we referred as VDengu and BDengue, respectively. For the VDengu
dataset, as it was structured, supervised learning models were effective for predictive analysis, among
which, the decision tree classifier XGBoost in particular produced the best outcome. Furthermore,
Shapley Additive Explanation (SHAP) was used over the XGBoost model to assess the significance
of individual attributes of the dataset. Among the significant attributes, we applied the SHAP
dependence plot to identify the range for each attribute against the number of DHF or DSS cases.
In parallel, the dataset from Bangladesh was unstructured; therefore, we applied an unsupervised
learning technique, i.e., hierarchical clustering, to find clusters of vital blood components of the
patients according to their complete blood count reports. The clusters were further analysed to find
the attributes in the dataset that led to DSS or DHF.

Keywords: dengue; Dengue Shock Syndrome; Dengue Haemorrhagic Fever; Shapley Additive
Explanation; supervised; unsupervised; hierarchical clustering; XGBoosting; clinical data

1. Introduction

Over the last several years, the number of cases of dengue fever has been increased
dramatically all around the world [1,2]. Dengue fever is an acute febrile viral disease
carried by Aedes mosquitoes carrying one of the four dengue virus serotypes. According
to a recent study, 390 million dengue illnesses occur each year, and dengue transmission is
omnipresent across the tropics, with a high risk in America and Asia [3]. Dengue cases are
prevalent throughout Southeast Asia, and its epidemic varies throughout the regions every
year [4]. Most subtropical countries have made tremendous progress in the management of
communicable diseases. However, these countries still have problems managing dengue
cases, sometimes scaling to epidemic levels. A special problem is a vasculopathy marked by
endothelial dysfunction and plasma leakage that occurs several days after the disease arose,
often throughout the time of defervescence; this is much more severe in case of children
and can often cause hypovolaemic shocks, which is known as Dengue Shock Syndrome
(DSS) [5–7]. According to the World Health Organisation (WHO), typical Dengue Fever
(DF) is defined by a platelet count of just under 150,000 cells/mm3 and an increasing
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hematocrit level of 5–10% with no plasma leakage and leukopenia, which is referred to as
a WBC count and is often less than 5000 cells/mm3. In the event of DHF or more severe
DSS, it is defined by thrombocytopenia of less than 100,000 cells/mm3 and hematocrit
concentrations higher than 20% [8–10].

Our motivation in this research study is to see which blood components vary when
a patient proceeds towards the dengue severity state. Given that we know the blood
components that vary during this early stage, we can take precautions beforehand and
healthcare professionals can take measures to provide appropriate treatment before the
patient reaches to a critical state. We feel that improving collaborations on the severity
analysis of dengue sickness by integrating clinical and basic researches is critical in tropical
and subtropical countries, where the disease affects approximately half of the world’s pop-
ulation [11]. However, there has been a significant gap due to difficulties in collaboration,
issues with data availability, limited financial resources, limited human resources, and
historical context. Thus, the ultimate control of dengue could be done by an integrated,
multidisciplinary and multinational research program to acknowledging the gap in dengue
diagnosis.

To bridge this gap and address some of the issues that can help to reduce the misclas-
sification of dengue severity, we analysed different attributes of blood components that
leads a patient towards Dengue Haemorrhagic Fever (DHF) or a Dengue Shock Syndrome
(DSS), especially in the subtropical and tropical regions. The contributions of our study are
as follows:

• Several supervised learning approaches, such as random forest, decision tree, XG-
Boosting, and AdaBoosting, were applied to our dataset, with the XGBoost classifier
model proving to be the best fitting algorithm with the highest accuracy for determin-
ing dengue severity [11–13]. Shapely Additive Explanations (SHAP) were then run
on top of the XGBoost to quantify the contribution of each attribute in the dataset to
dengue severity. SHAP is a game-theoretic technique for explaining the output of any
machine learning model [14,15]. This method aided in the extraction of critical aspects
that were mostly responsible for driving a patient to DHF or DSS. Next, the SHAP
dependence plot was presented between the significant attributes, which suggested
that patients having a platelets count of less than 100,000 (cells/mm3) and hematocrit
levels greater than 20% have a higher chance of leading towards critical conditions.
Thus, the early detection of the above-mentioned criteria will help to recognise the
severity of dengue and increase the scope of giving proper treatment to the patient.

• The study with the datasets of Bangladesh (BDengue) and Vietnam (BDengue) showed
a close association between different blood components regarding predicting severity
among dengue patients. The BDengue dataset contains unstructured data. As a result,
we considered implementing unsupervised learning, which is called agglomerative
hierarchical clustering. After analysing the data, it was found that there exists a strong
relationship of DSS or DHF with the patient’s platelet count and HCT concentration.
Based on this study, a similar pattern is observed among dengue-infected patients
across the subtropical regions.

• Among four of the serotypes, DENV-1 and DENV-2 were found to be significantly
associated with an increased risk of DSS and DHF in the VDengue dataset. Therefore,
it can be said that, apart from the aforementioned blood components, the serotype also
plays a role in dengue severity. As a result, the early detection of serotypes could be
an important approach in reducing the number of severe outcomes of dengue cases.

