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Abstract

Prion proteins can adopt multiple different infectious strain conformations. Here we examine how 

the sequence of a prion protein affects its capacity to propagate specific conformations by 

exploiting our ability to create two distinct infectious conformations of the yeast [PSI+] prion 

protein Sup35p, termed Sc4 and Sc37. PNM2, a Sup35p (G58D) point mutant originally identified 

for its dominant interference with prion propagation, leads to rapid, recessive loss of Sc4 but does 

not interfere with Sc37 propagation. PNM2 destabilizes the amyloid core of Sc37 causing 

compensatory effects that slow prion growth but aid prion division and result in robust Sc37 

propagation. In contrast, PNM2 does not affect the structure or chaperone-mediated division of 

Sc4, but interferes with its delivery to daughter cells. Thus, effective delivery of infectious 

particles during cell division is a critical and conformation-dependent step in prion inheritance.

Introduction

Infectious proteins, or prions, are a form of conformation-based inheritance, in which a 

prion protein aggregate binds to and catalyzes the conversion of newly-made proteins to the 

prion form creating stably propagating states1. Such conformation-based inheritance 

underlies a range of transmissible spongiform encephalopathies in mammals as well as 

heritable epigenetic states in fungi, of which the yeast Saccharomyces cerevisiae prion 

[PSI+] is arguably the best characterized2. A common feature of prion proteins is that they 

misfold into ordered, β-sheet rich amyloid fibers, the self-templating nature of which is 

thought to form the basis of prion propagation1,3. Remarkably, a single prion protein can 

adopt a spectrum of amyloid conformations that lead to different, heritable strain variants4–
11.

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence: Jonathan S. Weissman, 415-502-7642 (phone), 415-514-0273 (fax), weissman@cmp.ucsf.edu.
3Present address: The Salk Institute for Biological Studies, La Jolla, 92037, California, USA.
*These authors contributed equally to this work.

Author Contributions
KJV, MHS and JSW designed this study and wrote the manuscript. JSW supervised this work. KJV and MHS performed the majority 
of the experiments. BHT designed the H/X NMR experiments and acquired and analyzed the NMR data.

HHS Public Access
Author manuscript
Nat Struct Mol Biol. Author manuscript; available in PMC 2012 November 06.

Published in final edited form as:
Nat Struct Mol Biol. 2011 April ; 18(4): 493–499. doi:10.1038/nsmb.2030.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


The yeast prion [PSI+], which results from the aggregation of the translation termination 

factor Sup35p, has emerged as a powerful system for studying strain variants. Sup35p can 

form different amyloid conformations in vitro when polymerized at 4 °C versus 37 °C8,12,13. 

When introduced into yeast, these amyloid fibers form two distinct strains in vivo termed 

[PSI+]Sc4 and [PSI+]Sc37, respectively. (For clarity, we use [PSI+]Sc4 to describe the in vivo 

strain and Sc4 to describe the fiber conformation.) These strains are distinguished by the 

degree of Sup35p aggregation: [PSI+]Sc4 yeast exhibit a strong prion phenotype, in which 

the large majority of Sup35p is aggregated, while [PSI+]Sc37 yeast have a more substantial 

pool of soluble Sup35p and a weaker prion phenotype. Structural studies revealed that there 

is a dramatic expansion of the amyloid core in the Sc37 conformation relative to that found 

in Sc414,15. The more extensive structure in Sc37 fibers increases fiber stability and 

decreases the rate of prion replication by the cell’s chaperone system resulting in the weaker 

[PSI+]Sc37 prion phenotype16. The ability to probe the biophysical properties of these 

defined strain variant conformations in vitro and monitor their phenotypes in vivo makes 

[PSI+] an excellent system for the study of prion strain phenomena.

The precise amino acid sequence greatly biases the ability of a prion protein to adopt 

particular strain variants7,17–19. For example, the naturally occurring methionine/valine 

polymorphism at position 129 of the mammalian prion protein greatly influences disease 

susceptibility20. The Val129 allele does not interfere with the propagation of all prion strain 

variants and may even favor some, including certain iatrogenic forms of Creutzfeldt-Jakob 

diease19. However, the presence of even a single allele of Val129 appears to be highly 

protective against developing new variant Creutzfeldt-Jakob disease (nvCJD)21, which is 

thought to result from transmission of bovine spongiform encephalopathy (mad cow disease) 

to humans22,23.

