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Abstract: The arrival of the monoclonal antibody (mAb) technology in the 1970s brought with it
the hope of conquering cancers to the medical community. However, mAbs, on the whole, did not
achieve the expected wonder in cancer therapy although they do have demonstrated successfulness
in the treatment of a few types of cancers. In 1990, another technology of making biomolecules
capable of specific binding appeared. This technique, systematic evolution of ligands by exponential
enrichment (SELEX), can make aptamers, single-stranded DNAs or RNAs that bind targets with
high specificity and affinity. Aptamers have some advantages over mAbs in therapeutic uses
particularly because they have little or no immunogenicity, which means the feasibility of repeated
use and fewer side effects. In this review, the general properties of the aptamer, the advantages
and limitations of aptamers, the principle and procedure of aptamer production with SELEX,
particularly the undergoing studies in aptamers for cancer therapy, and selected anticancer aptamers
that have entered clinical trials or are under active investigations are summarized.

Keywords: aptamer; SELEX; cancer; therapy

1. Introduction

The advent of the technology of using B lymphocyte hybridomas to produce monoclonal antibodies
(mAbs) in the 1970s gave the medical world a ray of hope to conquer cancers because mAbs are
capable of binding to target molecules, such as tumor antigens specifically, and carrying cytotoxic
agents selectively to cancer cells, which means effective destruction of cancer cells with minimum
damage to normal cells. In the years that followed, mAbs demonstrated their exceptional usefulness
particularly in biomedical researches and also in clinical diagnoses and treatment of a few types of
cancers; nevertheless, because of a number of reasons, mAbs did not achieve the expected wonder in
cancer therapy on the whole.

The 1990s of the last century witnessed another technology of making biomolecules capable
of specific binding. The technique was dubbed systematic evolution of ligands by exponential
enrichment (SELEX) and the molecules it produced were named aptamers [1,2]. Aptamers are
single-stranded nucleic acids (either DNA or RNA) that can recognize targets through three-dimensional
complementarity (rather than base pairing) and bind to targets with high specificity and affinity; hence,
they have been described as nucleic acid antibodies [3]. Similarly to mAbs, aptamers can be used in
laboratory research and in clinical diagnosis and treatment, but aptamers have some advantages over
mAbs particularly in in vivo applications, one of which is that they have little or no immunogenicity
and thus do not elicit immunological rejections, meaning the feasibility of repeated use and also fewer
side effects [4]. There has already been an aptamer called Macugen (Pegaptanib Sodium Injection) being
approved by the US Food and Drug Administration (FDA) for therapeutic application. This aptamer
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targets vascular endothelial growth factor (VEGF) and is used for the treatment of age-related macular
degeneration (AMD) [5].

This paper summarizes the general properties of the aptamer, the advantages and limitations
of aptamers compared with mAbs, the principle and procedure of aptamer production with SELEX,
(particularly) the undergoing investigations into aptamer’s applications in cancer treatment,
and selected aptamers that have entered clinical trials or are under active investigation for
cancer therapy.

2. General Properties of the Aptamer

Single-stranded nucleic acid molecules can bind to complementary sequences via base pairings, but
they can also form multiple secondary structures (such as stem-loops, hairpins, bugle, pseudoknots, etc.)
and further form unique three-dimensional structures. Thus, they can bind to a great variety of
targets including proteins, cells, bacteria, virions, and various small organic and inorganic molecules
through closely matched spatial complementarity and by means of electrostatic/ionic interaction,
hydrogen bonding, van der Waals’ force, as well as hydrophobic interactions [6]. Exploiting the
latter properties, Gold lab and Szostak lab of the United States in the early 1990s independently
established a kind of in vitro evolution technique that can generate oligonucleotides with high
specificity and binding affinity [1,2]. The Szostak group gave the technique the name “in vitro selection”
while the Gold group named it systematic evolution of ligands by exponential enrichment or SELEX;
later literature all adopted the latter term. The Szostak group first called the molecule aptamer and the
name has been accepted universally. Aptamers are single-stranded DNA (ssDNA) or single-stranded
RNA (ssRNA) oligonucleotides of variable lengths (usually 20–80 nt residues). The sequence in
the central region of the molecules, generated during chemical synthesis and selection, is highly
random and can bind to various targets, while the flanking sequences, predesigned by the researcher,
are constant and are used for aptamer selection or production (the sequences on both sides can be
truncated or trimmed after the final selection). Aptamers can form diverse three-dimensional structures
and can thus bind to a variety of targets specifically and tightly. The binding affinities (dissociation
constants) of aptamers are usually in the range of low nanomolar to high picomolar but may reach
femtomolar [7,8]. The recognition is highly exquisite and can discriminate structural differences
between enantiomers (mirror images with identical chemical composition) and the presence or absence
of a hydroxyl group [9].

Even though aptamers are highly specific, the issue of off-target binding must still be carefully
investigated for them to meet regulations and enter clinical use. To date, quite a few aptamers have
been shown to have no or negligible target toxicity (not to bind to off-target cells/tissue) [10–17].

3. Advantages and Limitations of Aptamers

Aptamers can bind to targets with high specificity and affinity, similar to mAbs, and they are
also similar to mAbs in terms of biomedical applications. However, aptamers have a significant
advantage over mAbs in medications because they have no or little immunogenicity and will not cause
immune rejection. Experiments using monkeys demonstrated that there was no or only negligible
immune response even when the dose was 1000 times higher than the normal therapeutic dose [18,19].
Moreover, aptamers can conjugate with and deliver various therapeutics into cells in addition to
affecting target molecules directly [20]. Refer to Table 1 for a comparison between aptamers and mAbs.
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Table 1. A comparison between aptamers and monoclonal antibodies (mAbs).

Criteria Aptamers mAbs

Chemical composition Nucleic acid (DNA or RNA) Protein

Molecular weight 10–50 kDa 140–700 kDa

Animal immunization for
preparation? No Yes (except for genetically

engineered Ab)

In vitro preparation Yes No

Targets [21–23]

Multiple, including cells, viruses, proteins,
peptide, polysaccharides, nucleic acids,
nucleotides, amino acids, other small
organic molecules and inorganic
molecules, etc.

