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Purpose: To investigate species diversity and prevalence of antifungal resistance among 
clinical isolates of Aspergillus spp. in Shanghai, China.
Patients and Methods: In this study, the Aspergillus spp. isolates were analyzed by 
multilocus sequence typing (MLST) targeting the internal transcribed spacer (ITS) regions, 
and partial β-tubulin (BenA) and calmodulin (CaM) genes. The susceptibilities of these 
isolates to nine antifungal agents were determined according to the protocol in document 
M38-A3 established by the Clinical and Laboratory Standards Institute (CLSI).
Results: The most common Aspergillus spp. was A. fumigatus (58.2%), followed by the 
A. flavus complex (23.5%), and A. niger complex (15.3%). Isolates belonging to A. tamarii 
and A. effusus of the A. flavus complex and A. tubingensis and A. awamori of the A. niger 
complex were identified. Moreover, several mutations were found in the azole target cyp51A 
gene (TR46/Y121F/T289A and F46Y, G89G, M172V, N248T and D255E) in azole-resistant 
isolates of A. fumigatus.
Conclusion: The results of our study revealed a diversity of species in the lower respiratory 
tract of inpatients in Shanghai and approximately 9% of our isolates were resistant to at least 
one of the triazole antifungals. Formulation of local treatment strategies to combat emerging 
azole resistance and species diversity in clinically relevant Aspergillus spp. is needed.
Keywords: Aspergillus, antifungal susceptibility, identification, molecular typing, China

Introduction
Aspergillus is a diverse genus with a high economic, social and health impact, in 
which about 40 Aspergillus spp. are clinically relevant.1–3 The A. fumigatus complex 
is the major cause of aspergillosis worldwide, followed by the A. flavus complex, the 
A. niger complex, and A. terreus.1,2,4 Aspergillus spp. can cause a broad spectrum of 
pulmonary aspergillosis (PA), ranging from an allergic reaction (allergic broncho
pulmonary aspergillosis; ABPA) to various infections such as chronic pulmonary 
aspergillosis (CPA) or invasive pulmonary aspergillosis (IPA).5–7 Aspergillus spp. 
colonization is an important prerequisite to subsequent infections,8 particularly in the 
lower respiratory airways.8,9

The differentiation of Aspergillus spp. at the species level has been shown to 
correlate with specific patterns of antifungal susceptibility.7,10,11 However, morpho
logical features are frequently insufficient to differentiate Aspergillus spp. to species 
level.1,4,12 Over the last decade, molecular identification methods, such as multi- 
locus sequence typing (MLST) targeting the internal transcribed spacer (ITS), partial 
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β-tubulin (BenA) and calmodulin (CaM) gene regions, have 
shown capable of discriminating cryptic species among 
morphologically similar Aspergillus spp.1,13 Consequently, 
epidemiological characteristics of clinical isolates of 
Aspergillus spp. have become increasingly accurate.7,14,15 

For example, several non-A. fumigatus spp. and cryptic 
species within the genus Aspergillus, have been reported 
as causative agents of aspergillosis worldwide, including 
China.16–18

The recommended first-line drugs to treat aspergillosis 
are triazoles.19 However, triazole-resistant isolates of 
Aspergillus spp. have been increasingly detected across the 
globe since the early 2000s, likely due to the widespread use 
of azoles in agriculture and clinics.15,20,21 Several resistance 
mechanisms have been reported in A. fumigatus isolates,21 

particularly mutations in the cyp51A gene.22 The main resis
tance mechanism, TR34/L98H, has been documented since 
2007.23 More recently, an emerging mutation, TR46/Y121F/ 
T289A, has been identified in many European countries.22,24 

In China, while the majority of mutations are the TR34/L98H, 
new mutations, such as TR46/Y121F/T289A, have been iden
tified frequently since 2010.18,25

Geographical differences in the prevalence of different 
Aspergillus spp., especially in azole-resistant A. fumigatus 
have been observed among national and regional populations 
in the world, including China.26,27 Although several studies 
on A. fumigatus in China have been reported,26,28 studies 
focused on isolates of non-A. fumigatus spp. are limited, 
especially on cryptic Aspergillus species. Moreover, antifun
gal resistance in these reported isolates is rare.8,18,29

Shanghai, the largest and a medically well-developed 
city located in Eastern China, is currently faced with an 
increasing number of hospitalized patients coming from 
not only Shanghai but also other parts of China. Thus, 
Aspergillus infections of the hospitalized patients in 
Shanghai could provide a snapshot of the national profile 
on aspergillosis. The aim of this study was to investigate 
the diversity of Aspergillus spp. isolated from the lower 
respiratory airways of hospitalized patients in Shanghai 
via an MLST method and to determine their in vitro sus
ceptibility to currently available antifungal drugs.

