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This study investigated the effects of miso, a traditional
fermented soybean food in Japan, on muscle mass atrophy. Eight
week old male C57BL/6J mice were fed high fat/high sucrose diet
with or without miso for 12 weeks. A miso diet increased soleus
muscle weights (p<0.05) and reduced intraperitoneal glucose
tolerance and insulin tolerance (p<0.05). The miso diet down‐
regulated the Tnfα and Ccl2 expression, related to inflammation,
and Trim63 and Fbxo32 expression, related to muscle atrophy, in
the soleus muscle (p<0.05). The miso diet increased short-chain
fatty acids levels, including acetic, propanoic, and butanoic acids,
in the feces, serum, and soleus muscle (p<0.05). According to the
LEfSe analysis, the miso diet increased family Prevotellaceae,
family Christensenellaceae, family Dehalobacterium, family
Desulfitibacter; family Deferribacteraceae, order Deferribacte‐
rales, class Deferribacteres; and family Gemmatimonadaceae,
order Gemmatimonadetes, and class Gemmatimonadales,
whereas the miso diet decreased family Microbacteriaceae, order
Micrococcales, class Actinobacteria, and family Lactobacillaceae.
Miso suppressed high fat/high sucrose diet induced impaired
glucose tolerance, low muscle strength, and muscle atrophy by
improving dysbiosis and increasing short-chain fatty acids
production and provides new insights into the preventive effects
of fermented foods on sarcopenia.
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S arcopenia, defined as the age-related decline in muscle
strength, mass, and function(1) is now recognized as an

urgent treatment target for older people. Sarcopenia is recognized
as the risk of cardiovascular disease(2) and mortality.(3–5) To main‐
tain appropriate muscle mass or induce muscle hypertrophy,
sufficient exercise and nutrient intake are required.(6,7) Gut micro‐
biota is closely associated with muscle atrophy.(8–10) Metabolites,
represented by short-chain fatty acids and amino acids, are
produced from orally intake diet by gut microbiota.(10) Dysbiosis,
the alteration of gut microbiota induced by changing the diet, is
associated with alterations in gut microbiota-related metabo‐
lites.(11) Gut microbiota have been reported to be affected by a
variety of factors, including drugs as well as diet.(12) We previ‐
ously reported that the differences in gut microbiota between
Japanese type 2 diabetics and healthy Japanese may be due to
acquired factors such as habitual dietary intake, including sucrose

intake.(13) High fat/high sucrose diet (HFHSD) is associated with
a reduction in short-chain fatty acid (SCFA) production,(14,15) a
well-known gut microbiota-related metabolite, and leads to
muscle atrophy.(16)

Miso, a traditional fermented soybean food in Japan, contains
vegetable proteins, carbohydrates, fat, vitamins, minerals, and
microorganisms.(17) Miso effectively protects against hyperten‐
sion, cancers, and mortality.(17,18) High miso intake is associated
with lower insulin resistance.(19,20) Moreover, the glycemic
control of diabetic people with habitual miso soup intake were
better than that of diabetic people without.(21) In addition, we
recently revealed that the prevalence of sarcopenia in diabetic
people with habitual miso soup intake was lower than that in
diabetic people without.(22) Therefore, there is a possibility that
miso, a traditional fermented soybean food in Japan, has a
protective effect on muscle atrophy. However, the mechanisms
underlying the effect of miso on muscles are yet to be clarified.
We hypothesized that miso alters microbe-associated metabo‐

lites, SCFAs, by improving the dysbiosis induced by HFHSD,
thereby inhibiting muscle dysfunction and atrophy. The present
study investigated the effects of miso on the muscle mass of
C57BL/6J mice fed an HFHSD with or without miso and showed
that miso suppressed HFHSD-induced muscle atrophy by
improving dysbiosis in the intestine, increasing SCFA produc‐
tion, and improving muscle inflammation.

