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Abstract: Polyurethane elastomer (PUE) has attracted much attention in impact energy absorption
due to its impressive toughness and easy processability. However, the lack of continuous impact
resistance limits its wider application. Here, an amino-siloxane (APTES) grafted WS2-coated MWC-
NTs (A-WS2@MWCNTs) filler was synthesized, and A-WS2@MWCNTs/PUE was prepared by using
the filler. Mechanical tests and impact damage characterization of pure PUE and composite PUE
were carried out systematically. Compared with pure PUE, the static compressive strength and
dynamic yield stress of A-WS2@MWCNTs/PUE are increased by 144.2% and 331.7%, respectively.
A-WS2@MWCNTs/PUE remains intact after 10 consecutive impacts, while the pure PUE appears
serious damage after only a one-time impact. The improvement of mechanical properties of A-
WS2@MWCNTs/PUE lies in the interfacial interaction and synergy of composite fillers. Microscopic
morphology observation and damage analysis show that the composite nanofiller has suitable inter-
facial compatibility with the PUE matrix and can inhibit crack growth and expansion. Therefore, this
experiment provides an experimental and theoretical basis for the preparation of PUE with excellent
impact resistance, which will help PUE to be more widely used in the protection field.

Keywords: polyurethane elastomer; composite nanoparticles; continuous impact resistance

1. Introduction

Polyurethane elastomer (PUE), as a well-know (AB)n-type block linear polymer, has
attracted much attention recently from industry and academia due to its light weight, high
strength, and suitable recovery performance applications [1,2]. However, the problems
such as low impact resistance, especially continuous impact, restrict its application as a
high-performance impact protection material. In impact applications, PUE usually needs
to resist impact and shear forces, which requires PUE to have excellent toughness and
strength. The hard segments of PUE serve as tougheners, dissipating energy during
deformation, resulting in a high toughness [3]. Nevertheless, the toughness obtained
by energy dissipation is ineffective in resisting crack growth under cyclic impact. At
this time, the strength of PUE plays a decisive role in hindering crack formation and
propagation [4]. Due to the synergistic effect between nanofillers and polymer matrix,
incorporating nanoparticles into polymers is an effective way to develop excellent polymer
composites with strength and toughness [5].

Nanoparticles-reinforced polymer composites have gradually received more and more
attention due to their specific and attractive mechanical properties and thus have unique
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applications in impact protection sectors [6]. Therefore, nanomaterials with high intensity
and excellent energy absorption characteristics, such as multi-walled carbon nanotubes
(MWCNTs), can be used as effective impact-resistant fillers to improve the mechanical
properties of the polymer [7,8]. However, the dispersibility and interface compatibility
of MWCNTs and polymer matrix are not ideal, and the nanoparticle-polymer interface
appears to be one of the important to realize the enhancement of mechanical properties of
polymer composite materials [9]. Two or more nanoparticles are added simultaneously to
the polymer system is an alternative way for enhancing filler dispersion and interfacial
interaction without using other traditional approaches [10]. According to the research of
Gao et al. [11], the mobility of interfacial polymer beads is the slowest for the nanosheet-
filled system. Only in this case will there be a strong, attractive interfacial interaction
between the nanoparticle and the polymer matrix. In addition, Liu et al. [12] studied
the interface interactions of graphene, C60, and CNT with polymers. It was found that
compared with CNT and C60, graphene sheets had stronger interface interaction and
larger surface area, which greatly improved the occurrence of fracture. Hence, under the
premise of retaining the excellent mechanical properties of MWCNTs, wrapping nanosheets
on the surface of MWCNTs can enhance the interface interaction between nanoparticles
and polymers.