This strong relationship between strain variants and the sequence of the prion protein 

extends to the [PSI+] prion system. A mutant of the Sup35p prion protein, which was 

originally identified in a screen for “Psi no more” mutants that prevented propagation of 

[PSI+], shows strain variant-specific effects. This mutant, termed PNM2, has a glycine to 

aspartate missense mutation at amino acid position 5824. Originally, the effect of PNM2 was 

described as causing dominant inhibition of prion propagation when co-expressed with wild 

type Sup35p24,25. Later studies found that PNM2 does not interfere with propagation of all 

[PSI+] strain variants and may enhance propagation of certain strain variants when 

overexpressed17.

Here, we used the PNM2 mutant and the well-defined prion strain conformations, Sc4 and 

Sc37, together with in-depth biophysical and in vivo analyses, to investigate how point 

mutations can affect prion propagation in a manner that depends on the strain variant. Our 

systematic characterization of fiber structure, chaperone-mediated division of fibers into 

seeds and delivery of seeds to daughter cells reveals a PNM2-specific defect in seed 

partitioning for the [PSI+]Sc4 strain variant. The findings implicate delivery of fiber seeds to 

daughter buds as a critical step in prion propagation.
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Results

PNM2 shows strain-specific effects on [PSI+] propagation

We began by characterizing the effect of the PNM2 mutation on prion propagation in 

[PSI+]Sc4 and [PSI+]Sc37 yeast. To allow for rapid exchange of alleles, we used a yeast 

background in which the genomic copy of SUP35 was deleted and replaced by a copy on a 

plasmid containing the counter-selectable URA3 marker. We exchanged this plasmid with 

one encoding wild-type Sup35p (WT) or Sup35p G58D (PNM2) and confirmed that the two 

proteins were expressed at similar levels (Fig. 1a). We assessed the prion phenotype with a 

red/white color readout that results from suppression of a nonsense mutation in an ADE1 

reporter (the ade1–14 allele)26. When Sup35p is soluble ([psi−]), translation of ade1–14 

terminates prematurely, resulting in accumulation of a red metabolic intermediate. When 

Sup35p is aggregated ([PSI+]), read-through of the nonsense mutation occurs and functional 

Ade1p is produced. Depending on the amount of soluble Sup35p present and perhaps the 

nature of the aggregates, [PSI+] strain variants have varying levels of functional Ade1p and 

exhibit color phenotypes ranging from pink ([PSI+]Sc37) to white ([PSI+]Sc4) (Fig. 1b). This 

assay also reports on the stability of prion inheritance: when a cell in a growing colony loses 

[PSI+], its progeny remain prion free and form a red sector (Fig. 1c).

Using the [PSI+]Sc4 and [PSI+]Sc37 yeast backgrounds, we found that PNM2 has dramatic, 

strain variant-specific effects on prion propagation. When expressed as the sole copy of 

Sup35p, PNM2 strongly compromised propagation of [PSI+]Sc4, apparent by the continuous 

generation of prion-free ([psi−]) states (Fig. 1b,c,d). This effect is similar to the originally 

reported description of the PNM2 phenotype24,25, though there are differences between 

studies: PNM2 is recessive in our strain background and thus does not strongly interfere 

with [PSI+]Sc4 propagation when co-expressed with WT (Fig. 1b). Thus, we focused on 

analyzing effects of prion propagation when PNM2 is expressed as the sole copy of Sup35p.

In contrast to its dramatic effect on [PSI+]Sc4 propagation, PNM2 had a much weaker effect 

on propagation of the [PSI+]Sc37 strain variant, with at most a mild darkening of the color 

phenotype and no discernable increase in prion loss (Fig. 1b,d). This result was surprising 

given that previous studies indicate that the PNM2 mutation is located in a region that is 

structured in Sc37 but not in Sc415, leading to the expectation that the PNM2 mutation 

would preferentially interfere with propagation of the Sc37 conformation.

We first asked whether the defect in stable inheritance seen in [PSI+]Sc4 yeast could arise 

from the PNM2 mutation forcing an irreversible structural change that results in an amyloid 

conformation that is poorly propagated. We carried out a series of plasmid exchanges, 

replacing the WT plasmid with the PNM2 plasmid, then exchanging it back with the WT 

plasmid. Reintroduction of the WT plasmid fully restored the original [PSI+]Sc4 phenotype 

(Fig. 1e), indicating that the PNM2 Sc4 fibers retained the structural information necessary 

to template WT to the characteristic Sc4 amyloid conformation.

To investigate what accounts for the negative impact of PNM2 on [PSI+]Sc4, but not on 

[PSI+]Sc37, propagation, we systematically tested the parameters that affect each step in the 

prion replication cycle (Fig. 2): fiber growth; fiber division, of which fiber stability and 
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ability to interact with the in vivo chaperone prion-replication machinery are key 

determinants; and delivery of prion particles to daughter cells during cell division.