Materials and Methods

Animals. The Committee for Animal Research at the Kyoto
Prefectural University of Medicine approved the experimental
procedures (M2022-84). In this study, we purchased 12 littermate
C57BL/6J male mice with 7 week old from Shimizu Laboratory
Supplies (Kyoto, Japan) and mice were housed in a specific
pathogen-free, controlled environment. The mice were fed
HFHSD (D12327, which included 40% carbohydrate, 20%
protein, and 40% fat, coconut oil; Research Diets, Inc., New
Brunswick, NJ) with free water or HFHSD with 0.9% barley
miso (Fundokin Shoyu Co., Ltd., Oita, Japan) dissolved in water
for 12 weeks starting at 8 weeks of age. Body weight was
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measured every week. At 20 weeks of age, after an overnight
fast, the mice were killed by administering a combination anes‐
thetic of 4.0 mg/kg midazolam, 0.3 mg/kg medetomidine, and
5.0 mg/kg butorphanol.(23)

Measurement of oral intake. At 20 weeks, mice’s oral
intake was measured. The mice were housed individually, fed
weighed food through the cage, and the remaining amount of
food was weighed after 24 h. The oral intake was calculated by
subtracting the final food amount from the initial food amount.

Analytical procedures and glucose and insulin tolerance
tests. An intraperitoneal glucose tolerance test (iPGTT) (2 g/kg
body weight) was performed on 20-week-old mice after 16-h
fasts. Then, insulin tolerance test (ITT) (0.5 U/kg body weight)
was also performed after 6-h fasts. For both procedures, measure‐
ment of blood glucose was performed by collecting a drop of
blood using a glucometer at the times indicated (Gultest Neo
Alpha; Sanwa Kagaku Kenkyusho, Nagoya, Japan). The area
under the curves (AUCs) of the iPGTT results and the ITT results
were analyzed.

Evaluation of muscle function and atrophy. A grip strength
meter (model DS2-50N, Imada Co., Ltd., Toyohashi, Japan) was
used for grip strength measurement in 20-week-old mice. The
weight of the soleus muscle of mice was measured as previously
reported method.(24)

Gene expression in the soleus muscle. Gene expression of
Trim63, Fbxo32, Tnfα, and Ccl2 in the soleus muscle were
performed. Methods for total RNA extraction, reverse transcrip‐
tion, and RT-PCR are described in detail in the Supporting infor‐
mation. The relative expression levels of each targeted gene were
normalized to Gapdh threshold cycle (CT) values and quantified
using the comparative threshold cycle 2−ΔΔCT method as described
previously.(25) Signals from a C57BL6/J mouse fed an HFHSD
were assigned a relative value of 1.0. Six mice from each group
were examined, and RT-PCR was performed in triplicates for
each sample.

Measurement of short-chain fatty acid concentrations in
fecal, serum, and soleus muscle samples. The SCFA compo‐
sitions of the murine feces of the rectum, serum, soleus muscle
and white adipose tissue (eWAT) samples were analyzed using
gas chromatography–mass spectrometry (GC/MS) on an Agilent
7890B/7000D System (Agilent Technologies, Santa Clara, CA),
same as previously.(26) Methods are described in detail in the
Supporting Information.

Fecal microbiota analysis. Fecal samples were collected
from the appendix, stored in a cryotube. frozen by liquid
nitrogen, and stored in liquid nitrogen until DNA extraction.
Three fecal samples were collected individually from the
appendix of three mice, excluding one large mouse and one small
mouse from each group. Microbial DNA was extracted from
the frozen fecal samples using the QIAamp® DNA Feces Mini
Kit (Qiagen, Venlo, Netherlands), following the manufacturer’s
instructions.(22) Whole-genome shotgun sequencing was performed
using the HiSeq 2000/2500/4000 system (Illumina, San Diego,
CA) at the Bioengineering Lab. Co., Ltd. (Sagamihara, Japan).