Proteins mainly, but include
cells, viruses,
polysaccharides, and nucleic
acids

Specificity to target Yes Yes

Binding affinity Nano-molar~pico-molar, maybe
femto-molar

Nano-molar~pico-molar,
maybe femto-molar

Molecular forces involved in
target binding

Electrostatic forces, hydrogen bonds,
hydrophobic interactions, and van der
Waals forces

Electrostatic forces,
hydrogen bonds,
hydrophobic interactions,
and van der Waals forces

Stability Stable at 80 ◦C denatured at 80 ◦C

Reannealing if denatured Yes No

batch-to-batch variations Low High

Shelf life Long Short

Cost Lower Higher

In vivo half-life [24]
(clearance rate) Short (~20 min) Long (~one month)

Immunogenicity (causing
allergy) No Yes (unless humanized)

Internalization Higher possibility Difficult

Diagnostic usage Yes Yes

Therapeutic usage Yes Yes, but may cause allergy if
not humanized

Aptamers have other advantages as well: (1) Aptamers have a broader spectrum of targets than
mAbs—they can be raised against non-immunogenic substances such as small organic and inorganic
molecules and even metal ions; they can be made against strong bio-toxins because they do not need
animal immunization for production [25]. (2) The manufacture of aptamers is less time consuming
because they are made in vitro thus avoiding the long time animal immunization; in addition,
the affinity optimization and manufacturability improvement for the production of mAbs may require
even more time. [20]. (3) Aptamers can easily be modified to increase their applications and stability.
Stability is especially important for RNA aptamers because RNA aptamers are liable to degradation
by nucleases when used in vivo [26]. (4) Aptamers have less batch-to-batch variations [27–30].
(5) The cost of making aptamers is lower than that of making mAbs [24]. (6) Aptamers can be cloned
into vectors and stored for a very long time, and can be produced any time in need by bacterial
expression and/or PCR amplification. Alternatively, after the sequence of aptamers have been obtained,
they can be chemically synthesized and PCR amplified at any time. (7) Aptamers are not sensitive to
temperature: they can tolerate 80 ◦C while mAbs will generally denature at this temperature. Even if
they are denatured, aptamers can easily be renatured to their original three-dimensional structure [27].
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(8) Aptamers have a smaller molecular weight (~20,000 Da vs. ~150,000 Da for mAbs) and are easy to
penetrate tissues such as tumors when used for therapeutic purposes [27].

The main limitations of aptamers lie in their susceptibility to degradation by nucleases (this
can be overcome by aptamer modification and is discussed in Section 4.3 of the text), the difficulty
to select aptamers against some targets, and the rapid renal clearance [31]. In theory, aptamers can
be produced against any type of targets, from small inorganic and organic molecules to cells and
to whole organisms such parasites, but in practical situations, it is sometimes difficult to obtain
high-specific and high-affinity aptamers to some targets [32]. For instance, it is difficult to select
aptamers against negatively charged targets because oligonucleotide strands have negative charges on
their backbone [33]. The low molecular weight of aptamers is both advantageous and disadvantageous
in terms of in vivo application. The small size makes them easier to penetrate tissue, an advantage
for therapy as well as in vivo imaging; it also makes them faster to be cleared from the kidney, which
means shorter half-life and is disadvantageous for therapy but advantageous for in vivo imaging [34].
Although the disadvantage of short circulating half-life can be overcome by conjugating aptamers with
an inert molecule such as polyethylene glycol or cholesterol, this may meanwhile retard tissue uptake;
hence, there is a paradox and the designer of aptamers should take all these into consideration and
make a good balance between them [26,35–37].

4. Principle and Procedure of SELEX

The principle of aptamer production using SELEX includes first the chemical synthesis of
a DNA pool containing about 1014–17 different oligonucleotide molecules. Because the pool is
huge, there must be some chains that can bind to a specific target with high affinity. The
task of the ensuing work is to screen out and amplify these specific oligonucleotides, which
usually requires several cycles of selection and amplification. With the progression of the
selection process and the increased stringency of selection conditions, the affinity of the selected
oligonucleotides to the target increases gradually. In addition, because the PCR amplifications are
not accurate (this may be done intentionally by using low fidelity Taq polymerase), “point mutations”
may take place, which results in the generation of new oligonucleotide chains, and the binding affinity
and specificity of the oligonucleotides may improve or be enriched in the course of selection. The finally
resulting DNA or RNA oligonucleotides that bind to the target very tightly and specifically are the
desired aptamers for the target [29,38–40]. The typical procedure of SELEX includes the following
steps (see Figure 1).
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Figure 1. Selection of DNA aptamer using SELEX. Note: For the selection of RNA aptamer, the DNA
oligonucleotide pool must be in vitro transcribed into RNA oligonucleotide pool before selection,
and the collected oligonucleotides must be reverse transcribe-amplified with TR-PCR into DNA and
then be in vitro transcribed into RNA for the next round of selection. Abbreviations: OG, oligonucleotide;
PCR, polymerase chain reaction, SELEX, systematic evolution of ligands by exponential enrichment.

4.1. Preparation of DNA Oligonucleotide Pool

Whether you are to make DNA aptamers or RNA aptamers, the initial step is the preparation
of a DNA oligonucleotide pool by chemical synthesis. While the random central sequences of the
oligonucleotides are generated during the random chemical synthesis, the constant sequences on
both ends must be predesigned. The constant regions contain primer binding sequences for PCR
amplification and are commonly 20–30 nucleotides in length. The constant regions may also include
restriction sites for aptamer cloning. If RNA aptamers are to be made, the binding site for RNA
polymerase (such as bacteriophage T7 promoter) must also be included in a constant region [41].

The length of the central region should be considered carefully in designing an oligonucleotide
pool. Shorter chains are easier to control chemically, however, if the central region is too short, it cannot
form enough secondary structures to bind to the target stably and specifically, and there may not be
enough kinds of three-dimensional structures in the pool for screening (that is, the sequence space of
the pool is not large enough). In theory, the kinds of oligonucleotide chains that can be formed in the
random oligonucleotide pool are four to the power of n (4n), and n is the base number of the random
nucleotides in the central region. For example, an oligonucleotide pool can have approximately 1015

different chains if the central region has 25 nucleotides (425
≈ 1015) [41].