The remainder of this paper is organised as follows. Section 2 contains a description
of the related works, and various methods and techniques that fall under the same domain.
Section 3 consists of the working principles that we have used in our study and a description
of both the VDengue and BDengue datasets, along with the data construction. Section 4
explains the techniques that we used to handle the missing values to bring consistency
to our data. Section 4 contains the necessary descriptions regarding how we extracted
the right features or properties from our raw data to analyse the dengue severity among
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dengue patients. Section 6 consists of the methods and algorithms that we have proposed
that are the best fit for our datasets. Section 7 consists of the results that we obtained after
analysing our datasets to predict dengue severity among patients. The entire research is
ended and summarised in Section 8 by demonstrating the similarities between aspects of
the two specified subtropical nations, as well as limitations and future opportunities.

2. Related Work

In [16], Sanjana Das and Abha Thakral used an R predictive analysis approach to
foretell dengue and malaria disease. They conducted a time-series analysis of the data by
using R with a generic X-Y charting and linear regression. The main goal in their time series
analysis was to forecast the future values of the series. They also used a generic function for
X-Y plotting in their data analysis, where the different lines in the plot reflected different
years where the cases occurred during the period from 2010 to 2015.

In [5], the authors monitored and analyzed the platelet and haematocrit count in blood
from children who had laboratory-confirmed dengue to predict DSS. They also took the
data of Vietnamese children aged from 5–15 years admitted to the Hospital with clinically
suspected dengue cases between 2001 and 2009. All the data in the dataset comprised
laboratory-confirmed dengue cases within 1–4 days of illness. For both univariate and
multivariate analyses, logistic regression was the dominant statistical model in this research
study. The predictive values of daily haematocrit and platelet counts were tested using
graphs and independent regression models fitted for each day of sickness.

In [17], the authors took a total of 515 patients’ data to predict the cause of DHF by
observing peripheral values of the blood count. Data were evaluated utilizing IBM-SPSS
version 16 of the statistical package. The student test results were used to investigate the
variations between the mean peripheral blood variables in the acute stage and the critical
phase. Linear regression was used to investigate trends in parameters over the duration of
the epidemic.

In [18], the authors collected 530 dengue-infected patients’ data from Nawaloka
Hospital Sri Lanka (NH) and studied their lymphocyte count to correlate with dengue
severity infection. They used descriptive statistics to be derived and articulated as key
pattern and frequency indicators. P-values obtained by means of the Student’s t-test were
used to evaluate averages among two classes.

3. Methodology
3.1. Description of VDengue Dataset

In this study, we used the Vietnam’s dataset from [5] which we referred as VDengue.
This dataset contains clinical data of 2301 children suffering from dengue in the Cohort.
The patients were admitted in a hospital in Vietnam between the years 2001 and 2009 [5].
Among the 2301 patients, 143 (i.e., 6.21%) progressed to Dengue Shock Syndrome (DSS),
and the remaining 2158 (i.e., 93.79%) did not reach to DSS. However, they suffered from
normal dengue diseases. The patients age in this dataset ranged between 5 and 15 years old.
The dataset contains information of the patients, such as age, gender, weight, temperature,
and pulse rate on the day of their admission in the hospital. It was observed that most
of the patients had confirmed dengue between 1 and 4 days of their admission. The
dataset also contains information regarding the platelet counts (cell/mm3) and haematocrit
concentration (%) on the day of their admission. The serology, serotype, and tourniquet test
results were also added to the database. Beside this, some of the significant symptoms of
dengue, such as abdominal pain, tiredness, vomit, and mucosal bleeding, were recorded in
order to determine the severity of the patient. The minimum platelet count and maximum
haemoconcentration between days 3 to 8 were recorded in the dataset.

The workflow diagram for this dataset analysis is shown in Figure 1.
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Figure 1. Top level overview of the dengue prediction model (VDengue dataset).

In this dataset, there were some missing values that we handled using KNN impu-
tation method. The refined data were then passed through the following five models:
decision tree classifier, random forest, AdaBoost, Gradient Boost, and XGBoost classifier.
We recorded the sensitivity, specificity, misclassification, precision, f1_score, PPV, and NPV
of the classification models, where the XGBoost gave the best performance. Next, the XG-
Boost classifier model was sent to the SHAP tree explainer to reveal the important features
based on the predicted output, i.e., “shock”. Finally, the SHAP dependence plot was used
among the important features to find which variable contributed more to determine the
severity of dengue among the patients.

The different features for the VDengue dataset are shown in Table 1.
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Table 1. Attributes of VDengue dataset.