Statistical analysis. The data were shown as mean and SD.
The differences between the groups were evaluated using the t
test for parametric continuous data or Mann–Whitney U test for
non-parametric continuous data. The differences in categorized
variables between the groups were evaluated using Pearson’s
chi-square test. Prism ver. 8.0 software (GraphPad, San Diego,
CA) was used. Statistical significance was set at p<0.05. Differ‐
ences between groups were detected by LEfSe analysis. A
Kruskal–Wallis sum-rank test was performed to identify signifi‐
cantly different species, and a linear discriminant analysis (LDA)
was performed on the identified species to further evaluate the
effect size of these differences. Significant differences were set at
p<0.05 using the Benjamini–Hochberg procedure(27) and a loga‐
rithmic LDA score threshold of 2.0.(28)

Results

Miso suppresses HFHSD-induced impaired glucose toler‐
ance, muscle strength, and muscle atrophy. Miso suppresses
HFHSD-induced impaired glucose tolerance, muscle strength,
and muscle atrophy The body weights of mice fed HFHSD with
miso [35.0 (1.9) g vs 37.5 (1.8) g at 20 weeks, p = 0.007]
(Fig. 1A) and the oral intake at 20 weeks of age [3.34 (0.51) g vs
4.07 (0.72) g, p = 0.018] (Fig. 1B) were suppressed than those of
mice fed HFHSD. iPGTT and ITT revealed that the glucose and
insulin tolerance in mice fed HFHSD with miso was significantly
reduced compared to those in mice fed HFHSD [AUC of iPGTT;
20,558 (2,091) mg/dl × min vs 23,685 (1,409) mg/dl × min, p =
0.001 and AUC of ITT; 13,723 (1,707) mg/dl × min vs 17,053
(976) mg/dl × min, p<0.001] (Fig. 1C–F). The absolute and rela‐
tive soleus muscle weights in mice fed HFHSD with miso were
higher than those in mice fed HFHSD [absolute soleus muscle;
8.0 (0.3) g vs 6.1 (0.8) g, p<0.001 and relative soleus muscle;
0.23 (0.01) vs 0.20 (0.01), p<0.001] (Fig. 1G and H). Further‐
more, grip strength in mice fed HFHSD with miso was higher
than that in mice fed HFHSD [grip strength; 35.6 (2.2) g vs 30.2
(6.1) g, p = 0.017 and grip strength/BW; 2.62.6 (0.22) vs 2.01
(60.18), p<0.001] (Fig. 1I and J).

Miso suppresses HFHSD-induced inflammation and muscle
atrophy in the soleus muscle. The relative expression of genes
related to inflammation, Tnfα (p<0.001) and Ccl2 (p<0.001), in
the soleus muscle of mice fed HFHSD with miso were lower
than those of mice fed HFHSD (Fig. 2A and B). In addition, the
relative expression of genes related to muscle atrophy, Trim63
(p<0.001) and Fbxo32 (p<0.001), in the soleus muscle of mice
fed HFHSD with miso were lower than those of mice fed
HFHSD (Fig. 2C and D).

Miso suppresses the reduction of SCFAs by HFHSD. SCFA
levels, including acetic acid, propanoic acid, and butanoic acid,
were measured. SCFA levels in the feces [acetic acid; 6.43 (3.05)
nmol/μg vs 2.10 (1.45) nmol/μg, p<0.001, propanoic acid; 85.3
(4.03) nmol/μg vs 65.4 (2.61) nmol/μg, p<0.001, and butanoic
acid; 23.6 (10.7) nmol/μg vs 4.07 (7.01) nmol/μg, p<0.001],
serum [acetic acid; 212.6 (22.4) nmol/μg vs 180.2 (10.7)
nmol/μg, p<0.001, propanoic acid; 13.1 (6.5) nmol/μg vs 2.81
(2.29) nmol/μg, p<0.001, and butanoic acid; 325.9 (16.3)
nmol/μg vs 228.3 (23.8) nmol/μg, p<0.001], soleus muscle
[acetic acid; 2.19 (0.58) nmol/μg vs 0.76 (0.02) nmol/μg,
p<0.001, propanoic acid; 1.00 (0.25) nmol/μg vs 0.36 (0.02)
nmol/μg, p<0.001, and butanoic acid; 0.38 (0.10) nmol/μg vs
0.13 (0.01) nmol/μg, p<0.001] and eWAT [acetic acid; 0.39
(0.05) nmol/μg vs 0.25 (0.02) nmol/μg, p<0.001, propanoic acid;
0.22 (0.04) nmol/μg vs 0.14 (0.02) nmol/μg, p<0.001, and
butanoic acid; 0.07 (0.01) nmol/μg vs 0.04 (0.01) nmol/μg,
p<0.001] of mice fed HFHSD with miso were significantly
higher than those of mice fed HFHSD (Fig. 3).