Generally, the sequence space of the oligonucleotide pool increases with the length of the central
region (i.e., the available three-dimensional structures in the pool increase with central region length).
However, when the length reaches a certain degree, the kinds of three-dimensional structures that
can be formed do not increase significantly with the increase of length. For example, the types of
oligonucleotide chains that can be formed in the oligonucleotide pool containing 30 random nucleotides
are only about 1/1000 of the calculated number. Therefore, the central random sequence is typically
designed to be 24–40 nucleotides long, which can already form diverse enough three-dimensional
conformations to bine almost all kinds of target molecules in nature [41]. Once the sequence has been
designed with satisfaction, the oligonucleotide pool can be synthesized by a DNA synthesizer or by a
commercial company.
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4.2. Selection and Enrichment of Aptamers

After the oligonucleotide pool has been chemically synthesized, it must be amplified using
PCR and then converted to ssDNA oligonucleotides before any selection begins. Several selection
methods based on SELEX are available at present; these include affinity chromatography, nitrocellulose
membrane filtration, magnetic bead separation, capillary electrophoresis, microfluidic selection,
microarray method, etc. Besides, semi-automatic or automated SELEX screening systems have also
been established [42].

The screening and enrichment program of DNA aptamers begins with incubating the
single-stranded oligonucleotide pool with target molecules or cells under proper selection conditions;
then, the unbound or loosely bound oligonucleotides are washed out. Next, the bound oligonucleotides
are separated from target molecules and collected, and the collected oligonucleotides are PCR amplified,
which completes the first round of selection. The PCR product is then used to carry out the second
round of selection, and so on. Generally, 6–14 cycles of screening and enrichment are required to
obtain the desired aptamer. For the production of RNA aptamers, the initial DNA oligonucleotide
pool must be in vitro transcribed into an RNA oligonucleotide pool before screening; the selected RNA
oligonucleotides must be reverse transcribed into DNA by RT–PCR (the number of the molecules are
amplified in the course) and then be in vitro transcribed into RNA molecules for the next round of
screening and enrichment. Owing to the low fidelity of DNA polymerase used in PCR, some variants
will be introduced in each PCR cycle; as a result, the binding capacity of oligonucleotide pool gradually
increases in the screening and amplification process [43,44].

A counter selection or negative selection is usually necessary before the SELEX selection, whether
it is for DNA aptamer or RNA aptamer production. The purpose of the counter selection is to remove
any oligonucleotides that will bind to the immobilizer, the matrix/material used for immobilization of
the target molecules, such as the magnetic beads or nitrocellulose membrane. In a counter selection,
the DNA or RNA pool is first incubated together with the supporting matrix/immobilizing material
and then the bound oligonucleotides are discarded and the unbound oligonucleotides are collected
and used for the (positive) SELEX selection [45,46].

4.3. Aptamer Sequencing, Characterization, and Modification

When aptamers have been successfully selected, they should be cloned into vectors, their base
sequence determined, and their possible secondary structure, target-binding affinity, stability, and some
other characteristics analyzed [47].

Therapeutic aptamers, particularly RNA aptamers, frequently require modifications because they
are sensitive to nucleases and are easily degraded in vivo, which shortens their half-life and limits
their applications. Modification methods include: (1) Using chemically modified bases—this is done
by adding nucleotide triphosphates with chemically modified bases (such as five-position modified
uridine) to the reaction system [48]. (2) Modifying the phosphate–sugar backbone—this is usually
done by adding 2′-modified nucleotide triphosphates (such as the 2′-position modification of fluorine,
methoxy, or amino group) to the reaction system [49–51]. The above modifications depend on the
ability of RNA polymerase to incorporate modified nucleotide triphosphates to the growing chain.
(3) Conjugating high molecular mass moieties such as polyethylene glycol or fatty acid to the 5′ end or
the 3′ end of the RNA aptamer [52,53]. (4) Producing mirror-image aptamers—this process involves
creating a chemical mirror image (an enantiomer or optical isomer) of the target molecule, selecting
aptamers against this mirror image, and, finally, creating (chemically synthesizing) a mirror image
of the aptamer. These types of aptamers are called Spiegelmers (Spiegel is the German word for
mirror) [54–58]. The above modifications can all increase the half-life of the aptamers by making them
insensitive to nucleases, whereas the third method, conjugating high molecular mass moiety, can,
meanwhile, increase the renal retention time of the molecules; the third method can be conducted in
combination with other modifications [59].
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5. Aptamers in Cancer Therapy

Taking together all of the aforementioned advantages, it could be seen that aptamers have
promising therapeutic potential in cancer treatment. Aptamers can be used in cancer therapy either
by directly inhibiting the activities of target molecules through binding to the targets such as growth
factors or oncoproteins, or through guiding and delivering anticancer agents such as chemotherapeutics
or siRNAs into cancer cells; aptamers can also block or stimulate immune receptors in lymphocytes to
relieve immune suppression or boost immune response against cancer [60–62].

5.1. Targeted Inhibition

Aptamers can bind to ligands such as growth factors and chemokines and interrupt their interaction
with cell receptors, or alternatively, they can bind to cell receptors to block ligand binding [63,64].
When transported into cells, they can also interfere with the functions of cytoplasmic targets [65].

5.1.1. Targeting Platelet-Derived Growth Factor (PDGF)

Platelet-derived growth factor (PDGF) regulates blood vessel formation (angiogenesis),
mesenchymal cell mitogenesis, as well as chemotaxis. Overexpression of PDGF has been linked
to malignancies. PDGFs function as disulfide-linked homodimers PDGF-AA, PDGF-BB, PDGF-CC,
PDGF-DD, or heterodimer PDGF-AB. Their receptors are PDGFR-α and PDGFR-β (PDGF-A, PDGF-B,
and PDGF-C bind PDGFR-α, whereas PDGF-B and PDGF-D bind PDGFR-β). Upon PDGF binding,
the two receptor isoforms dimerize into three possible combinations: αα, ββ, or αβ. PDGFRs are
classified as receptor tyrosine kinase; following PDGF activation, they are switched on by
auto-phosphorylation of tyrosine residues on their intracellular tyrosine kinase domain [66].