PNM2 disrupts Sc37 growth rate and structural stability

To determine whether changes in fiber growth rates account for the observed phenotypic 

differences, we compared in vitro growth rates of WT and PNM2 fibers. While earlier 

studies found that PNM2 fibers have a partial growth defect, the nature of the prion strain 

variants in these studies was not well defined27. For our studies, we used a fragment of 

Sup35p (SupNM; residues 1–254, containing the Q/N-rich N-terminal and highly charged 

middle domains of Sup35p) that is necessary and sufficient to support prion 

propagation28,29. The seeded polymerization rates of soluble SupNM were monitored by 

measuring the increase in fluorescence intensity of Thioflavin T. We found that when 

seeded, PNM2 SupNM polymerizes into the Sc37 conformation at a rate slower than that 

observed with WT SupNM (Fig. 3). Since this change in growth rate would be predicted to 

weaken the prion phenotype, other mechanisms must account for the similar phenotype of 

PNM2 and WT in the Sc37 conformation.

A PNM2-induced change in amyloid structure could explain the change in Sc37 fiber 

growth rate as well as provide insight into prion division rates in vivo16. Therefore, we used 

a range of biophysical techniques, including hydrogen/deuterium (H/D) exchange NMR, 

fiber thermal denaturation, and propensity for shearing to produce new fiber seeds, to 

analyze the structure and stability of PNM2 SupNM fibers. Shearing efficacy was 

determined by the ability of long fibers fragmented via stirring to seed monomer growth as 

measured from the initial polymerization rates of such reactions.

For the H/D exchange experiments, we monitored the extent of backbone amide exchange 

for both WT and PNM2 fibers at two different time points: after a short exchange period of 

2 minutes and after a more extensive exchange period of 1 day. Based on previous 

assignments15, we measured exchange for 132 residues, including extensive probes 

throughout the amyloid core of both the Sc4 and Sc37 conformations.

The H/D exchange experiments revealed that the PNM2 mutation induced specific, localized 

structural defects in the Sc37 conformation. Specifically, we observed a region of increased 

exchange in residues proximal to the site of the PNM2 mutation for both early and late 

exchange time points (Fig. 4a,b). Consistent with this result, we observed a decrease in the 

thermal stability of PNM2 SupNM Sc37 fibers (Tm = 80 °C ± 2) compared to WT SupNM 

Sc37 fibers (Tm = 86 °C ± 2) (Fig. 3c,d). Additionally, when subjected to shearing forces, 

PNM2 SupNM Sc37 fibers fragmented more than WT SupNM Sc37 fibers (Fig. 3e). These 

results suggest that the PNM2 mutation in the Sc37 conformation causes a localized 

structural destabilization with a resulting decrease in fiber stability.

The affects of the PNM2 mutation on Sc37 fibers may have opposing consequences for 

prion propagation. The localized structural defect would be expected to enhance the rate of 

prion division in vivo, causing an increase in the rate of generation of free fiber ends and 

subsequently strengthening the prion phenotype15,16. In contrast, the decrease in fiber 

growth would be expected to reduce monomer addition onto fibers and weaken the prion 
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phenotype. Therefore, we hypothesize that the modest overall effect of the PNM2 mutation 

on the [PSI+]Sc37 phenotype is the result of compensatory changes.

PNM2 does not affect Sc4 growth, stability or structure

To determine the mechanism by which the PNM2 mutation interferes with [PSI+]Sc4 

propagation, we carried out a set of experiments on Sc4 fibers analogous to those done on 

the Sc37 conformation. When seeded by Sc4, PNM2 SupNM polymerizes into the Sc4 

conformation at a rate similar to WT SupNM indicating that the negative effect of the PNM2 

mutation on [PSI+]Sc4 propagation cannot be explained by a decrease in fiber growth rate 

(Fig. 3a,b). The Sc4 fiber structure was also unaffected by the PNM2 mutation: H/D 

exchange experiments showed no appreciable differences between WT SupNM and PNM2 

SupNM fibers in the Sc4 conformation (Fig. 4c,d). Both the regions of protection and the 

extent of protection for all residues was virtually indistinguishable between the two samples 

for both short and long exchange times, suggesting that the structures were stable as well as 

very similar. Consistent with the above results, the melting temperatures of WT SupNM and 

PNM2 SupNM in the Sc4 conformation were comparable (77 °C ± 2 and 77 °C ± 5, 

respectively) (Fig. 3c,d). Lastly, when subjected to shearing forces, both PNM2 SupNM and 

WT SupNM fragmented to a similar extent (Fig. 3e).