Tungsten disulfide (WS2) is a member of the transition metal disulfide (TMD) family
and has a layered structure similar to graphene [13]. Some studies have demonstrated
that WS2 nanosheets are solid lubricants that enhance the toughness of polymers and have
strong interface interactions with the polymer matrix. Therefore, the coating of MWCNTs
by WS2 nanosheets can effectively enhance the interface interaction between MWCNTs
and the polymer matrix and promote the improvement of the impact resistance of the
nanofiller-polymer system. In addition, the use of silane coupling agents to improve the
agglomeration of nanofiller is a common and effective method [14]. Zhang et al. [15]
added inorganic fullerene-like (IF) WS2 nanoparticles treated by a coupling agent to the
precursor solution of UHMWPE. IF-WS2 nanoparticles modified by silane coupling agent
significantly improved the bulletproof performance of UHMWPE fiber. Divya et al. [16]
used silane coupling agent for surface treatment of SiO2. The dispersion of SiO2 in epoxy
matrix was improved, and the surface hardness, tensile properties, and bending properties
of epoxy resin were improved. Kim et al. [17] modified BN/Fe3O4 composite nanoparticles
with silane coupling agent, which made the nanoparticles enhance the thermodynamic
properties of the polymer. Therefore, selecting an appropriate silane coupling agent can
further improve the dispersion and interfacial interaction of nanofillers.

In this paper, multi-walled carbon nanotubes are used creatively to prepare WS2
nanosheet-coated multi-walled carbon nanotubes composite nanoparticles (WS2@MWCNTs)
by in situ growth method. Silane coupling agents (γ-Aminopropyl triethoxysilane) con-
taining amino functional groups are used for in situ grafting on the surface of the com-
posite nanoparticles (A-WS2@MWCNTs). The suitable interface interaction between A-
WS2@MWCNTs and PUE matrix greatly improves the mechanical properties of PUE. More
importantly, the results of the continuous impact test show that the composite PUE added
with A-WS2@MWCNTs has excellent continuous anti-impact cycle service performance
and energy absorption characteristics. In addition, an optical microscope, scanning elec-
tron microscope, and ultra-depth of field three-dimensional microscopy system are used
to characterize the sample, explore the damage mechanism of the sample, and explain
the role of A-WS2@MWCNTs in the impact process. This research provides an effective
solution for the preparation and improvement of nanocomposite PUE with continuous
impact resistance.

2. Materials and Methods
2.1. Materials

All PUE materials were supplied by Qingdao Green World New Material Technology
Co., Ltd. (Qingdao, China), which include two components: A (a toluene diisocyanate



Materials 2021, 14, 6195 3 of 16

(TDI): –NCO, 6.212 wt.%) and B (a polyol: –OH, 6.358 wt.% and American Vertellus
Coscat AC-83 Organobismuth catalyst, 0.3 wt.%). Other related raw materials including
ethyl thioacetamide (C2H5NS, AR, 99%), tungsten chloride (WCl6, 99%), multi-walled
carbon nanotubes (MWCNTs, ≥95%, ID: 5–12 nm, OD: 30–50 nm, length: 10–20 µm),
γ-aminopropyl triethoxy silane (APTES) reagents were purchased from Shanghai Macklin
Biochemical Technology Co., Ltd (Shanghai, China).

2.2. Preparation of Composite Materials

The overall experimental process and chemical reaction are shown in Figure 1. The raw
materials of component A and component B were mixed in the weight ratio of 5:2 and then
poured into the mold to remove bubbles. Pure PUE was made by compression molding.
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Figure 1. (a) Preparation of WS2@MWCNTs composite nanoparticles by in situ growth method, and
(b) chemical schematic diagram of A-WS2@MWCNTs prepared by in situ grafting.

2.2.1. Preparation of WS2@MWCNTs Composite Nanoparticles

The synthesis method of composite nanoparticles (WS2@MWCNTs) was as follows:
C2H5NS (3.2 g) was poured into 10 mL ultrapure water for magnetic stirring for 30 min,
and then WCl6 (4.45 g) was added into the dispersion solution for further reaction for 1 h.
Then, MWCNTs (1.85 g) were weighed into the above solution and dispersed ultrasonically
for 2 h. The mixed solution was poured into the reactor and reacted at 200 ◦C for 24 h.
After the reaction, the mixed solution was washed and filtered several times with acetic
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acid and ultrapure water. The filtered solid was dried at 100 ◦C in a vacuum environment
for 24 h to obtain the product WS2@MWCNTs.