Angiogenesis is necessary for tumor growth and is a prerequisite for cancer metastasis
via blood vessels. Inhibition of angiogenesis has been considered as one of the promising
measures to treat cancers. DNA aptamers against PDGFs were first developed by Green et al. [67].
These oligonucleotides bind to PDGF-AB and PDGF-BB with much higher affinity (Kd ≈ 10−10 M)
than to PDGF-AA (Kd > 10−8 M), which indicates that the aptamers have a specific recognition of the
PDGF-B-chain in the context of PDGF-AB heterodimer or PDGF-BB homodimer. The aptamers
were truncated to determine the minimal sequence length necessary for high-affinity binding.
Representative minimal oligonucleotides were shown to be able to inhibit the binding of PDGF-BB
but not of PDGF-AA to PDGF receptors PDGFR-α or PDGFR-β in porcine aortic endothelial cells.
These aptamers also potently inhibited PDGF-BB-dependent [3H] thymidine incorporation in the
porcine aortic endothelial cells expressing the PDGFR-β receptor. Therefore, the PDGF aptamer has
high promise to be used as an effective and specific inhibitor of PDGF in cancer therapy. Overexpression
of PDGF-BB is associated with the development of colorectal cancer. Sae-Lim et al. [68] recently used
the above-mentioned PDGF aptamer in their study to inhibit the proliferation of colorectal cancer cells.
The results showed that cells treated with the aptamer proliferated slower than control. Western blot
revealed a reduced phosphorylation level of ERK1/2 (a key component in the PDGF signaling pathway).
It was concluded that the DNA aptamer against PDGF-BB blocked the binding of PDGF-BB to
its receptor and inhibited colorectal cancer cell proliferation partly through downregulating the
Ras/Raf/MEK/ERK signaling pathway.

Sennino et al. [69] examined the effects of the DNA aptamer AX102, a modified version of the
aforementioned aptamer that binds PDGF-B chain selectively, on tumor vasculature. Treatment
with AX102 caused the progressive loss of pericytes; reduction of pericytes and endothelial cells
further led to empty basement membrane sleeves that gradually became invisible. The end result
was inhibited tumor angiogenesis. The magnitude of tumor vessel regression caused by PDGF-B
blockade was tumor-specific. Lu et al. [70] tested the efficacy of AX102 aptamer in pericyte
regulation in an ovarian cancer model, with or without targeting endothelial cells by Bevacizumab
(a VEGF-A neutralizing mAb). The results indicated that dual targeting of pericytes and endothelial
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cells achieved a much better anti-angiogenesis effect in ovarian carcinoma, resulting in a 76%–88%
inhibition of tumor growth. Lately, Falcon et al. [71] found that inhibition of PDGF-B signaling in
Lewis lung carcinomas by the DNA aptamer AX102 enhanced the transport and effectiveness of
the chemotherapeutic drug cyclophosphamide by augmenting the efficiency of tumor blood vessels;
combined application of cyclophosphamide and AX102 also showed synergistic effects on tumor cell
proliferation in RIP-Tag2 tumors.

5.1.2. Targeting PDGFR

Platelet-derived growth factor receptor-β (PDGFR-β) is a transmembrane receptor tyrosine kinase.
Overexpression of PDGFR-β in endothelial and tumor-associated stromal cells occurs in different
human cancers. PDGFR-β expression in certain cancers has been linked with aggressiveness, resistance
to therapy and recurrence [72]. Camorani et al. [73] reported that a PDGFRβ-specific RNA aptamer
named Gint4.T could specifically bind to the human PDGFRβ ectodomain and cause strong inhibition
of receptor activation and of downstream signaling both in continuous cell lines and in primary cultures
of human glioblastoma. In addition, the Gint4.T aptamer could significantly inhibit cell migration
and proliferation, induce cell differentiation, and impede tumor growth in vivo.

Tumors exhibiting interstitial hypertension have reduced uptake of chemotherapeutics, and
PDGFR signaling has been shown to mediate interstitial hypertension. Pietras et al. [74] reported that
inhibition of PDGFR signaling by combined treatment with PDGF-B inhibitory aptamers and PDGFR
tyrosine kinase inhibitor lowered tumor interstitial hypertension and enhanced drug uptake by the
tumor cells.

Triple-negative breast cancers (TNBCs) do not express estrogen receptor, progesterone receptor,
and HER2; these cancers are difficult to treat because of their lack of targetable molecules. Cell-SELEX
was exploited to find alternative targets and PDGFR has been suggested as one of them [75]. It has
been suggested that PDGFR-β may mark breast cancer cells with stem-like characteristics and/or
epithelial-mesenchymal transition. Camorani et al. [76] found the expression of PDGFR-β in a subgroup
of mesenchymal tumors with invasive and stem-like phenotype, and suggested a role of PDGFR-β
in driving TNBC invasiveness and metastases. They showed that PDGFR-β aptamers inhibited the
invasive growth of TNBC cells in three-dimensional culture and blocked migration and invasion of
mesenchymal TNBC cells and prevented lung metastases of TNBC cells.

In a separate study, the above research group demonstrated that bone marrow-derived
mesenchymal stem cells (BM-MSCs) increased the aggressiveness of TNBC cells as indicated by their
ability of migration, invasion, and acquisition of stemness markers. They also showed that treatment
of the BM-MSCs with an RNA aptamer against PDGFR-β led to the inhibition of receptor-dependent
signaling pathways and thus significantly blocked BM-MSC recruitment towards TNBC cells as well
as BM-MSC’s trans-differentiation into carcinoma-associated fibroblast-like cells [77].

5.1.3. Targeting Chemokine

C-X-C chemokine ligand 12 (CXCL12), also known as stromal cell-derived factor 1 (SDF1), is a
CXC subfamily chemokine and is the ligand for chemokine receptors CXCR4 and CXCR7. CXCL12 is
widely expressed in many tissues and cell types and is strongly chemotactic for lymphocytes. During
embryogenesis, CXCL12 directs the migration of hematopoietic cells from fetal liver to bone marrow
and is responsible for large blood vessel formation. In adulthood, CXCL12 plays an essential role
in angiogenesis by recruiting endothelial progenitor cells from the bone marrow through activating
CXCR4 [78]. CXCL12 signaling has also been observed in CXCR4 expressing cancers and is involved
in cancer cell invasion and metastasis [79]. The blockade of the CXCL12/CXCR4 passage has, therefore,
emerged as a potential way of targeted cancer therapy [80].

In chronic lymphocytic leukemia (CLL), the homing and retention of cancer cells into the lymph
nodes and bone marrow is critical to disease development. CLL cells are attracted to the bone marrow
through activation of CXCR4 expressed on CLL cells by CXCL12 secreted by stromal cells. CLL cells



Int. J. Mol. Sci. 2020, 21, 2793 9 of 25

localized in the bone marrow are protected from anticancer drugs; this can result in the persistence of
the residual disease after conventional treatment and favor cancer recurrence [81].