Taken together, these results argue that PNM2 SupNM is able to polymerize into fibers with 

growth, structure and stability indistinguishable from that of WT Sc4 fibers, and that the 

defect in [PSI+]Sc4 propagation cannot be explained by the biophysical properties of the 

fibers.

PNM2 does not affect Sc4-chaperone interactions

Prion propagation is critically dependent on the host chaperone machinery, and in particular 

on Hsp104p26. A growing body of evidence indicates that Hsp104p acts in concert with 

Ssa1p (Hsp70) and Sis1p (Hsp40) to divide prion particles and therefore facilitate prion 

replication30–33. Specifically, Ssa1p and Sis1p bind to prion particles and deliver them to 

Hsp104p, which is thought to extract prion particles from fibers in an ATP-dependent 

process that involves translocation of the extracted monomers through its axial pore34. In 

addition to its role in propagation, Hsp104p also causes curing of the prion (i.e., conversion 

from [PSI+] to [psi−]) when expressed at high levels via a mechanism separate from fiber 

division. Therefore, the overall effect of Hsp104p is a balance between fiber division 

necessary for propagation at low levels and curing at high levels26. Since a fiber’s 

differential susceptibility to fragmentation and curing by Hsp104p can directly affect its 

propagation, we sought to evaluate whether changes in chaperone-prion interactions cause 

the PNM2 phenotype.

One possible explanation for the interference in [PSI+]Sc4 propagation by the PNM2 

mutation is that it causes loss of [PSI+] through increased susceptibility to curing by 

Hsp104p. To explore this possibility, we used a truncated variant of Hsp104p that is missing 

its N-terminal domain, termed Hsp104ΔNTD35. When this variant is expressed from the 

endogenous HSP104 locus in the genome, it is fully active in [PSI+] propagation and can 

mediate thermotolerance, but does not cure [PSI+] with overexpression35 (Supplementary 
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Fig. 1a). We found that the defect in [PSI+] propagation in PNM2 is observed even in the 

strain expressing Hsp104ΔNTD establishing that the sectoring seen in PNM2 is not due to 

curing via the mechanism active with overexpression of Hsp104p (Fig. 5a).

An alternate hypothesis is that the PNM2 mutation causes increased susceptibility to the 

fiber division activity of Hsp104p leading to fiber resolubilization. To test this, we expressed 

HSP104 and hsp104ΔNTD from a CEN/ARS plasmid that leads to a 2 to 3-fold increase in 

expression. At this expression level, wild type Hsp104p destabilized [PSI+] while 

Hsp104ΔNTD did not (Fig. 5b) indicating that the destabilization must be due to the curing 

activity of Hsp104p and not over-fragmentation. Importantly, we find that overexpression of 

Hsp104ΔNTD did not enhance PNM2 sectoring arguing that PNM2 fibers are not overly 

susceptible to fragmentation and resolubilization by Hsp104p (Fig. 5b, Supplementary Fig. 

1b). These results are distinct from those of Serio and coworkers (NSMB This Issue), who 

found that the PNM2 mutation can lead to fiber destabilization and enhanced Hsp104p-

mediated fiber dissolution. The differences between the two studies likely results from 

differences in the prion strain conformations that were examined as Serio et al. observe 

dominant curing of [PSI+] when WT and PNM2 Sup35p are coexpressed whereas we find 

that the PNM2 phenotype is recessive in Sc4. Additionally, the fact that the PNM2 mutation 

destabilizes the fibers in those studies suggest that residue 58 is within the amyloid core of 

their strain conformation. Indeed we have generated examples of prion strain conformation 

that, like the Sc4 conformation lead to “strong” prion phenotypes, but nonetheless have 

amyloid cores that extend across residue 58 (unpublished data).

In an independent assay of Hsp104p activity, we looked at the size distribution of prion 

fibers by semi-denaturing detergent-agarose gel electrophoresis (SDD-AGE). Previous 

studies have shown that changes in Hsp104p activity affect aggregate size36 and that Sc37 

fibers, which are severed less efficiently by Hsp104p in vivo, are larger than those in the Sc4 

conformation16. We examined the relative sizes of Sc37 and Sc4 fibers and found that 

PNM2 and WT Sc4 fibers have the same size distribution (Fig. 5c). This finding is in 

agreement with our Hsp104ΔNTD data and indicates that PNM2 and WT Sc4 interact 

equally with Hsp104p.