Name of the Attributes Description

st_no Patient study number

age Age at enrolment (years)

sex Gender (Female, Male)

wt Weight at enrolment (kg)

day_ill Day of illness at enrolment

his_tired History of tiredness at enrolment (Yes, No)

his_vomit History of vomit at enrolment (Yes, No)

ttest Tourniquet test result at enrolment (Positive, Equivocal, Negative)

temp Temperature at enrolment (◦C)

pulse Pulse rate at enrolment (count per minute)

sys_bp Systolic blood pressure at enrolment (mmHg)

mucosal_bleed Mucosal bleeding at enrolment (Yes, No)

abdominal_pain Abdominal pain at enrolment (Yes, No)

liver Liver sice at enrolment (cm)

hct_bsl Haematocrit concentration at enrolment (%)

plt_bsl Platelets count at enrolment (cells/mm3)

serotype2 Serotype determined by PCR (DENV1, DENV2, DENV3,Mixed,
Negative)

serology Immune status determined by ELISA (Primary, Secondary,
Possible Primary, Unclassifiable)

to_PICU Referred to PICU (Yes, No)

shock Dengue shock syndrome (Yes, No)

doi_shock Day of illness at shock (days)

bleed_hos Bleeding during hospitalisation (No, Skin, Mucose, Other)

minPLT_3to8 Platelet nadir (cells/mm3) (No, Skin, Mucose, Other)

The target variable for the VDengue dataset is the “shock” column, which contains the
binary value ’Yes/No’ for patients who either went into shock or didn’t. As the XGBoost
classifier gave the highest accuracy, this model was sent to the SHAP tree explainer to
identify the importance of features based on the predicted output, i.e., “shock”.

The Figure 2 plot uses the SHAP values obtained from the XGBoost classifier model,
which identifies the important features [15]. The horizontal axis contains the SHAP values
of our predicted output, i.e., shock. The positive values along the right side of the horizontal
axis refers to shock positive (1) and the negative values on the left side refers to shock
negative (0). The vertical axis is determined by the features from our dataset, where the
most important features are on the top and the least important features are at the bottom.
The threshold colours red, blue, deep blue defines a high value, a medium value, and a low
value, respectively.

• to_PICU: When to_PICU is high, the patients have reached the paediatric unit, then
the shock syndrome is positive (1). When to_PICU is low, the shock syndrome is
negative (0).

• minPLT_3to8: When the minimum platelet count of 3 to 8 days from enrolment is low
(or blue value), the shock value is positive (1). When the minimum platelet count is
mid to high (i.e., deep blue to red), the shock value is negative (0).
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• maxhemo_3to8: When the maximum haemoconcentration value of 3 to 8 days from
enrolment is high (or red), the shock is considered as positive (1). When the maximum
haemoconcentration value is mid to low (deep blue or light blue color), the shock
value is considered as negative (0).

• serology: When the serology is high, the shock is considered as negative (0). When it
is low, the shock is considered as positive (1).

• plt_bsl: When the platelets count at the day of enrolment is high, the shock is consid-
ered as negative (0). When it is low, the shock is considered as positive (1).

• pulse : When the pulse rate of patients in our datasets are mid value, they did not
reach shock, i.e., shock-negative (0), but a pulse rate with a low or high value is
shock-positive (1).

• serotype_2: A high to mid value is shock-negative (0), and a low value is shock-
positive (1).

• his_vomit: When the patients do not show any sign of vomit on the day of enrolment,
then it appears that the patients are shock-negative (0), and if they show a tendency to
vomit, they appear to be shock-positive (1).

• bleed_hos : When the patients at the day of enrolment do not show any symptoms of
bleeding, they have a greater probability to not reach shock, but patients with bleeding
symptoms appear to shock.

• maxHCT_3to8: When the maximum haematocrit count of patients 3 to 8 days from
enrolment is high or red, then their shock value is positive (1), and when the maximum
haematocrit value is mid to low or deep blue or light blue, then their shock value is
negative (0).

Figure 2. Summary plot of different features of the datasets using SHAP values on XGBoost classifier
model.
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3.2. Description of BDengue Dataset

We used another dataset collected from two hospitals (Dr. M. R. Khan Shishu Hospital
and Central Hospital) in Bangladesh, which we referred as BDengue. In this dataset, the
data collected from the Dr. M. R. Khan Shishu Hospital contains 69 patients who were aged
between 8 months and 15 years. The dataset contains WBC, platelets count, lymphocytes,
monocytes, etc., that a normal blood test report contains, and the symptoms that were
visible at an early stage when the diseases were detected. This dataset also contains NSI,
IgM, and IgG test results. The use of BDengue dataset was approved and authorised by
the hospitals under condition of keeping the patients identity anonymous and confidential.
The patients data are owned by the hospitals and are consented by the patients. We
acknowledged this in our acknowledgment section.

Table 2 and Figure 3 show the attributes of the dataset that we gathered from the Dr.
M. R. Khan Shishu Hospital, which are as follows:

Table 2. Attributes of dataset collected from Dr. M. R. khan Shishu Hospital (Bangladesh).

Name of the Attributes Description Unit

DOA Date of admission of patient -

PatientId ID of patients enrolled in the hospital -

PatientName Name of the patient -

Gender Gender (Female or Male) -

Age Age of the patient years

Hb Haemoglobin count g/dL

TotalCountWBC Total WBC count of the patient -

Platelets Platelets count of patient cells/mm3

ESR Erythrocyte sedimentation rate of patient mm

DengueNS1 Dengue virus antigen detection -

WeightOfThePatient Weight of the patient kg

BloodPressure Blood pressure of patient mm/Hg

HCT Haematocrit concentration of patient %

Lymphocytes - %

Monocytes - %

Neutrophils - %

Eosinophils - %

Basophils - %

BloodGroup Blood group of the patient -

Dengue IgM/IgG Antibody testing in dengue diagnosis -

SGPT SGPT of patient -

Albumin - m/dL

Symptoms Symptoms of the patient -
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Figure 3. Showing attributes of the Shishu Hospital dataset.