NOX-A12 is a mirror-image RNA aptamer, an L-RNA oligonucleotide or the mirror image of
naturally occurring D-RNA molecule (Spiegelmer), developed by the biotechnology company Noxxon
Pharma in Berlin, Germany [82]. NOX-A12 aptamer is a CXCL12 antagonist that binds to the chemokine
and disrupts the homing and the accumulation of CLL cells in the bone marrow, sensitizing these cells
to cytotoxic drugs [81]. NOX-A12 molecules are highly resistant to degradation by nucleases owing to
their L-configuration. Hoellenriegel et al. [83] inspected the effect of NOX-A12 on CXCL12-induced
CLL cell migration and drug resistance; in the experiment, CLL cells were allowed to migrate toward
CXCL12 concentration gradient (a chemotactic response) in the absence or presence of NOXA12.
They found that NOX-A12 significantly inhibited CXCL12-mediated migration of CLL cells at a very
low concentration of 3 nM. They also demonstrated that CXCL12-mediated chemotaxis of two other
lymphoid cell lines (Jurkat and Nalm-6) could be reduced effectively in the presence of NOX-A12.

5.1.4. Targeting HER2

Several aptamers targeting human epidermal growth factor receptor 2 (HER2) have been
developed but most of them were used to deliver anticancer therapeutics such as cytotoxic agents,
therapeutic RNAs, and nanoparticles into cancer cells instead of inhibiting HER2 function directly and
so will not be discussed here; readers can refer to the relevant sections and to Table 2.
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Table 2. Selected aptamers under clinical trials or active laboratory investigation for cancer therapy.

Aptamer Selection DNA/RNA Kd Target INT Function Application/Mechanism Status References

Pegaptanib sodium
(Macugen) SELEX, 10 rounds RNA (28 nt) 50 pM VEGF165 No Antagonism

1. Age-related macular
degeneration (AMD).
2. Potential therapeutic application for
solid cancers with extensive angiogenesis.

Approved by
FDA for

treatment of
AMD

[84–87]

AS1411
Designed and

chemically
synthesized

DNA (26 nt),
guanosine rich

quartets
55 nM Nucleolin Yes Internalization

or delivery

1. Binding cell-surface nucleolin and
internalization, leading to DNA
replication inhibition.
2. Drug delivery.

Phase II
clinical trial [18,88–90]

NOX-A12 Spiegelmer *
technology L-RNA (45 nt) 200 pM CXCL12 No Antagonism

Disrupting the homing and the
accumulation of CLL cells in the bone
marrow, sensitizing these cells to
cytotoxic drugs.

Phase II
clinical trial [54,81,83]

AX102 SELEX, 12 rounds DNA (34 nt) 100 pM PDGF-B No Antagonism

1. Inhibition of tumor angiogenesis.
2. Promotion of tumor blood vessel
efficiency, resulting in increased
anticancer drug delivery.

Pre-clinical [67,69–71]

xPSM-A10 (A10) SELEX, 6 rounds RNA (72 nt) 1.5 nM PSMA Yes Internalization
and delivery

# Delivery of (1) chemotherapeutics,
(2) therapeutic RNAs, and (3)
nanoparticles to PSMA-positive prostate
cancer cells.

Pre-clinical [91–107]

HB5 SELEX, multiple
rounds DNA (86) 18.9 nM HER2 Yes Internalization

and delivery

Delivery of (1) chemotherapeutics,
(2) nanoparticles to HER2-positive breast
cancer cells.

Pre-clinical [108–110]

HeA2_3 Whole-cell SELEX DNA 6.2 nM HER2 Yes Internalization

Binding with high specificity to HER2-
positive cells and tumor tissue and great
potential for the treatment of HER2-
overexpressing cancers.

Pre-clinical [111]

MP7 SELEX, 5 rounds DNA 167 nM Murine
PD-1 No Antagonism Blocking murine PD-1 and PD-L1

interaction so as to restore T cell function. Pre-clinical [112]

aptPD-L1 SELEX, 8 rounds DNA 4.7 nM Human
PD-L1 No Antagonism

Blocking the binding between human
PD-1 and PD-L1 so as to restore T
cell function.

Pre-clinical [113]

Abbreviations: INT (internalization); AMD (age-related macular degeneration); CLL (chronic lymphocytic leukemia); HER2 (human epidermal growth factor receptor 2);
CXCL12 (C-X-C Chemokine Ligand 12); Kd (dissociation constant), PD-1 (programmed death 1); PD-L1 (programmed death-ligand 1); PDGF-B (platelet-derived growth factor receptor-B);
PSMA (prostate-specific membrane antigen); SELEX (systematic evolution of ligands by exponential enrichment); VEGF165 (165-amino-acid isoform of vascular endothelial growth factor).
* See main text for the explanation of Spiegelmer. # Including a truncated version of A10 (A10-3.2).
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5.2. Targeted Delivery

Not only can aptamers be selected to target and inhibit cancer-specific molecules, but they can
also be selected to recognize the surface structures of specific cell types and some of them can be
endocytosed or taken in by the cells. The latter properties can be employed to deliver therapeutic
agents such as cytotoxic drugs and therapeutic RNAs selectively into cancer cells to exert their activities
while avoiding damaging normal cells [114–117]. Aptamers used for drug delivery mostly target cell
membrane receptors that can internalize upon ligand binding, and successful deliveries of a variety of
cargoes targeting different receptors have been reported to date [118] (see Figure 2).
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5.2.1. Delivery of Cytotoxic Agents

Chemotherapeutics or other cytotoxic or anticancer drugs can be linked either covalently
or non-covalently to cell internalizing aptamers and be transported into cancer cells. Human
prostate-specific membrane antigen (PSMA) is a class II membrane glycoprotein that resides mainly
in the extracellular space and is highly expressed in normal prostate tissue and prostate cancers;
PSMA has an internalizing signal that allows internalization of the bound ligands into the cell [119].
Two PSMA-targeting aptamers, called xPSM-A9 and xPSM-A10 (A9 and A10), were first developed
by Lupold et al. [91] early in 2002; they share no consensus sequences and each binds to a unique
extracellular epitope of PSMA. The aptamers were subjected to 3′-truncation in their central random
regions to identify the minimum required binding elements. One of the aptamers, A10, when the
central region was truncated from 40 nt to 25 nt, could still bind to the PSMA-positive LNCaP prostate
cancer cells specifically but not to the PSMA-negative PC-3 prostate cancer cells [91].