Miso alters gut microbiota. The gut microbiota was inves‐
tigated using shotgun metagenomic sequencing. According to the
LEfSe analysis, the families Prevotellaceae, Christensenellaceae,
Dehalobacterium, Desulfitibacter; family Deferribacteraceae,
order Deferribacterales, class Deferribacteres; and family
Gemmatimonadaceae, order Gemmatimonadetes, and class
Gemmatimonadales were increased in mice fed HFHSD with
miso, and family Microbacteriaceae, order Micrococcales, class
Actinobacteria, and family Lactobacillaceae were increased in
mice fed HFHSD (Fig. 4A and B).

Discussion

In this study, we showed that miso, the traditional fermented
soybean food in Japan, suppressed impaired glucose tolerance,
muscle dysfunction, and muscle atrophy, which were induced
by HFHSD. Miso suppressed inflammation in skeletal muscle
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Fig. 1. Miso suppresses HFHSD-induced impaired glucose tolerance, muscle dysfunction, and muscle atrophy. (A) Body weight changes (n = 6). (B)
Oral intake measured at 20 weeks of age (n = 6). (C, D) When the mice reached 20 weeks of age, an intraperitoneal glucose tolerance test (iPGTT)
(2 g/kg body weight) was performed, and the area under the curve (AUC) was analyzed (n = 6). (E, F) When the mice reached 20 weeks of age,
insulin tolerance test (ITT) (0.5 U/kg of body weight) was performed, and the AUC was analyzed (n = 6). (G, H) Grip strength of mice was measured
at 20 weeks of age. (I, J) The soleus muscle weight of mice (n = 6). Soleus muscle weight/BW was evaluated as soleus muscle weight divided by
body wight (BW) at sacrifice. The differences between the groups were evaluated using the t test for parametric continuous data or Mann–
Whitney U test for non-parametric continuous data and *p<0.05.
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by improving dysbiosis and increasing SCFA production and
absorption.

Diet habits play an important role in maintaining health,
including muscle mass. A previous study showed that
theaflavins, a type of phytochemical, have been reported to act
protectively against muscle atrophy.(29) Furthermore, dysbiosis,
often occurring with dietary changes, alters the production of
gut microbiota-related metabolites.(11) Gut microbiota is closely

associated with muscle atrophy through SCFAs.(8–10) HFHSD
reduces SCFA production(14,15) and upregulates inflammation
related gene expression, such as Tnfα and Ccl2, in muscles,(30,31)

leading to muscle atrophy.(16) In our study, SCFA levels in the
feces, serum, muscle, and eWAT of mice fed HFHSD decreased,
and Tnfα and Ccl2 levels in the muscle of mice fed HFHSD
increased. Therefore, miso intakes improved the production of
SCFAs, one of the important gut microbiota-related metabolites,
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Fig. 3. Levels of short-chain fatty acids (SCFAs) in mice fed HFHSD with miso was significantly increased compared to those fed HFHSD. (A–C) The
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in the gut, which had been suppressed by the HFHSD and
suppressed the inflammation in muscle via an increase in SCFAs.