Similarly the data collected from the Central Hospital contains a haematology report
and laboratory report of a dengue test of around 100 patients of different ages. Table 3
shows the attributes of the BDengue dataset. In our study, we aggregated the dengue
patient’s information from the above two hospitals and developed a model by analysing
the phenotypic characteristics of the patient by merging the file in one dataset and selecting
similar features among the datasets [19].

Table 3. Attributes of dataset collected from central hospital (Bangladesh).

Name of the Attributes Unit Name of the Attributes Unit

Date Of Arrival dd/mm/yy Monocytes %

Patient ID - Basophils %

Patient Name - HCT %

Gender 0(M)/1(F) MCV fl

Age year MCH pg

Haemoglobin g/dL MCHC g/dL

WBC Count /cmm RBC Count million/cm

Platelets K/L Dengue NS1 Positive/Negative

Neutrophils % Dengue IgG Positive/Negative

Lymphocytes % Dengue IgM Positive/Negative

Eosinophils % - -
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For the BDengue dataset, there was no target column because of the unstructured data.
Therefore, we proceeded with unsupervised learning. We applied hierarchical clustering to
form identical clusters and analysed the behaviour of those clusters.

Figure 4 shows a bi-variant analysis between haemoglobin and other features, such
as platelets, HCT, WBC, and lymphocytes. The plot was used to calculate two events
occurring at the same point in time. In Figure 4, five different plots show a correlation
among different components of blood. Here, we are comparing platelets and HCT. WBC
and lymphocytes are compared with respect to haemoglobin. This creates a regression line
between two events and computes a probability. The darker blue region in the Figure refers
to a higher concentration.

Figure 4. Bi-variant Relation between different features of the BDengue dataset.

The working flow diagram for the BDengue dataset is shown in Figure 5.
In Figure 5, the working procedure on BDengue dataset is described. As we did

not have enough data from a single source, we merged data from two hospitals with the
common attributes in this dataset. The missing values were handled using an interpolation
method in the dataset. As the BDengue dataset was not very structured and there was no
output variable, we decided to apply unsupervised learning on the dataset. Agglomerative
hierarchical clustering was conducted to form a cluster hierarchy, which was demonstrated
in a dendrogram. After that, silhouette scores were determined to evaluate the quality of
the clusters, and it was found that the BDengue dataset could be well divided into two
clusters. The mean and standard deviation of the features for both clusters were determined.
Finally, the two clusters were examined further to analyse whether or not patients from
either cluster had progressed to severity.
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Figure 5. Top level overview of the dengue prediction model (BDengue dataset).

4. Missing Value Imputation
4.1. KNN Imputation

The VDengue dataset has 2301 rows, but there were some missing values. Thus,
the dataset required some preprocessing. We tested two imputation algorithms–multiple
imputation by chained equations (MICE) algorithm and KNN imputer, where the KNN
imputer worked well for our dataset. Thus it was finally used to handle the missing values.
The KNN imputer model is basically a regressive model for predicting missing values.
Input variables are required to be numerical [20]. However, in our dataset, among 24
columns, 11 of them contain categorical values. Thus, those specific categorical columns
were converted to numerical values using a label encoder. When all the values of each
column were converted into numbers, the KNN imputer was used to fill the missing values
using the KNN algorithm. This imputation method works by searching the whole dataset
to find similar instances in order to fill the missing data. The KNN identifies neighbouring
points in the dataset by calculating the distance using the Euclidean formula [21]. The
formula for the Euclidean distance is given below:

d(x, y) =

√
n

∑
i=1

(yi − xi)2 (1)

where
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x , y = two points in Euclidean n-space;
yi , xi = Euclidean vectors, starting from the origin of the space, i.e., the initial point;
n = n-space [22].

4.2. Interpolation

As the amount of data for the BDengue dataset was very small, we did not want to
drop the rows with missing values. We rather used interpolation to fill the missing values.
Interpolation is a mathematical analysis that adjusts a function to our dataset and, using
that function, the missing value is deduced [22,23]. The interpolation formula that was
used to fill the missing values in our BDengue dataset is as follows:

y = y1 + (x − x1)
(y2 − y1)

(x2 − x1)
(2)

where
y = linear interpolation value;
x = independent variable;
x1, y1 = values of the function at one point;
x2, y2 = values of the function at another point [24].

5. Feature Engineering

For the VDengue dataset, we used a summary plot. For all the features and samples
in the selected range, the plot aggregates Shapley Additive Explanations (SHAP) values.
SHAP values are sorted in a way where the most important feature is at the top of the list.
The important features of the dataset are shown with the help of a bar diagram, where the
features are categorised according to their precedence. The bar diagram with the important
features for the VDengue dataset is shown in Figure 6.