Finally, to more directly look at interactions between Hsp104p and Sc4 fibers, we used a 

system developed to monitor the flux of substrates through the axial pore of Hsp104p (Fig. 

5d). Tessarz et al.34 and Tipton et al.33 engineered derivatives of Hsp104p (HAP and 4BAP, 

respectively) that interact with ClpP, a bacterial protein that forms a proteolytic chamber. 

When used in conjunction with a catalytically dead mutant of ClpP (ClpPtrap), substrates of 

Hsp104p are translocated through HAP and trapped in the ClpP chamber. Thus, following 

its induction in HAP-expressing yeast, ClpPtrap was affinity purified to identify Hsp104p 

substrates. Given that translocation through Hsp104p is likely to be the terminal event in an 

interaction between Sup35p and the chaperone machinery, defects in any aspect of this 

interaction would be expected to yield a difference in the flux of Sup35p through Hsp104p.

Previous studies have shown that Sup35p is delivered to ClpPtrap in a HAP-dependent 

manner, and HAP only translocates Sup35p into ClpPtrap in [PSI+] cells33,34. Moreover, 

substantially less Sup35p is trapped in the weak [PSI+]Sc37 strain than in the strong, and 
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more efficiently divided16, [PSI+]Sc4 strain33. We both confirmed that WT Sup35p was 

trapped in a [PSI+]-dependent manner (Fig. 5e), and found that the flux of PNM2 through 

Hsp104 was similar to WT when expressed as either the sole source of Sup35p or co-

expressed with WT (Fig. 5f,g). Therefore, in agreement with our Hsp104ΔNTD and SDD-

AGE data, the HAP/ClpPtrap system shows that PNM2 Sc4 fibers interact normally with the 

Hsp104p chaperone machinery necessary for propagation.

PNM2 causes a defect in Sc4 propagon partitioning

We investigated whether the PNM2 mutation causes a defect in delivery of [PSI+]Sc4 

infectious particles (propagons) to daughter cells during cell division using a method 

developed by Cox, Ness, and Tuite37. Briefly, corresponding pairs of mother and daughter 

cells are separated and grown in media containing guanidine, which reversibly inhibits 

Hsp104p38–40, such that the number of propagons remain fixed. As the cells divide, a point 

is reached at which there is no more than one propagon per cell. When Hsp104p function is 

restored by removal of guanidine, the number of [PSI+] colonies that arise from the mother 

versus the daughter reports on the relative number of propagons in each mother/daughter 

pair. Although this assay does not yield a quantitative measure of the absolute number of 

prion particles, it allows monitoring of relative propagon numbers and loss of [PSI+] by one 

of the partners.

Using the above assay for [PSI+]Sc4 cells expressing WT or PNM2 Sup35p, we found 

evidence of partitioning dysregulation in PNM2 [PSI+]Sc4 cells (Fig. 6a,b). The mild bias in 

the distribution of propagons toward the mother and positive correlation between the 

number of propagons in the mother and daughter WT [PSI+]Sc4 cells seen previously37,41 

was lost in PNM2 [PSI+]Sc4 cells. Strikingly, for a subset of pairs, the mother contained a 

large number of propagons while the daughter did not inherit any. In contrast, we did not 

observe any pairs in which the daughter had propagons, but the mother did not. The failure 

of propagons to partition into daughter cells accounts for the rapid appearance of red [psi−] 

sectors in PNM2 [PSI+]Sc4 yeast colonies.

Discussion

Our studies point to a critical role for prion conformation in modulating the effects of 

changes in the sequence of a prion protein on prion propagation. In the case of [PSI+]Sc37, 

the PNM2 mutation affects the structural and physical characteristics of the amyloid fibers 

in a manner that has compensatory effects on prion propagation resulting in a mild effect on 

prion propagation in vivo. A different picture, however, emerges from studying PNM2 in the 

context of [PSI+]Sc4, where the mutation does not affect the amyloid structure or chaperone-

mediated fiber division, but has a striking negative effect on propagation. The effect of 

PNM2 on [PSI+]Sc4 points to a critical role for the least understood step of [PSI+] 

propagation: the partitioning of prion particles. In PNM2 [PSI+]Sc4 yeast, we observed a 

pronounced defect in the delivery of aggregates to daughter cells. This finding highlights the 

question of how [PSI+] prion particles are delivered to daughter cells.