2.2.2. Preparation of A-WS2@MWCNTs/PUE Composite Materials

The synthesis of APTES-WS2@MWCNTs (A-WS2@MWCNTs) was as follows: First,
APTES (4 mL) was dropped into a mixed solution of ethanol (40 mL) and ultrapure water
(10 mL) for magnetic stirring for 30 min. Then composite nanoparticles (1 g) were added to
the solution after hydrolysis, adjust the PH between 4 and 5 with an appropriate amount of
acetic acid, ultrasonicate for 2 h, and magnetic stirring at 60 ◦C for 6 h. After the reaction was
completed, wash with ethanol and water until neutral. Finally, the product was vacuum
dried at 60 ◦C for 12 h and then ground for later use. Finally, A-WS2@MWCNTs was added
to B component after ultrasonic dispersion, and then A component was added, mixed
evenly, and poured into the mold to form A-WS2@MWCNTs/PUE composite material
(The cylinder model with a diameter of Φ 20 × 4 mm was used for static pressure test,
and the cylinder model with diameter Φ 10 × 2 mm was used for SHPB test). The added
information of nanofillers is shown in Table 1.

Table 1. Formulations of composite PUE and related static compression modulus.

Sample Relative Mass Ratio A:
B: Nanoparticles (g)

Elasticity Modulus
(MPa)

Maximum Strength
(MPa)

Constant Pressure
Intensity (10%)

(MPa)

Pure PUE 5:2:0 95.8 90.2 11.3
1.0 wt.% WS2@MWCNTs/PUE 5:2:0.070 131.4 137.7 16.0
1.5 wt.% WS2@MWCNTs/PUE 5:2:0.105 217.6 233.7 27.6
2.0 wt.% WS2@MWCNTs/PUE 5:2:0.140 84.1 77.0 9.9
2.5 wt.% WS2@MWCNTs/PUE 5:2:0.175 73.3 71.1 9.0
3.0 wt.% WS2@MWCNTs/PUE 5:2:0.210 110 61.5 10.3

1.5 wt.% WS2/PUE 5:2:0.105 134.3 176.0 23.3
1.5 wt.% MWCNTs/PUE 5:2:0.105 180.3 206.5 24.1

2.3. Characterization Methods

Microscopic morphology of nanoparticles and microscopic damage of specimen sur-
face as well as cross-section after impact observed by scanning electron microscopy (SEM,
Zeiss, Sigma300) (Carl Zeiss, Baden-Württemberg, Germany). The phases of the composite
nanoparticles were analyzed by X-ray diffraction (XRD, Bruker, D8 Advance, Karlsruhe,
Germany) at a scanning angle of 10◦–80◦ and a scanning speed of 10◦/min. The grafting
of composite nanoparticles was characterized by Fourier transform infrared spectroscopy
(FTIR, Nicolet 380, Waltham, MA, USA), and the powder samples were prepared by the
pressing sheet method. Raman spectroscopy (Raman, Renishaw, inVia, London, UK) was
used to characterize the area ratio of peak D to peak G of MWCNTs. A universal testing
machine (Hua long, WDW-100C, Shanghai, China) was used for static compression tests
with a compression rate of 1.2 mm/min and a compression thickness of 3.5 mm. Three
parallel experiments were conducted for all samples to take the average value [18,19].
Aluminum Hopkinson Bar (made in National University of Defense Technology, Changsha,
China) was used to measure the dynamic impact resistance of specimens [20–23]. An opti-
cal microscope (Olympus, BX53M, Tokyo, Japan) and ultra-depth of field 3D microscope
system (Keyence, VHX-6000, Osaka, Japan) were used to observe the damaged microscopic
appearance of the specimen after the impact.