For the BDengue dataset, we merged the data collected from two different hospitals
into a single dataset consisting of 169 patients based on common attributes. The following
are the features that we selected:

• Sex;
• Age (yr);
• Hb (g/dL);
• HCT (%);
• Platelets (cells/mm3);
• WBC (/cmm);
• Lymphocytes (%);
• Neutrophils (%);
• Monocytes (%).

All the 169 patients in the dataset were dengue positive. For instance, the unit for
platelet in the Central Hospital was ‘K/L’, which we converted into ‘cells/mm3’ to make it
similar to Dr. M. R. Khan Shishu Hospital. We also applied the ExtraTreeClassifier model
to the newly created dataset to find the most relevant attributes among the features [25].

In Figure 7, it is seen that the platelets have the highest score, so it is a more relevant
or important feature to find the severity among the patients. Apart from the platelets, the
HCT, lymphocytes, neutrophils, and WBC are also found to be important.
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Figure 6. Bar diagram showing the importance of different features for the VDengue Dataset.

Figure 7. Bar diagram showing important features of the BDengue dataset.

6. Proposed Model

As we mentioned earlier, we have used two datasets in this research study: VDengue
and BDengue. Since the VDengue dataset was labeled and structured, we used supervised
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learning. On the other hand, since the BDengue dataset was unstructured, we used
unsupervised learning.

6.1. Supervised Learning

In the VDengue dataset, the target column “shock” produces negative (no) and positive
(yes) results. Since the output variable is categorical, several supervised classification
methods were used to identify the category of the new observations. Furthermore, the
dataset was nonlinear and featured categorical target variables, due to which, the decision
tree model was implemented. As the depth of the tree increases, the accuracy improves as
well. To further improve the performance of the model, we experimented with boosting
algorithms, such as the XGBoost and AdaBoosting classifiers, where the XGBoost gave the
highest accuracy as it has an inbuilt regularisation property that minimizes overfitting.

Since the classification models, such as decision tree and random forest, were fitted
on our VDengue dataset, we applied both the criteria gini and entropy with maximum
depth ranging from 1 to 20. The data were fitted for each depth with both criterion, and
were tested to find whether the model can predict shock symptom accurately. Furthermore,
boosting algorithms, such as AdaBoosting, XGBoosting, and Gradient Boosting, were
used. To optimize the model the hyper-parameters, such as the learning rate was adjusted
between the ranges of 0.05 and 0.75, at an interval of 0.025 and maximum depth ranging
between 1 and 20. The colsample bytree, alpha, and n estimators of the aforementioned
algorithms were also tuned for the training dataset. The log loss curve was finally drawn to
determine if the model’s prediction in finding the severity among dengue-infected patients
was correct. The classification report (Tables 4 and 5) containing different metrics, such as
sensitivity, specificity, misclassification, precision, f1_Score, PPV, and NPV, were further
analysed to see which model fits the best with the VDengue dataset to predict the severity
among the dengue-infected patients [26,27].

Table 4. Classification report after applying different machine learning approaches on the VDengue
dataset.

Algorithm Misclassification Precision f1_Score PPV NPV

AdaBoost 0.02 0.98 0.96 0.74 1

XGBoost 0.01 0.98 0.96 0.8 1

Random
Forest 0.02 0.98 0.96 0.73 1

Decision Tree 0.02 0.98 0.96 0.76 1

The formula for finding the accuracy, sensitivity, specificity, precision, recall, and
f1_score are as follows:

• Accuracy: (True Positive + True Negative)/(True Positive + False Positive + True
Negative + False negative);

• Sensitivity: True Positive/(True Positive + False Negative);
• Specificity: True Negative/(True Negative + False Positive);
• Precision: True Positive/(True Positive + False Positive);
• Recall: True Positive/(True Positive + False Negative);
• f1_score: 2 * ((Precision * Recall)/(Precision + Recall)).

The predictive algorithms shown in Table 5 were fitted on the VDengue dataset. The
whole VDengue dataset was splitted into a 70% training and 30% testing set randomly and
was fitted to the model. After fitting the dataset, random rows from the testing dataset
were selected to see the predictive output. These outputs were validated with the original
data to check the correctness of the model.
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Table 5. Training accuracy, testing accuracy, sensitivity, and specificity of different models on
VDengue dataset.

Algorithm Training Accuracy Test Accuracy Sensitivity Specificity

AdaBoost 0.998 0.981 0.94 0.98

XGBoost 1 0.986 0.94 0.99

Random Forest 1 0.979 0.94 0.98

Decision Tree 1 0.982 0.94 0.98

6.2. Unsupervised Learning

We used an unsupervised model for the BDengue dataset because this dataset has no
output variable. As we implemented unsupervised learning, no training for the model was
needed. The BDengue dataset was fed into the agglomerative hierarchical clustering model,
which considered each observation as a separate cluster. This algorithm then iteratively
finds the closer clusters and merged them into a single cluster. Finally, the clusters formed
are further analysed to determine which cluster of patients progressed to severity.