It has been reported that high-fat high-sucrose diets increases

the threshold for self-stimulation in the lateral hypothalamus,
which constitutes the reward system, making it difficult to feel
brain reward from food intake.(32) Although the detailed mecha‐

HFHSD
HFHSD with miso

A B

Fig. 4. Changes in the gut microbiota observed using shotgun metagenomic sequencing. (A) Linear discriminant analysis (LDA) scores of gut
microbiota of the control (red) and miso (green) groups. (B) LEfSe was used to identify the species with the greatest differences in the abundance
between the gut microbiota of control (red) and miso (green) groups (n = 6). The brightness of each dot is proportional to the effect size. Only
species with a significant LDA threshold value >2 are demonstrated. See color figure in the on-line version.

Y. Hashimoto et al. J. Clin. Biochem. Nutr. | January 2024 | vol. 74 | no. 1 | 67
©2024 JCBN



nism is not known, it is possible that miso consumption may
have had an inhibitory effect on raising the threshold for self-
stimulation in the lateral hypothalamus.
Fermented foods are produced through controlled microbial

growth and conversion of food components through enzymatic
action.(33) Various fermented foods, including cheese, alcoholic
beverages, pickles, soy sauce, and yogurt, are highly enriched in
SCFAs.(34,35) Japan is known to have many kinds of fermented
foods due to its mild and humid climate, which provides a
favourable environment for fermented microorganisms to grow
and an abundance of foodstuffs from which to ferment. Miso, a
traditional fermented soybean food in Japan, has a protective
effect against sarcopenia(22) and is negatively correlated with
insulin resistance in humans.(20,22) The main ingredient of miso is
soybeans, which contain soy protein and isoflavones as well as
various vitamins and minerals. Miso also contains other contents,
such as pyroglutamyl leucine, polyamines, melanoidin, trypsin
inhibitor, saponin, lecithin, choline, and dietary fiber. Fermented
foods have the potential to provide a higher absorption rate of
nutrients than when consumed as original foods. Miso exhibits
anti-inflammatory effects.(30) A previous study reported soy
isoflavones prevent muscle atrophy through down regulation of
inflammation markers, including Tnfα,(36) which was identical to
the results of this study. Miso soup intake is associated with an
increase in SCFAs in the human feces.(31) In this study, the
production and absorption of SCFAs in mice fed HFHSD
with miso were higher than those in mice fed HFHSD. Gut
microbiota, such as family Prevotellaceae, including genus Allo‐
prevotella, which was increased in mice fed HFHD with miso,
was associated with SCFA production.(8) The proportions of
Prevotella is high in Japanese individuals(37) but was reduced in
the patients with type 2 diabetes, whose dietary habits are
westernized, compared to healthy people.(13) The family Chris‐
tensenellaceae is also associated with SCFA production.(38,39) The
increase in the Lactobacillaceae family is associated with lower
SCFA levels.(38) SCFAs enhance skeletal muscle metabolism by
increasing insulin sensitivity and decreasing inflammation. In our
study, SCFA levels were higher and inflammation was lower in
the muscle of mice fed HFHSD with miso than those in mice fed
HFHSD.
Limitations of this study should be mentioned. First, to assess

sarcopenia, the mice at least at 12 months of age is desirable.
Further study will be performed to clarify the usage of miso on
the sarcopenia using the older mice. Second, since soleus muscle
is an oxidative muscle, using only soleus muscle could be
limiting and results might be influenced by fiber type and
metabolism. To investigate not only soleus, an oxidative muscle,
but also a glycolytic muscle (extensor digitorum longus or
plantaris) and a mixed fiber type muscle (tibialis, quadriceps
or gastrocnemius) is desirable. Third, assessment of muscle
synthesis pathways and muscle cross-sectional area is also
important. Unfortunately, however, we did not evaluate these
points. Our results demonstrate important points. First, miso, the
traditional fermented soybean paste, improves glucose tolerance
and suppresses muscle atrophy, even though it has no effect on
whole body weight. Second, miso intake increased SCFA produc‐
tion through improving dysbiosis. This study provides new
insight into the significant benefit of taking fermented food.

In summary, this study revealed that miso, the traditional
fermented soybean food in Japan, suppressed HFHSD induced
impaired glucose tolerance, muscle strength, and muscle atrophy
by improving dysbiosis and increasing SCFA production and
absorption.
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