Past studies indicate that the observed mother bias in the allocation of [PSI+] particles is 

roughly consistent with differences in cell volume between the mother and the daughter, 
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suggestive of partitioning by passive diffusion41. Other studies point to the potential for 

more active mechanisms in the segregation of protein aggregates, including the active 

recruitment of cytosolic aggregates to specific loci42,43. Because the PNM2 mutation lies 

outside of the amyloid core of the Sc4 conformation, it could disrupt interactions between 

this region of the prion protein and host factors responsible for prion segregation.

In support of a role for host factors in prion particle partitioning, we carried out an unbiased 

genetic screen for high copy suppressors of the PNM2 phenotype, in which we identified 

multiple independent isolates of two genes, LSB3 and ART5, that when overexpressed 

minimized sectoring in PNM2 [PSI+]Sc4 yeast (Supplementary Fig. 2a,b, Supplementary 

Methods). Lsb3p interacts with Las17p as well as the Sla1p/End3p/Pan1p complex, both 

factors involved in the regulation of actin dynamics44–46. The actin cytoskeleton has 

previously been implicated both in transport of general protein aggregates between mother 

and daughter cells42 as well as in the regulation of prion formation47,48. Art5p is primarily 

uncharacterized, but has proposed activity in the regulation of endocytosis49,50. While a full 

characterization of the role of these proteins in prion biology is beyond the scope of this 

study, it will be interesting to determine how prion particles are affected by actin-based 

transport and if endocytic pathways play a role in prion delivery to daughter cells.

Recent studies have suggested that size selection plays a vital role in prion particle 

transmission to daughter cells51. In this “size-based” model, the small prion particles, which 

are preferentially propagated to daughter cells, might be the species primarily affected by 

the PNM2 mutation such that these transmission-competent particles are either not delivered 

to daughter buds or actively retained in the mother cell. These possibilities may be related to 

the more general mechanism in which the cell specifically recognizes and concentrates 

misfolded protein aggregates42,43. Going forward, an understanding of the relationship 

between the cellular machinery for segregation of general protein aggregates and prion 

transmission is essential.

Our studies illustrate the importance of delivery of infectious proteins to daughter cells as a 

critical step in the [PSI+] propagation cycle. In the future, we anticipate that the [PSI+] 

system will prove useful for studying how cells survey, partition, and sequester protein 

aggregates. The PNM2 mutation in the Sc4 conformation should provide a critical tool for 

such studies, as it exhibits a distinct partitioning defect that is not confounded by changes in 

amyloid structure or chaperone-mediated fiber division.

Materials and Methods

Strains and plasmids

All strains were converted to [PSI+] by infection with in vitro formed Sc4 or Sc37 fibers. 

See Supplementary Information Tables 1 and 2 for full list of strains and plasmids.

Fiber preparation

Fibers were produced as described previously, using bacterially produced pure SupNM 

proteins carboxy-terminally tagged with 7x-histidine52.
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In vivo yeast prion propagation characterization

YJW1110 and YJW1111 were transformed with a LEU2-marked plasmid expressing WT or 

PNM2 from the endogenous promoter (pRS315 WT Sup35p or pRS315 PNM2 Sup35p, 

respectively). The resulting transformants were selected on media lacking uracil and leucine 

(SD–Ura–Leu), then subsequently passaged on YEPD, then 5-FOA, then 1/4 YEPD. For the 

swap back experiment, the [PSI+]Sc4 yeast background containing the pRS315 PNM2 

Sup35p plasmid was transformed with the original pRS316 WT Sup35p plasmid. Resulting 

transformants were selected on SD–Ura–Leu. After passaging several times on SD–Ura, 

colonies that required leucine for growth were identified. The [PSI+] phenotype was 

determined by observing the color on low adenine media (1/4 YEPD). The degree of 

sectoring, or loss of [PSI+], was determined by growing cultures in YEPD liquid media for 

24 hours at 30 °C and plating onto 1/4 YEPD plates at a density of ~400 colonies per plate. 

The number of [PSI+] and [psi−] colonies were then counted.

In vitro analysis of the physical properties of strain conformations

Fiber growth rates15, thermal stabilities8, and susceptibility to shearing16 were all 

determined as described previously.

H/D exchange NMR

Uniformly 15N labeled SupNM was expressed in E. coli and purified as previously 

described15. 15N-SupNM seeded fibers of each strain were made as described15 and 

concentrated to 1/25th of their original volume. The fibers were then diluted 1:10 into D2O 

buffer at pH 7.0 to begin the exchange. After the desired time, exchange was quenched by 

adjusting the pH to 2.5, and fibers were centrifuged at 100,000g for 25 min. The pellet was 

washed once with 5mM DCl in D2O, then centrifuged again at 100,000g for 20 min. The 

pellet was frozen, freeze-dried and stored at −80 °C until NMR acquisition. The NMR 

spectra were acquired as described previously15. Estimated minimum peak intensity was 

calculated by averaging the intensity of a set of fully exchanged residues.