7. Result and Analysis
7.1. Analysis on the VDengue Dataset

As we mentioned earlier, among the supervised learning we applied, the XGBoost clas-
sifier was found to be best performing on our dataset. It is also reflected in Tables 4 and 5.
For the XGBoost model, the hyper parameters were tuned, such as objective = binary logis-
tic, colsample_bytree = 0.3, learning rate = 1, max_depth= 9, alpha = 10, and n_estimators =
10, to achieve a better performance.

The size of the epochs was taken as equal to the length of the evaluation set. Figure 8
is the log loss which indicates the model behaviour on the train and test dataset over the
training epochs. As the generalisation gap was small between the training and testing
log-loss curve, it could be said that the XGBoost classifier model had a good fit on the
VDengue dataset in predicting the dengue severity.

Figure 8. XGBoost log loss curve.

The classification errors for both the train and test are plotted in Figure 9 to visualise
the misclassification among the data points. It is seen in the last epoch that the number of
misclassified samples during training is close to 0, and during testing, it is close to 0.05.
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Figure 9. XGBoost classification error curve.

The ROC and AUC curves were further assessed to see the performance of our model.
The AUC curve summarises the performance and gives a metric that lies between 0 and 1.
The value tends to 1 for a high performing classifier and 0 for a low performing classifier.
From Figure 10, we can see that the AUC for the XGBoost model is 0.993.

Figure 10. ROC and AUC Curve.

In the VDengue dataset, among all the features, the to_PICU, maxHCT_3to8, min-
PLT_3to8, maxhemo_3to8, and serotype2 are considered to be the most important features
as described in Section 3, and the analysis was done by taking all these features under
consideration. The influence of the aforementioned variables on the predictions given
by the XGBoost classifier, which was the best fitted model for the VDengue dataset, was
depicted using a SHAP dependency plot. This plot assisted us in analysing the factors
that have a higher chance of causing shock, i.e., severity. A SHAP value greater than zero
shows that the prediction result is positive, indicating that the patient has gone into shock,
whereas a value less than zero suggests that the patient has not yet reached to shock level
or acquired DSS [15].

• TO_PICU AND MAXHEMO_3TO8 AND MAXHCT_3TO8 AND HCT_BSL:

The term haemoconcentration refers to a drop in plasma volume that is accompanied
by an increase in red blood cell concentration. With the increase in haemoconcentration,
the blood viscosity is also increased and causes fever. The DHF and DSS are characterised
by plasma leakage which can result from severe dengue fever.
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The haematocrit concentration (%) of children on the day of enrolment was recorded
and saved in the hct_bsl column of the VDengue dataset. A daily haematocrit concentration
count was evaluated between the third and eighth days of enrolment, and the maximum
counts within those five days were noted and kept in the maxHCT_3to8 column of the
dataset. On the same way, the overall haemoconcentration (%) was recorded in the max-
hemo_3to8 column of the dataset. The data of patients who were admitted to the paediatric
intensive care unit were stored in the to_PICU column (PICU).

The horizontal axis, maxHCT_3to8, is depicted in Figure 11 and represents the actual
value of the maximum haematocrit count between the third and eighth days of the patient’s
enrolment, whereas the vertical axis represents a value that has an impact on the prediction,
i.e., severity, to confirm shock or non-shock. Patients with a haematocrit concentration of
more than 45% are more prone to fall into shock and develop DSS, as seen in the circled
part of Figure 11. The circled region has a higher concentration of red dots which indicate
that the patients in those areas were sent to the PICU.

A scatter plot between maxhemo_3to8 and to_PICU is seen in Figure 12.
Figure 12 shows that the patients with a haemoconcentration of more than 20% have
the highest risk of suffering shock, regardless of whether they are admitted to PICU or not.

Figure 11. SHAP dependence plot between maxHCT_3to8 and to_PICU.

Figure 12. SHAP dependence plot between maxhemo_3to8 and to_PICU.
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A SHAP dependency scatter plot between hct_bsl and to_PICU is shown in Figure 13.
Haematocrit (HCT) testing was performed to determine the extent of plasma leakages. The
SHAP-dependent plot in Figure 13 does not offer a clear picture. As a result, no decision
can be made on the severity of the patients since, if marked regions “b”, “c”, and “d” are
observed, any patient in the range of 25% to 45% of the hct concentration is either referred
to PICU or has a minimal chance of progressing to shock. On the other hand, if marked
regions “e” and “f” are considered, patients with hct levels exceeding 45% have a higher
risk of developing dengue shock syndrome.

Figure 14 shows a relation between the maximum haematocrit count and the haemo-
concentration on the third and eighth days of enrolment of the patients. The circle portion
indicates, if the haemoconcentration is above 20% with respect to a 45% maximum haemat-
ocrit count, the patient is going to suffer from hazardous health issues, which may lead to
either DHF or DSS.

Figure 13. SHAP dependence plot between hct_bsl and to_PICU.

Figure 14. SHAP dependence plot between maxHCT_3to8 and maxhemo_3to8.

• TO_PICU AND MINPLT_3TO8:

In the Figure 15, the horizontal axis contains to_PICU which shows the actual value
from the datasets, and the vertical axis indicates the value of minPLT_3to8 that has an
impact on the prediction. The increasing slope reflects the value of to_PICU, which is 1
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(positive), indicating that the model is more likely to predict that the patient would go into
shock.