3. Results and Discussions
3.1. Characterization of Composite Nanoparticles

As shown in Figure 2a, the crystal structure and phase purity of WS2@MWCNTs
composite nanoparticles grown in situ are studied. The main diffraction peak observed is
consistent with the main diffraction peak of hexagonal crystal system WS2. The diffraction
peak corresponding to MWCNTs (002) is about 26◦ [13]. Figure 2b is the Raman spectra
of MWCNTs and WS2@MWCNTs. MWCNTs are coated with WS2, which reduces the
effective vibrational groups of MWCNTs. The peak strength of WS2@MWCNTs decreases
significantly. However, the area ratio between the D peak (Peak D represents the SP3
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hybridization of the C atom) and the G peak (Peak D represents the SP2 hybridization of
the C atom) does not change significantly. This means that MWCNTS is coated by WS2
and will not destroy its own structure [24]. Figure 2c is the infrared spectrum of MWC-
NTs, WS2@MWCNTs, and A-WS2@MWCNTs nanoparticles. WS2@MWCNTs grafted with
APTES have strong Si-O-Si vibration at 1034 cm−1, and C-H symmetric and asymmetric
tensile vibration peaks at 2974 and 2872 cm−1.
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Figure 2. Basic characterization of nanoparticles. (a) XRD images of MWCNTs and WS2@MWCNTs,
(b) Raman spectroscopy of WS2 and WS2@MWCNTs, and (c) FTIR spectroscopy of MWCNTs,
WS2@MWCNTs, APTES, and APTES-WS2@MWCNTs.

Figure 3a–c shows the microstructure of MWNCTs and WS2@MWCNTs. The in situ
grown WS2 nanosheets are coated with MWCNTs, which is beneficial to enhance the inter-
face interaction between the nanofillers and the PUE matrix. The surface micro morpholo-
gies of pure PUE and 1.5%A-WS2@MWCNTs/PUE are shown in Figure 3d,e. Compared
with the surface of pure PUE, the surface microstructure of A-WS2@MWCNTs/PUE is
rougher with obvious protrusions. However, the A-WS2@MWCNTs nanofiller wrapped in
a polyurethane matrix has suitable compatibility. Figure 3f shows the microstructure of
1.5% A-WS2@MWCNTs/PUE fracture. It can be seen that A-WS2@MWCNTs are uniformly
distributed in the PUE matrix. It proves that the filler has suitable interface interaction
with the polymer matrix and makes a great contribution to the improvement of anti-
impact performance.
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Figure 3. (a) SEM image of MWCNTs, (b) SEM image of WS2@MWCNTs, (c) SEM image correspond-
ing to the selected area in (b), (d,e) SEM images of pure PUE and A-WS2@MWCNTs/PUE surface
corresponding to the selected area in (g,h), and (f) SEM image of A-WS2@MWCNTs/PUE fracture
corresponding to the selected area in (i).