Bagalkot et al. [120] investigated the targeted delivery of the chemotherapeutic drug doxorubicin
(Dox) to cancer cells by using the PSMA aptamer A10. Multiple Dox molecules were non-covalently
loaded (intercalated) to the double-stranded region of the aptamer A10, and when used in cell culture,
resulted in the uptake of the aptamer–Dox conjugates by PSMA-expressing prostate cancer cells and
the intracellular release of the Dox molecules.

Dox has also been covalently linked to a DNA aptamer named sgc8c; the drug was conjugated
with the aptamer by a hydrazone linker which allows the release of Dox at pH 4.5–5.5. The Dox-sgc8c
conjugate could be efficiently internalized by T-cell acute lymphoblastic leukemia (TALL) cells
through binding to protein tyrosine kinase 7, a transmembrane receptor highly expressed on TALL cells,
and after internalization, Dox could be cleaved from the conjugate in the acidic endosomal environment
because the linkage between Dox and the aptamer had been designed to be acid-labile [121].

An aptamer developed against HER2 (the aptamer’s name being HB5) has been used to deliver
Dox to breast cancer cells in vitro. The aptamer–Dox complex, which was formulated by intercalating
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Dox molecules into the aptamers, could selectively deliver Dox to HER2-positive breast cancer cells and
retained the cytotoxicity of Dox against these cells; the aptamers preferentially target to HER2-positive
breast cancer cells but not to HER2-negative cells [108].

5.2.2. Delivery of Therapeutic RNAs

Cell-specific internalizing aptamers have been used to deliver therapeutic oligonucleotides such
as siRNAs, miRNAs, gRNAs, antisense RNAs, as well as protein-binding aptamers into cancer cells.
Thus far, a number of researches have been successfully conducted using cell internalizing aptamers
to deliver siRNAs into cancer cells. siRNAs can be conjugated with the internalizing aptamers
covalently by using one strand of the siRNA, either sense or antisense, directly or indirectly by
using a short linker RNA sequence; they can also be conjugated with the aptamers non-covalently by
exploiting streptavidin-biotin interaction or through a short region of complementary base pairing called
“sticky bridge”. Chu et al. [122] constructed an aptamer–streptavidin–siRNA conjugate (non-covalent
linkage), in which two biotinylated aptamers targeting PSMA and two biotinylated siRNAs targeting
lamin A/C mRNA were bound to a tetrameric streptavidin molecule. The assemblies were endocytosed
by the PSMA-expressing LNCaP (a human prostate adenocarcinoma cell line) cells and efficiently
inhibited the expression of the lamin A/C gene.

McNamara et al. [123] generated covalently linked aptamer–siRNA chimeric molecules
to specifically deliver therapeutic siRNAs targeting PLK1 and BCL2 (two survival genes that
are overexpressed in most human cancers) mRNAs into prostate cancer cells expressing the
surface receptor PSMA. After internalizing the cells, the constructs were directed to the RNAi
pathway, cleaved by Dicer, and silenced their cognate mRNA molecules which resulted in cell death.
The aptamer–siRNA chimera was constructed by covalently linking the 3′ end of a PSMA-binding
aptamer with the 5′ end of the sense strand of a gene-silencing siRNA, which was achieved by
co-transcribing the aptamer and siRNA sense sequence; the antisense strand was then hybridized to
the sense strand.

HER2 has been employed as a target to deliver siRNAs into HER2-positive breast cancer cells.
Thiel et al. [124] selected RNA aptamers that are specific to HER2 and can be internalized upon binding.
The RNA aptamers were covalently linked to siRNAs targeting Bcl2, an apoptosis suppressing gene.
The HER2 aptamer–Bcl2 siRNA conjugates were specifically internalized into HER2-positive cells
and silenced the expression of Bcl2 gene. In addition, the silence of the Bcl-2 gene resulted in the
sensitization of these cells to the chemotherapeutic drug cisplatin. HER2 aptamers have also been used
to deliver EGFR (epidermal growth factor receptor) siRNAs into HER2-positive cancer cells [125,126].

The same or similar conjugating methods as mentioned above have been used by a number
of other investigations to construct aptamer–siRNA chimeric RNAs to deliver siRNAs into cancer
cells [127–135].

5.2.3. Delivery of Nanocarriers

Using aptamers to deliver nanoparticles loaded with drugs is a promising approach to
drug delivery. Aptamers are only a few nanometers in diameter, and with this small size, they do
not increase much to the overall size of the nanocarriers. Thus, the resulting nanoparticle–aptamer
conjugates can relatively easily penetrate the microvasculature and the interstitial tissue of tumors [136].
In addition, aptamers are chemically synthesized and this makes it relatively easy to attach functional
groups to their ends and link them covalently to nanoparticles [137].

The first example of nanoparticle–aptamer conjugates used the A10 aptamers targeting PSMA [138].
The authors generated the nanoparticles by synthesizing poly(lactic acid)-block-polyethylene glycol
copolymer with a terminal carboxylic acid functional group; they then encapsulated the anticancer
drug dextran within these nanoparticles. Next, they conjugated the A10 RNA aptamers that target
PSMA to the nanoparticles. The authors found that these nanoparticle–aptamer conjugates could
efficiently target the PSMA-positive prostate LNCaP cells and be internalized while the boosted uptake
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of these conjugates was not observed in cells that do not express PSMA. This nanoparticle–aptamer
construction was later assessed in vivo and was demonstrated to be able to reduce the tumor size of
PSMA-positive prostate carcinomas effectively [139].

Several studies used the HER2 molecule as a target to deliver nanoparticles to cancer cells
for therapeutic purposes. One study conjugated HER2 aptamers with dextran-coated ferric oxide
nanoparticles and applied them to induce magnetic hyperthermia in human adenocarcinoma SK-BR3
cells that overexpress HER2 receptors [140]. The HB5 aptamer was used to functionalize mesoporous
silica–carbon nanoparticles loaded with DOX. The construction (MSCN–PEG–HB5/DOX) was expected
to exert a chemo-photothermal combined therapeutic effect on HER2-positive breast cancer cells. The
researchers found that the MSCN–PEG–HB5/DOX assembling exhibited significantly higher cellular
uptake in the HER2-positive SK-BR-3 breast cancer cell line but not in the normal breast epithelial cell line.
The uptake was based on the receptor-mediated mechanism that was energy-dependent. Cytotoxicity
experiments showed that the chemo-photothermal combined therapy using the MSCN–PEG–HB5/DOX
complex led to a much higher cytotoxic effect than either chemotherapy or photothermal therapy
alone [109]. Another study conjugated an HER2 aptamer to curcumin-loaded human serum albumin
nanoparticle that could be taken up by HER2-overexpressing SK-BR-3 cells, having the effect of
remarkable cytotoxicity in these cells [141].