In Figure 16, horizontal axis minPLT_3to8 refers to the actual value from the dataset,
and the vertical axis shows the value that has an impact on the prediction. The upward
slope shows that, when the value of to_PICU is 1 (positive), there is a higher chance for the
patient to go into shock.

Thus, by merging both scatter plots of Figures 15 and 16 , it is shown that, when
minPLT 3to8, i.e., patients with a minimal platelet count between the third and eighth days
of admission to the hospital, have low values, there is a higher chance that the patient
will go into shock. Furthermore, the majority of the children in the VDengue dataset who
were on the verge of DSS or were in susceptible situations were admitted to the PICU. In
the circled region of Figure 16, we can observe that the patients brought to the PICU had
platelet counts ranging from 15,000 to 50,000 (cells/mm3), resulting in a positive SHAP
score, indicating DSS. If we look at the right bottom corner, we can observe that the patient
has taken to_PICU, however, since the platelet count is approximately 300,000 cells/mm3

and the patient has a negative SHAP value, it is unlikely that the patient would go into
shock.

Figure 15. SHAP dependence plot of minPLT_3to8 and to_PICU illustrating to_PICU along horizontal
axis and minPLT_3to8 along vertical axis.
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Figure 16. SHAP dependence plot of minPLT_3to8 and to_PICU illustrating minPLT_3to8 along
horizontal axis and to_PICU along vertical axis.

• MINPLT_3TO8 AND MAXHEMO_3TO8:

A SHAP dependence plot was plotted between minPLT_3to8 and maxhemo_3to8 to
show the relation between the minimum platelets count and the maximum haemoconcen-
tration from our datasets.

In Figure 17, the circled region indicates that the patients in that region are more likely
to fall into shock. Patients with a minimum platelet count ranges between 20,000 (cells/mm3)
and 50,000 (cells/mm3) with a haemoconcentration of more than 20% are at risk of shock.
A minimum platelet count of more than 50,000 (cells/mm3) and haemoconcentration of
less than 20%, on the other hand, indicate that the patient is less prone to suffer DSS.

Figure 17. SHAP dependence plot between minPLT_3to8 and maxhemo_3to8.

• SEROTYPE2:

The serotype is the recognisable variation in bacteria or viruses or immune cells of
different individuals within a species [28]. Considering the VDengue dataset, 6.21% of
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patients have reached to shock and have a tendency to develop dengue shock syndrome. If
we look into Figure 18, we can see the percentage of the patients who have suffered from
different serotypes. Among the 143 (6.21%) patients that reached to shock in the VDengue
dataset, 67 (2.9%) had DENV1, 49 (2.1%) had DENV2, 7 (0.3%) had DENV3, 13 (0.6%) had
DENV4, 2 (0.1%) had mixed serotypes, and 5 (0.2%) had no serotype. A bar diagram is
also plotted based on the VDengue dataset, which shows that patients with DENV1 and
DENV2 are most likely to associate with shock, where the patients have a high chance to
develop DSS.

Taking into consideration the minimum platelets, the maximum haematocrit, and the
haemoconcentration monitored for 3 to 8 days after admission into the hospital, the mean
value for all the three features with respect to the serotype was calculated. After the calcula-
tion, it was found that the patients fell into the category of the DENV-1 serotype, and having
a mean value of 30,942 (cells/mm3) platelets, 48% hematocrit, and 25% hemoconcentration
is very much likely to lead to developing DSS.

In Figure 18,

• 0 = DENV1;
• 1 = DENV2;
• 2 = DENV3;
• 3 = DENV4;
• 4 = MIXED;
• 5 = NEGATIVE.

Figure 18. Percentage of serotype2 of patients going into shock.

Furthermore, a kernel density estimation graph was generated to assess the probability
of minimum platelets and a maximum haematocrit count from day 3 to day 8 of their enrol-
ment. The probability density of minimal platelets and highest haematocrit concentration
of patients with shock are displayed in Figure 19 from day 3 of hospital admission to day
8. According to the density curve in Figure 19, patients with platelets fewer than 50,000
(cells/mm3) on day 6 counted from the day of patient registration had the highest density
probability. Similarly, it can be shown in Figure 20 that an individual with haematocrit
concentrations greater than 45% on day 8 had the highest density probability.
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Figure 19. Minimum platelets count of shock victims as plotted each day since enrolment to the
hospital using kernel density estimation plot.

Figure 20. Maximum haematocrit concentration of shock victims as plotted each day since enrolment
to the hospital using kernel density estimation plot.

7.2. Analysis on the BDengue Dataset

The BDengue dataset was used with the agglomerative hierarchical clustering to
determine different clusters of the patients. After fitting the dataset with the model, it
starts to process by finding all of the dissimilarities between the data points. Two clusters
could be formed after applying hierarchical clustering. The mean and standard deviation
values of all features for both the clusters are shown in Tables 6 and 7 after fitting the
dataset with hierarchical clustering. Later, the two clusters were examined further to see
whether or not patients from either cluster had progressed to severity [29]. Individual pair
plots of two clusters were plotted to obtain insight into the patients displaying severity.
The severity determination was made in accordance with WHO guidelines. Thus, after
examining both clusters, 106 patients from a total of 169 patients belonged to cluster 0, and
none of the patients from cluster 0 achieved severity since their platelet count was greater
than 200,000 (cells/mm3).