3.2. Static Mechanical Characterization

Cylindrical specimens (Φ 20 × 4 mm) are selected for static compression test. As
shown in Figure 4a, the addition of 1.5% A-WS2@MWCNTs has the best effect on improving
the anti-compression performance of PUE. When the filler addition exceeds 2%, the com-
pression resistance of the composite PUE will be severely reduced. A-WS2@MWCNTs fillers
are usually unevenly dispersed in the polymer matrix due to their high specific surface
energy, which will cause the filler to accumulate and agglomerate under higher filler load-
ing [25]. Figure 4b shows the effect of uncompounded nanoparticles on the compression
performance of PUE at 1.5% mass fraction filling. The addition of uncompounded WS2 and
MWCNTs alone is also able to enhance the static compression performance of PUE, which
can be attributed to the homogeneous dispersion of nanofillers that has an enhancing effect
on the mechanical properties of the polymer [8,13,26]. However, A-WS2@MWCNTs is still
the most obvious improvement in static compression strength. Under the same compres-
sion conditions, pure PUE has been completely destroyed, while A-WS2@MWCNTs/PUE
remains in its original state (Figure 4d). Compared with pure PUE, the elastic modulus
of A-WS2@MWCNTs composite PUE is increased by 127.1%, the maximum pressure is in-
creased by 159%, and the 10% constant pressure strength is increased by 144.2% (Figure 4c
and Table 1). It is speculated that the reasons for the improvement of its mechanical prop-
erties are as follows: (I) Strong interfacial interaction between A-WS2@MWCNTs and
PUE [27]. A-WS2@MWCNTs composite nanoparticle system has suitable compatibility
with PUE. The organic polymers and inorganic nanoparticles form a strong interface force.
During the compression process, the load force is transferred from the polymer chain
to the rigid nanomaterial, thereby effectively increasing the compressive strength of the
composite material. (II) The enthalpy and entropy interaction of amino-functionalized
WS2@MWCNTs in the nanoparticle-polymer composites can guide the arrangement and
distribution of nanoparticles [28], and the overall density of the matrix increases, which
is beneficial to the improvement of mechanical properties [27]. (III) The hydroxyl groups
contained in the composite nanofiller form hydrogen bonds with the carbonyl groups
of polyurethane in polyurethane. It produces physical cross-linking, which limits the
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movement of polyurethane molecular chains during compression and thus improves the
compressive strength of polyurethane.
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Figure 4. (a) Stress-strain curves of composite PUE with 1%–3% mass fraction A-WS2@MWCNTs filler,
(b) composite PUE stress-strain curves with the addition of A-WS2, MWCNTs, and A-WS2@MWCNTs
fillers (the added mass fraction was 1.5%), (c) values of elasticity modulus, maximum strength and
constant pressure intensity corresponding to the tested samples in (a,b), and (d) comparison of the
damage level of pure PUE and A-WS2@MWCNTs/PUE after compression.

In particular, it should be pointed out that the influence of static compression test and
dynamic impact test on the deformation of PUE lies in the difference of strain rate. As a
typical strain rate material, PUE will have a strain rate effect and glass transition effect
under a high strain rate, which is not available in static compression tests [29,30]. Therefore,
the static compression test is different from the dynamic impact test. In order to further
study the continuous anti-impact performance of the composite PUE, a series of dynamic
impact tests are necessary.

3.3. Dynamic Impact Test

A series of dynamic impact tests of PUE at different strain rates are carried out by
using a split Hopkinson pressure bar (SHPB). SHPB is mainly composed of impact rod,
input rod, and output rod. All rods are made of aluminum alloy.

In the SHPB test, the size of the sample has a great influence on the final reliable
data. For the softer polymer materials, a smaller ratio of length to diameter (L/D = 0.2) is
beneficial to avoid the end effect and inertia effect and keep the uniform deformation and
stress balance. In addition, the uniform application of Vaseline on the rod end is beneficial
to reduce the friction effect on the test. Because the change of sample size with time cannot
be measured accurately, and the change of sample size after impact is small, the dynamic
stress, strain, and strain rate are calculated by using the initial cross-sectional area and
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length of the sample. According to the one-dimensional wave propagation theory, the
strains recorded by the incident, transmitted, and reflected waves are used to derive the
stress, strain, and strain rate over time. They have the following relationships:

σs(t) = E0
A0

As0
εt(t), (1)

εs(t) = −
2C0

Ls0

∫ t

0
εr(t)dt, (2)

.
εs(t) = −

2C0

Ls0
εr(t), (3)

In the formula, σs(t), εs(t), and εs(t) are the stress, strain, and strain rate of the sample
under test with time; εr(t) and εt(t) are recorded strains with time for the input and output
rods, respectively; As0 and Ls0 are the initial cross-sectional area and length of the tested
specimen; E0 is the Young’s modulus of bars; A0 is the cross-sectional area of bars; and
C0 = ρE0/ρ0 (ρ0 is the density of bars) is the wave velocity in bars.

The energy absorbed by a material under a high-speed impact is defined as the strain
energy (U) per unit volume (V) and is equal to the area of the stress-strain curve measured
from ε0 to ε1. It can be expressed in terms of strain energy density (u), which can be
expressed by the following equation:

u =
U
V

=
∫ ε1

0
σxdεx, (4)

where σx is the normal stress in the bar, εx is the normal strain, and ε1 is the normal strain
corresponding to elongation x1 [31,32].