In vivo analysis of Hsp104p activity using the variant Hsp104ΔNTD

The Hsp104p variant Hsp104ΔNTD, first constructed by Hung and Masison35, has the 

nucleotides corresponding to the N-terminal 146 residues deleted. hsp104ΔNTD was 

amplified and fused to the NAT cassette by PCR, and inserted into the HSP104 genomic 

locus of YJW1110 by homologous recombination, resulting in strain YJW1667. Plasmids 

pRS399 Hsp104p and pRS399 Hsp104ΔNTD35 were used to mildly (2–3 fold) overexpress 

Hsp104p or Hsp104ΔNTD. pRS399 is a pRS315 plasmid where the LEU2 marker has been 

replaced by a KanR cassette. Plasmids were transformed into YJW1110 and plated on 1/4 

YEPD containing the antibiotic G418 for visualization of the [PSI+] phenotype.

Semi-Denaturing Detergent-Agarose Gel Electrophoresis (SDD-AGE)

Relative aggregate size was determined by SDD-AGE as previously described53,54. Sup35p 

was probed for by western blotting using polyclonal anti-SupNM.
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ClpPtrap Affinity Purification Experiments

The ClpPtrap affinity purification experiments were performed as described previously34. 

Briefly, YJW1112, YJW1113, YJW1114, or YJW1115 that had been transformed with 

pRS313 WT Sup35p, pRS313 PNM2 Sup35p, pRS313 WT Sup35HA, or pRS313PNM2 

Sup35HA were grown in SD media with 50 μM CuSO4 from OD600 = 0.1 to 1 and lysed at 

4 °C by bead beating in IP buffer (50 mM Tris/Cl pH 8.0, 1 M NaCl, 2 mM EDTA, 0.5% 

(v/v) Triton X-100, 5 mM β-mercaptoethanol, + Roche Complete Protease Inhibitor 

Cocktail). The lysate was cleared by centrifugation at 15,000g for 15 min, incubated with 

Streptavidin Sepharose (GE Healthcare) at RT for 1 hr, washed with 40 column volumes of 

IP buffer, and eluted in IP buffer + 150 mM NaCl and 4 mM biotin. The eluate was 

subjected to SDS-PAGE and Sup35p was probed for by western blotting using polyclonal 

anti-SupNM.

Mother/Daughter propagon counting

The propagons in mothers and daughters were counted as described previously37. Briefly, 

mothers and daughters of YJW1110 (containing pRS315 WT Sup35p or pRS315 PNM2 

Sup35p as the sole source of Sup35p) were separated by micromanipulation onto YEPD 

plates containing 3mM Guanidine HCl. After growing at 30 °C for about 40 hours, whole 

colonies were isolated using a cut pipette tip, resuspended in a small volume of H2O, and 

plated onto SD–Ade + 5% (w/v) YEPD. After growing at 30 °C for 10 to 14 days, the 

number of [PSI+] colonies was counted. For the WT samples, [PSI+] colonies were easily 

distinguished from [psi−] and Ade revertants by color. The PNM2 samples contained 

background indistinguishable from true [PSI+] colonies by color. We estimated the average 

background by repeating the experiment using a [psi−] PNM2 strain created by curing the 

[PSI+]Sc4 PNM2 strain by successive passaging on YEPD containing 3 mM guanidine HCl. 

The average background of ~25 colonies per sample was subtracted for all counted values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterization of in vivo prion phenotypes
(a) Expression levels of WT or PNM2 expressed from a plasmid in a [PSI+]Sc4 background. 

Expression levels were quantitated by immunoblotting with a polyclonal anti-SupNM 

antibody. Values represent the mean ± s.d. for three experiments. (b) Representative in vivo 

prion phenotypes of yeast spotted on low adenine media. WT Sup35p was replaced with 

(left panel), or was co-expressed with (middle panel) either WT or PNM2. (c) Enlarged view 

of the edge of the yeast spot. Presence of red sectors in [PSI+]Sc4 PNM2 indicates a loss of 

[PSI+]. (d) Quantification of loss of [PSI+] as determined by counting the number of [psi−] 
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colonies after growing for 24 hours in YEPD. Values represent the mean ± s.d. for three 

experiments. (e) Representative in vivo prion phenotypes of yeast spotted on low adenine 

media. WT Sup35p was replaced with PNM2, which was subsequently replaced with WT 

through plasmid exchanges.
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Figure 2. 
Schematic of the prion propagation cycle that includes (1) fiber growth, (2) chaperone 

mediated division, and (3) partitioning to daughter cells.
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Figure 3. 
Characterization of the physical properties of fibers formed in vitro.