Cluster 1 includes the remaining 63 cases. In the instance of Cluster 1, some individuals
experience typical dengue fever whereas others are at risk of developing DHF. It was shown
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that 44% of cluster 1 patients have a very high likelihood of progressing to severity since
their platelet count was less than 100,000 (cells/mm3), indicating that the patients may
develop thrombocytopenia. In contrast, 55% of patients in cluster 1 have normal DF because
their platelet count is greater than 100,000 (cells/mm3).

Moreover we can observe that the patients in cluster 0 have a mean neutrophils count
of 65% and patients in cluster 1 have a mean neutrophils count of 52%. Neutrophils are the
part of white blood cells that help the body to fight against any foreign body or any sort of
infection and help the injured tissues to heal faster. However, individuals in cluster 1 are
more likely to develop neutropenia, which is characterised by low levels of neutrophils,
which increases the higher risk of getting infected by different types of infections [8]. In
addition to that, the mean HCT percentage in cluster 1 patients is slightly higher than
the cluster 0 patients. Despite having a higher risk of DHF or DSS, cluster 1 patients had
a higher mean proportion of lymphocytes than cluster 0 patients. Cluster 0 has a mean
percentage of lymphocytes count of 28.5% , whereas cluster 1 has a mean percentage of 40%.
If the number of lymphocytes decreases further in cluster 0 individuals, lymphocytopenia
may ensue. Furthermore, the mean percentage count of Hb and monocytes for both clusters
was the same.

Table 6. Mean and standard deviation of different features for cluster 0.

Attributes Mean Standard Deviation

Platelets (cells/mm3) 221,085 63,918

HCT (%) 37.94 4.77

Lymphocytes (%) 28.50 16.26

Monocytes (%) 4 1.99

Neutrophils (%) 65 18.16

WBC 6918 5812

Hb (g/dL) 12 1.61

Table 7. Mean and standard deviation of different features for cluster 1.

Attributes Mean Standard Deviation

Platelets (cells/mm3) 93,714 3596

HCT (%) 40.63 5.96

Lymphocytes (%) 40 18.57

Monocytes (%) 4 1.95

Neutrophils (%) 52 19.82

WBC 10,521 18,762

Hb (g/dL) 12 2.02

7.3. Correlation Study of BDengue and VDengue Datasets

We discovered a high link between DSS or DHF and the patient platelet count and
HCT concentration in our study. According to our findings, individuals infected with
dengue who had a platelet count of less than 100,000 (cells/mm3) have a greater risk of
developing DSS or DHF, which we found in both the VDengue and BDengue datasets.
Furthermore, based on the VDengue dataset, we observed that the HCT concentrations
greater than 20% are associated with DSS or DHF.

8. Discussion

The main objective of our study was to apply different machine learning algorithms to
predict severity among dengue-infected patients. We focused on the datasets (VDengue
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and BDengue) of two subtropical regions, where we applied several supervised learning
methods to the VDengue dataset and, among them, the XGBoost classifier was found to be
the best performing. Later, we implemented a SHAP dependence plot to see the effect of
different features of the VDengue dataset on the prediction model, where we found that
the platelets count and HCT concentration have greater effects on deciding whether the
patient will proceed towards shock or not. On the other hand we applied unsupervised
learning to the BDengue dataset, which included hierarchical clustering, from which, we
deduced patients falling in the severity cluster had a lower platelets count and had an HCT
concentration of more than 20%.

In the WHO, they have used a clinical approach to determine the factors that lead
to Dengue Haemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS). According
to the 1997 WHO case definition, patients with thrombocytopenia (≤100,000 cells/mm3)
and evidence of plasma leakage (at least a rise in haematocrit of ≥20% compared with the
baseline value of the patient) or other signs of plasma leakage (such as pleural effusion
and/or ascites) are classified to have DHF, and, on the other hand, all four symptoms
including shock being present in DSS [8].

We reached a similar conclusion to the WHO guidelines from both the VDengue and
BDengue datasets using a machine learning approach following two different processes,
one for a structured dataset and another for an unstructured dataset. Our findings support
the findings by WHO.

In the future, we intend to overcome the limitations faced, such as unstructured
datasets, unwillingness to share patient data, paper-based records, and missing attributes,
that would help to determine time series. If we can overcome the aforementioned limita-
tions, it will be easier for us to identify the DSS or DHF patients more accurately. Thus,
healthcare professionals will be able to take proper countermeasures and make necessary
arrangements for the dengue-infected patients.
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Abbreviations

The following abbreviations are used in this manuscript:
DHF Dengue Haemorrhagic Fever
DSS Dengue Shock Syndrome
HCT Haematocrit
KNN K-Nearest Neighbours
MICE Multivariate Imputation By Chained Equations
PICU Paediatric Intensive Care Unit
SHAP SHapley Additive exPlanations
WBC White Blood Cell
XG eXtreme Gradient
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