3.3.1. One-Time Impact Test

The engineering stress-strain curves of pure PUE and A-WS2@MWCNTs/PUE under
the impact force of 0.2 MPa are shown in Figure 5a. In the initial elastic deformation
stage, the stress-strain relationship is linear, and its slope is dynamic Young’s modulus,
which represents the material’s ability to resist deformation. Compared with pure PUE,
the dynamic Young’s modulus of A-WS2@MWCNTs/PUE is increased by 167.2%. After
the elastic deformation stage, a nonlinear transition occurs at the dynamic yield stress
point. Then a large strain occurs under the platform stress until the material densifies,
accompanied by a significant increase in stress. In this process, the material has no obvi-
ous softening phenomenon, so the dynamic yield stress is consistent with the platform
stress, which is a key parameter for evaluating the material’s strain energy absorption
and impact resistance [33–35]. Compared with pure PUE, the dynamic yield stress of A-
WS2@MWCNTs/PUE is increased by 331.7%. Moreover, compared with the dynamic yield
stress of PUE or PUA prepared by predecessors, this research also has great advantages
(Present work: 51 MPa, Boyce MC’s PUE [36]: 38 MPa, Roland CM’s [37] PUA: 26 MPa, Yao
X H’s PUE [38]: 20 MPa). Figure 5b shows the influence of the addition of different nanoma-
terials on the impact resistance of PUE. The addition of A-WS2@MWCNTs and MWCNTs
improves energy absorption. However, the addition of A-WS2 reduces the energy absorp-
tion of the PUE. It is attributed to the fact that WS2 nanosheets only increased the toughness
of PUE but not the strength of PUE. Therefore, only the addition of A-WS2@MWCNTs
can enhance both the toughness and strength of PUE. In addition, Figure 5c shows that
pure PUE suffers irreversible damage after impact. Due to the concentration of stress, the
middle part has been completely destroyed. However, A-WS2@MWCNTs/PUE does not
show any damage.
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1.5%A-WS2@MWCNTs/PUE under the 0.2 MPa impact load, and (c) deformation of pure PUE and
1.5%A-WS2@MWCNTs/PUE under 0.2 MPa impact load.

3.3.2. Continuous Cycle Impact Test

Figure 6a shows the stress-strain curve (0.02–0.25 MPa) under the 10 successive im-
pacts. As the impact load increases, the maximum stress of A-WS2@MWCNTs/PUE
continues to rise. In the initial low-velocity impact stage, A-WS2@MWCNTs/PUE relies on
its own high strength to resist impact. When the impact load is loaded to 0.25 MPa, it is
found that the maximum stress no longer rises, but the strain rate has increased greatly. In
this process, A-WS2@MWCNTs rely on their own suitable toughness to undergo plastic
deformation to increase energy absorption (Figure 6b). The increase in toughness can
be attributed to the strain rate effect and glass transition characteristics of PUE (strain
rate material) [38]. Figure 6c,d illustrates the continuous impact resistance enhancement
mechanism of A-WS2@MWCNTs. Excellent interfacial interaction between nanoparticles
and the PUE matrix is a prerequisite for enhanced mechanical properties, which pro-
motes the force transfer from the PUE matrix to the nanoparticles. In addition, energy
absorption resulting from plastic deformation of chain segments, synergistic toughening be-
tween nanoparticles and PUE matrix, van der Waals forces, and synergistic effect between
nanoparticles are also important reasons for the improvement of the impact resistance of
A-WS2@MWCNTs/PUE [39].
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(c,d) schematic diagram of pure PUE and A-WS2@MWCNTs/PUE internal chain segments, and
(e) schematic diagram of A-WS2@MWCNTs-enhanced PUE impact resistance.

3.4. Craze Evolution, Crack Formation, and Destruction Mechanism

The OM, SEM, and ultra-depth of field 3D microscope system are used to observe and
analyze the surface, cross-section, and overall morphology of the sample.