Other nanoparticle–aptamer conjugates that have been reported thus far include: conjugating
the anti-CD44 aptamer to liposomes loaded with siRNA for gene silencing in CD44-expressing
tumor cells in vivo [142], mucin1 aptamer-conjugated chitosan nanoparticles loaded with
docetaxel and cMET siRNA that was delivered into mucin1 positive SKBR3 breast cancer
cells [143], LA1 aptamer-conjugated grapefruit-derived nanovectors harboring Dox and P-glycoprotein
siRNA that could be internalized into multidrug resistance LoVo colon cancer cells [144], self-assembled
DNA nanostructures (DNA nanoprisms) decorated with therapeutic siRNAs targeting the GTPase
Rab26 and MUC-1 aptamers that target non-small cell lung cancer [145], and paclitaxel-encapsulated
PEGylated PLGA nanoparticles that were surface-functionalized with the heparanase aptamers
targeting triple-negative breast cancers [146].

5.3. Immunomodulation

Up to the present time, a number of aptamers have been developed that are capable of modulating
immune responses against cancer cells. These aptamers were used either as antagonists of immune
checkpoints or as agonists of immuno-stimulatory receptors [147].

5.3.1. Immune Checkpoint Antagonists

The recently developed immune checkpoint inhibitors of such programmed death 1
(PD-1) inhibitors and programmed death-ligand 1 (PD-L1) inhibitors have revolutionized cancer
immunotherapy [148]. Nevertheless, cancer treatment with PD-1 inhibitors and PD-L1 inhibitors
benefited only a subset of patients or some type of cancers, the majority of cancer patients did not show
complete responses, and adverse reactions have been observed [148]. The search for new checkpoint
targets and new checkpoint inhibitors is still necessary (see Figure 3).
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aptamer can block the binding.

Currently, the most prevalent immune checkpoint receptors that have been used to manipulate
the immune system for cancer immunotherapy are PD1 and cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4); both are T-cell surface receptors. However, there are many other immune
checkpoints that can be employed to modulate the immune system to enhance cancer immunity.
These include T-cell immunoglobulin and mucin-domain containing-3 (TIM3), lymphocyte activating 3
(Lag3), B- and T-lymphocyte attenuator (BTLA), adenosine A2A receptor (A2AR), as well as a number
of intracellular immune checkpoints such as forkhead box protein P3 (Foxp3), signal transducer and
activator of transcription 3 (STAT3), casitas B-lineage lymphoma-b (Cbl-b), early growth response
proteins-2 (EGR-2), Src homology region 2 domain-containing phosphatase-1 (SHP1), Src Homology
region 2 domain-containing phosphatase-2 (SHP2), etc. Aptamers have been produced for most of
these immune checkpoints up to now.

The first report using aptamers to manipulate immune responses against cancer by antagonizing
the immune checkpoint receptor CTLA-4 was the development of RNA aptamers that could bind
CTLA-4 with high affinity and specificity and inhibited CTLA-4 function in vitro and enhanced tumor
immunity in mice; tetrameric assemblies of the aptamers could improve their bioactivity significantly
both in vitro and in vivo [149].

DNA aptamers that bind specifically to the extracellular domain of PD-1 have been in development
and blocked murine PD-1 and PD-L1 interaction; one of the aptamers functionally inhibited PD-L1
mediated suppression of interleukin-2 secretion in primary murine T cells. Its PEGylated form
suppressed the growth of PD-L1 positive murine colon carcinoma cells in vivo with a potency
comparable to the anti-PD-1 antibody [112]. Lai et al. [113] reported that a DNA aptamer against
human PD-L1 blocked the binding between human PD-1 and PD-L1. They showed that the aptamer
promoted lymphocyte proliferation in vitro and suppressed tumor growth in vivo with minimum
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liver and renal toxicity. Tumors treated with the aptamer showed elevated infiltration of CD4+ and
CD8+ T cells and raised levels of IL-2, tumor necrosis factor-α (TNFα), interferon-γ (IFNγ), and C-X-C
chemokine ligands CXCL9 and CXCL10. The CD8+ T cells in the treated tumors displayed higher
CXCR3 expression than control.

TIM3 is an immune checkpoint receptor expressed on multiple immune cells that has demonstrated
several unique properties and is one of the most promising immune checkpoint targets other
than CTLA-4 and PD-1 [150]. TIM3 protein is a member of the TIM family that includes TIM-1,
TIM-3, and TIM-4. They are type-I cell-surface glycoproteins comprising extracellular signal peptides
and IgV domains, mucin-like transmembrane domains, and an intracellular cytoplasmic tail.

TIM3 was first identified as a molecule selectively expressed on CD4 + IFNγ–producing Th1
and CD8 + cytotoxic Tc1 cells that function to limit the magnitude and duration of Th1 and Tc1
responses [151]. Later studies have shown that TIM3 is expressed on numerous immune cells; in
addition to Th1 and Tc1 cells, there are Tregs (regulatory T cells), Th17 cells, TILs (tumor-infiltrating
lymphocytes), and innate immune cells. The observations that TIM3 marks dysfunctional phenotype
of CD8+ T cells in both experimental models and cancer patients and that TIM3 + Tregs are found
solely in tumor tissue have made TIM3 pathway a very suitable target for anticancer immunotherapy
based on immune checkpoint blockade [151].

Aptamers have been developed to antagonize TIM3, one of which, TIM3Apt, has been shown
to bind to the extracellular motives of TIM3 with high affinity and specificity and its monomeric
form displayed a potent antagonist capacity in TIM3-positive lymphocytes. Combinational treatment
with TIM3Apt and PD-L1 inhibitor showed a synergistic effect in colon carcinoma-bearing mice [152].
A trimeric form of TIM3 aptamer blocked the interaction of TIM3 with Galectin-9, boosted cell
proliferation and cytokine secretion, and reduced cell death in vitro. In tumor-bearing mice, the trimeric
aptamer delayed tumor growth and enhanced the survival of the tumor-bearing animals used either
independently or in combination with a PD-1 inhibitor. In particular, the trimeric aptamer displayed
better activity than the currently commercially available monoclonal antibody, RMT3-23, both in vitro
and in vivo [153].