(a) A representative experiment monitoring the relative growth rates of WT and PNM2 

SupNM. Polymerization of SupNM was performed with 5% (w/w) WT seed of the specified 

conformation, and the rate of addition of SupNM monomers was monitored by Thioflavin T 

fluorescence. Data were normalized to initial and final intensities. (b) The growth rates of 

Sc4 and Sc37 PNM2 SupNM normalized to those of WT SupNM polymerized on the 

relevant seed. Initial time points were fitted to a line and the slope (initial growth rate) was 

calculated. Values represent the mean ± s.d. for three experiments. (c,d) Thermal stability of 

WT and PNM2 fibers in Sc4 and Sc37 conformations. WT and PNM2 SupNM fibers in the 

Sc4 or Sc37 conformations were incubated at increasing temperatures, and samples were 

subjected to SDS-PAGE. Band intensities (susceptibility of aggregates to thermal 

solubilization) were plotted against temperature and fitted to a sigmoidal function. (e) 
Relative seeding efficacy of WT or PNM2 fibers in the Sc4 or Sc37 conformation before 
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and after stirring for 30 or 60 min. Seeding efficacy was determined by monitoring the 

initial fiber growth rates of polymerization reactions using stirred samples as seeds. Values 

represent mean ± s.e.m. for three experiments.
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Figure 4. 
H/D exchange of WT and PNM2 SupNM fibers. Intensities for assigned and unambiguous 

peaks corresponding to residues 1–141 were plotted as the fraction of the non-exchanged 

intensity after 2 min (a, c) and 1 day (b, d) of exchange for both WT (blue) and PNM2 (red) 

fibers in the Sc37 (a, b) and Sc4 (c, d) conformations. Unassigned and ambiguous residues 

are not displayed. The gray line represents the estimated minimum peak intensity following 

complete exchange.

Verges et al. Page 19

Nat Struct Mol Biol. Author manuscript; available in PMC 2012 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
PNM2 fibers in the Sc4 conformation interact with the in vivo chaperone machinery. (a) 
HSP104 (top row) and hsp104ΔNTD (bottom row) were expressed in [PSI+]Sc4 yeast 

expressing either WT (left) or PNM2 (right) Sup35p and spotted onto low adenine media. 

(b) HSP104 and hsp104ΔNTD were expressed at increased levels along with endogenous 

Hsp104p in [PSI+]Sc4 yeast expressing WT or PNM2 Sup35p. “Vector only” denotes 

transformation with an empty CEN/ARS plasmid. (c) SDD-AGE analysis of prion particle 

size in duplicate from lysates of [PSI+]Sc4 (lanes 1–2 and 5–6), [PSI+]Sc37 (lanes 3–4) and 
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PNM2 [PSI+]Sc4 (lanes 7–8). SUP35 is genomic in lanes 1–4 and on a plasmid in lanes 5–8. 

Yeast express wild type HSP104 in all lanes. (d) Schematic of the in vivo HAP/ClpPtrap 

reaction. (e) Representative blot of the ClpPtrap affinity purification. WT Sup35p and 

ClpPtrap were expressed in backgrounds that were [PSI+]Sc4 or [psi−] expressing HAP or 

Hsp104p. (f) Monitoring the translocation of PNM2. HAP and ClpPtrap were expressed in 

[PSI+]Sc4 cells that also expressed WT or PNM2 Sup35p. Intensities of Sup35p elution 

signal from western blot (top panel) were normalized for input signal (bottom panel). (g) 
Monitoring translocation of PNM2 when co-expressed with WT. As in (f), but untagged WT 

Sup35p was also expressed in cells expressing HA-tagged WT or PNM2 Sup35p. The 

higher molecular weight band corresponds to HA-tagged Sup35p. Intensities of tagged-

Sup35p elution signals were normalized for input signal and for untagged-Sup35p elution 

signal. For Sup35 intensity, values are expressed as mean ± s.e.m for three experiments.
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Figure 6. PNM2 in the Sc4 conformation shows a defect in partitioning
The number of propagons in the daughter was plotted against number of propagons in the 

mothers for both WT (a) and PNM2 (b) [PSI+]Sc4 backgrounds. Red dots represent mother/

daughter pairs in which the mother contained propagons, but the daughter did not.
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