Figure 7 shows the surface micro morphologies of pure PUE and A-WS2@MWCNTs/
PUE after impact. Figure 7a,b is the surface morphologies of pure PUE. It can be seen that
the middle part of the pure PUE has suffered serious perforation damage. The reason is
that the shear band formed under the combined action of the circumferential stress and the
radial stress moves to the center, causing stress concentration damage. However, as shown
in Figure 7c,d, there is no concentrated shear band in the center of A-WS2@MWCNTs/PUE,
and a few cracks on the surface do not continue to expand in the radial direction. Under
SEM observation, it is found that there is no macroscopic continuous expansion of collapse
and spalling, but a partial plastic deformation zone appears. This plastic zone retards the
expansion of macroscopic cracks and improves the impact toughness.
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Figure 8 shows SEM images of the cryo-fracture surface of the pure PUE samples and
the A-WS2@MWCNTs/PUE samples after impact. Figure 8a,b shows the shear failure zone
and part of the spalled fragments in the direction of pure PUE impact loading. This proves
that pure PUE has been completely destroyed under impact loading. On the contrary, as
follows from these SEM images (Figure 8c,d), A-WS2@MWCNTs are apparently rooted
within the PUE matrix, which ascertains suitable adhesion between the matrix and the filler.
This phenomenon clearly indicates that the pull-out mechanism of the nanocomposites
hinders the crack extension and promotes the improvement of the composite toughness
and energy absorption capacity.
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Figure 8. (a,c) SEM images of (a) pure PUE and (c) A-WS2@MWCNTs/PUE fracture, and (b,d) SEM
images corresponding to the selected area in (a,c).

Figure 9a–d shows the surface morphology of pure PUE and 1.5%A-WS2@MWCNTs/
PUE under the ultra-depth of field three-dimensional microsystem after impact. The center
of the pure PUE is severely damaged, and a ring-shaped macroscopic shear band appears
around the hole, which indicates that the external force on the PUE extends from the
periphery to the center and finally causes the perforation damage at the center. On the
contrary, many discontinuous micro-cracks appear on the surface of A-WS2@MWCNTs.
The micro-cracks stop spreading at the distribution of nanoparticles, reducing the stress
concentration in the center and protecting the PUE from damage. This also proves that
A-WS2@MWCNTs nanofiller has the function of inhibiting crack propagation.
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Figure 9. (a,c) Ultra-depth of field 3D microscopy images of (a) pure PUE and (c) A-WS2@MWCNTs/
PUE surface, and (b,d) 3D topography images corresponding to the (a) pure PUE and (c) A-
WS2@MWCNTs/PUE.

A simple damage model (Figure 10) of PUE under impact is established by observ-
ing the microscopic morphology of the specimens and referencing the elliptic criterion
(metal glass stamping experiments [40]) and the Mohr–Coulomb (flexible polymer impact
loading experiments [41]). This model helps explain the preventing crack propagation
role of A-WS2@MWCNTs in the impact process. PUE is loaded by radial normal, σr, and
circumferential normal stresses, σθ , under the impact of SHPB. In the stress element of the
θ-Z plane, the σθ can be decomposed into two-component stresses on any stress plane,
namely shear stress, τn, and normal stress, σn. Under the action of two-component stress, a
radial shear band is produced. The motion of radial shear bands can be explained in terms
of elliptic criteria:

f (τn, σn) = (τn/τ0)
2 + (σn/σ0)

2, (5)

fmax(τn, σn) ≥ f0(τ0 , σ0), (6)
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In elliptic criteria, τ0 is the critical shear strength; σ0 is the critical dissociation strength
of PUE, which depends on the material. When the maximum value of the function f (τn,
σn) increases to the critical function value of PUE, the joint action of shear stress τn and
normal stress σn occurs, and the radial shear zone starts to form and propagate along the
radial direction. Therefore, according to the ellipse criterion, the radial shear band is driven
by circumferential tensile stress, σθ .