5.3.2. Immune Stimulation Agonists

The anti-tumor immunity can also be boosted by providing artificial stimulatory or costimulatory
signals to immune cells. Most costimulatory receptors in lymphocytes exert their function through
crosslinking their cytoplasmic domains, thus the desired immuno-stimulatory agents need to be
able to bring together the receptors to initiate the activation signaling. Antibodies are well suited to
crosslinking receptors because of their bivalent antigen-binding construction. To meet that requirement,
the first immuno-stimulatory aptamer was designed as a dimer [154]. The aptamer was developed
as a murine 4-1BB costimulatory receptor agonist. 4-1BB, also known as CD137 and tumor necrosis
factor receptor superfamily member 9 (TNFRSF9), is a type 2 transmembrane glycoprotein receptor
belonging to the TNF superfamily. 4-1BB is an important costimulatory receptor expressed on activated
T Lymphocytes and supports the survival and expansion of activated T lymphocytes.

The 4-1BB agonistic aptamer could bind 4-1BB expressed on the surface of activated murine
T lymphocytes and stimulate the activation of the T cells in vitro and mediate tumor rejection in
mice [154]. To reduce the non-specific immuno-cytotoxic damage to normal tissue or cells, several
investigations constructed bi-specific aptamers that bind to 4-1BB as well as to a tumor-specific target
either on tumor cells or in tumor stroma. Pastor and others [155,156] conjugated an agonistic 4-1BB
aptamer to a PSMA aptamer, which resulted in enhanced antitumor immunity in subcutaneously
implanted tumors and lung metastasis in mice. Berezhnoy et al. [157,158] conjugated an agonistic
4-1BB aptamer to an siRNA targeting mTOR complex 1 and found that systemic administration
of the conjugates to mice downregulated mTOR complex 1 activity in CD8 + T cells and led to a
potent memory response that showed cytotoxic effectors and boosted vaccine-induced immunity in
tumor-bearing mice. Schrand et al. [159,160] conjugated an agonistic 4-1BB aptamer to an aptamer that
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binds to VEGF that is widely expressed in tumor stroma; systemic administration of the conjugates in
preclinical murine tumor models exhibited potent antitumor immunity against multiple unrelated
tumors and an enhanced therapeutic index. 4-1BB aptamer has been used to conjugate to an siRNA
against IL-2Rα whose signaling negatively regulates activated CD8+ T cells. Systemic administration
of 4-1BB aptamer-IL-2Rα siRNA conjugates downregulated IL-2Rα mRNA in 4-1BB-positive CD8+ T
cells and promoted their differentiation into memory cells [161]. 4-1BB aptamer has also been used
in conjugation with an siRNA against Smad4 in the TGFβ signaling pathway, the signaling of which
mediates immune suppression at the tumor microenvironment. The 4-1BB aptamer-Smad4 siRNA
conjugates rendered T cell resistant to TGFβ inhibition, and systemic administration of the conjugates
to tumor-bearing mice boosted irradiation- and vaccine-induced antitumor immunity [162].

Other aptamers generated as agonists to activate costimulatory receptors include the dimeric
aptamer against murine OX40 [163], the dimeric aptamers against CD28 [164], the dimeric aptamers
against CD40 [165], the aptamer against ICOS [166], and the aptamer against human OX40 [167].
These aptamers were used independently or in combination with immune checkpoint inhibitors.

6. Cancer Therapy Aptamers in Clinical Trials

In addition to Macugen, which was approved by the FDA more than 10 years ago for the treatment
of ADM, there have been a number of aptamers that have entered clinical trials. Table 2 shows the
selected aptamers that are under clinical trials or in active laboratory investigation for cancer therapy.

7. Conclusions

Aptamers are single-stranded RNA or DNA oligonucleotides generated with SELEX technology.
Aptamers can form numerous specified three-dimensional structures and thus can bind diverse target
molecules with high affinity and specificity. Like mAbs, aptamers have promising potential applications
in clinical diagnosis and therapy particularly in cancer treatment, but aptamers have advantages over
mAbs in therapeutic uses mainly because they have little or no immunogenicity, which means the
feasibility of repeat prescriptions and fewer side effects. Researches on aptamers are still in the early
stage, and a deeper understanding of aptamer–target interactions and pharmacokinetics is still needed
to prepare for better clinical use or marketing. So far, although a number of aptamers have been
developed and some of them have entered clinical trials, only one aptamer has been approved by the
FDA for clinical use. The progress towards effective therapies tends to be slow, but it never ceases and
the best results are yet to come. With regard to cancer treatment, in addition to their advantage of
little or no immunogenicity, aptamers are relatively easy to penetrate solid tumor tissue because of
their smaller molecular weight and are comparatively less costly than mAbs since they are produced
in vitro. Therefore, more efforts should be devoted to the discovery of new anticancer aptamers, to
the in-depth characterization of the current aptamers, and to speeding up the process for the entry of
existing anticancer aptamers into clinical trials.
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Abbreviations

A2AR adenosine A2A receptor
AMD age-related macular degeneration
BTLA B- and T-lymphocyte attenuator
Cbl-b casitas B-lineage lymphoma-b
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
CXCL C-X-C chemokine ligand
CXCR C-X-C chemokine receptor
Dox doxorubicin
EGFR epidermal growth factor receptor
EGR-2 early growth response proteins-2
Foxp3 forkhead box protein P3
HER2 human epidermal growth factor receptor 2
IFNγ interferon-γ
Lag3 lymphocyte activating 3
mAb monoclonal antibody
PD-1 programmed death 1
PD-L1 programmed death-ligand 1
PDGF platelet-derived growth factor
PDGFR platelet-derived growth factor receptor
PSMA prostate-specific membrane antigen
SELEX systematic evolution of ligands by exponential enrichment
SHP1 Src homology region 2 domain-containing phosphatase-1
STAT3 signal transducer and activator of transcription 3
TALL T-cell acute lymphoblastic leukemia
TIM3 mucin-domain-containing-3
TNFα tumor necrosis factor-α
Treg regulatory T cell
VEGF vascular endothelial growth factor
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