On the other hand, in the stress element of the R-Z plane, there is a pure shear stress τ

in the Z direction perpendicular to the R direction. According to
⇀
τr =

⇀
τ +

⇀
σr, radial normal

stress σr can be changed to synthetic stress τr, according to Mohr–Coulomb criterion:

|τr| ≥ τn = τ0 + µσn, (7)

In Mohr–Coulomb criterion, |τr| is the absolute value of the combined stress of radial
normal stress, τr is the critical shear fracture strength of the PUE, τ0 is the critical shear
strength of the material, and µ is the material constant of PUE. Therefore, when the resultant
stress τr is in contact with the critical shear fracture line, the circumferential shear band
begins to form and expand in the circumferential direction [40]. Therefore, the synthetic
pure shear stress τr causes the formation and movement of the circumferential shear band.

In conclusion, the radial shear band is caused by σθ , while the circumferential shear
band is excited by pure shear stress τr. Different deformation mechanisms determine
the failure mode of the material, and the formation and movement of the double shear
band lead to the final central failure of PUE. The essence of the PUE deformation process
is the competition process between σθ and τr. However, during the deformation of A-
WS2@MWCNTs/PUE, A-WS2@MWCNTs increases the critical shear strength τ0 and the
critical dissociation strength σ0, which makes radial shear band difficult to form and move.
Similarly, the formation and expansion of circumferential shear bands are impeded. Finally,
the two shear bands do not extend deep, and some areas form a discontinuous plastic
deformation zone, which effectively improves energy absorption. In addition, for the domi-
nant plastic deformation τr, A-WS2@MWCNTs can effectively prevent the regional damage
caused by the accumulation of plastic deformation bands through its own deformation,
which is also due to the excellent compatibility and dispersion of A-WS2@MWCNTs.

4. Conclusions

In this experiment, the A-WS2@MWCNTs composite filler was prepared by in situ
growth and in situ grafting to improve the impact resistance of PUE. Through a static
compression test, dynamic impact test, microscopic morphology observation, and failure
mechanism analysis, we can draw the following conclusions:

1. Compared with pure PUE, the static compressive strength and dynamic yield stress
of composite PUE are increased by 144.2% and 331.7%, respectively. The addition of
composite filler enhances the strength and toughness of PUE and avoids the damage
and softening caused by stress concentration and heat concentration under the impact
effect. Most notably, the composite PUE remains intact under the successive shocks,
while the pure PUE is destroyed by a single impact. The suitable impact resistance
of A-WS2@MWCNTs/PUE is attributed to the suitable interface interaction between
nanoparticles and PUE and the synergy between nanoparticles.

2. According to the surface morphology analysis, polyurethane is prone to perforation
damage in the central area under high-speed impact. However, A-WS2@MWCNTs/
PUE has a large plastic deformation zone, which absorbs external energy, delays the
growth of macroscopic cracks, and prevents damage to the specimen. In addition, the
morphology of the section shows that A-WS2@MWCNTs is rooted in the PUE matrix,
indicating that the adhesion between the matrix and the filler is suitable. This indicates
that the pull-out mechanism of the nanocomposites impedes the crack propagation
and promotes the toughness and energy absorption capacity of the composites.
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3. It can be concluded that the deformation process of PUE is a competitive process be-
tween σθ and τr by studying the damage mechanism of PUE. For A-WS2@MWCNTs/
PUE, A-WS2@MWCNTs increases the critical shear strength τ0 and the critical dissoci-
ation strength σ0, making it difficult for the radial shear band to form and move. Sim-
ilarly, the formation and expansion of circumferential shear zones are also hindered.
Finally, the two shear bands do not extend deeply, and some regions form a discontin-
uous plastic deformation zone, which effectively improves energy absorption.

4. Based on the characteristics of A-WS2@MWCNTs/PUE with high impact strength,
it is worthy of being widely used in the field of impact protection. In addition, the
damage formation process of PUE material is analyzed, and the preventing effect of
nanofiller on crack propagation is explained, which lays a theoretical foundation for
the subsequent development of impact-resistant nanocomposite PUE.
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