Patients and Methods
Collection of Clinical Isolates
From January 2016 to March 2018, a total of 98 isolates of 
Aspergillus spp. were collected from the bronchoalveolar 
lavage fluid (BALF) belonging to 98 hospitalized patients. 

The patients were identified to have proven or probable 
Aspergillus spp. infections or colonization prior to their 
admissions to two tertiary teaching hospitals: Shanghai 
Changzheng Hospital (1280-beds) and Shanghai Huashan 
Hospital (1216-beds). Ethical approval was obtained, and 
all patients involved understood and agreed to the usage of 
the clinical isolates in the present study. The details of the 
isolates are listed in Supplementary Table S1.

Isolation and Phenotypic Identification
The putative isolates of Aspergillus spp. were first grown 
on Sabouraud dextrose agar (SDA; Oxoid, UK) for three 
days at 35°C in aerobic conditions. These isolates were 
then morphologically identified as Aspergillus spp. using 
Czapek-dox agar (CDA; Oxoid, UK) and potato dextrose 
agar (PDA; Oxoid, UK) according to their macro- 
morphological and microscopic features of the colonies.30

Molecular Identification
Genomic DNA of each isolate was extracted following the 
CTAB protocol described previously.31 Fragments of the three 
genes BenA, CaM, and ITS regions were amplified directly 
from the genomic DNA as described previously.1,32,33 PCR 
products were sequenced on an ABI 3770XL capillary 
sequencer (Applied Biosystems, Lennik, The Netherlands). 
Sequence reads were assembled and edited using SeqMan 
v.7.0.0 (DNASTAR, Madison, WI, USA). The details of the 
primer sequence and PCR amplification conditions are listed 
in Supplementary Table S2.

The sequences were aligned using the server version of 
the MAFFTv. 7.0 (www.ebi.ac.uk/Tools/msa/mafft/), fol
lowed by the manual checking in BIOEDIT v. 7.0.5.2. All 
sequences of the isolates have been deposited in GenBank, 
and the accession numbers are listed in Supplementary 
Table S1. Representative sequences from known species 
of the Aspergillus genus were retrieved from GenBank and 
included in our alignment. Corresponding gene sequences 
of Penicillium chrysogenum strain CBS 306.48 were cho
sen as outgroup in phylogenetic analysis. The best-fit 
model of sequence evolution was determined by MEGA 
version 7.0.14 (Center for Evolutionary Medicine and 
Informatics, Tempe, AZ). After verifying the best models, 
phylogenetic trees were inferred using the maximum like
lihood (ML) method with 1000 rounds of re-sampling, and 
bootstrap branch support >80% was regarded as robust for 
species identification. Phylogenetic trees were viewed and 
edited with FIGTREE v. 1.1.2 software.
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In vitro Antifungal Susceptibility
According to the criteria of M38-A3 in document established 
by Clinical and Laboratory Standards Institute (CLSI),34 we 
determined in vitro susceptibility of all isolates to itracona
zole (ITZ, Sigma-Aldrich, Basingstoke, UK), voriconazole 
(VRZ, Sigma-Aldrich, Basingstoke, UK), posaconazole 
(PSZ, Sigma-Aldrich, Basingstoke, UK), ravuconazole 
(RVZ, Toronto Research Chemicals Inc, Toronto, Canada), 
isavuconazole (ISZ, Toronto Research Chemicals Inc, 
Toronto, Canada), anidulafungin (AFG, Toronto Research 
Chemicals Inc, Toronto, Canada), caspofungin (CFG, 
Sigma-Aldrich, Basingstoke, UK), micafungin (MFG, 
Toronto Research Chemicals Inc, Toronto, Canada), and 
amphotericin B (AmB, Sigma-Aldrich, Basingstoke, UK). 
Final concentrations of antifungal agents ranged from 0.03 to 
16 µg/mL for ITZ, VRZ, PSZ, RVZ, ISZ and AmB, and 
0.015 to 8 μg/mL for AFG, CFG and MFG. Stock solutions 
of drugs were prepared in dimethyl sulfoxide, and stored at – 
80°C until used. The reference isolate used here for compar
ison was Candida parapsilosis strain ATCC 22,019. The 
in vitro susceptibility testing was performed in triplicates 
for each isolate. The Minimal inhibitory concentration 
(MIC) data obtained were reported as the ranges, MIC50 and 
MIC90. The proposed epidemiological cutoff values (ECVs) 
of Aspergillus spp. for ITZ, VRZ, PSZ, ISZ, CFG and AmB 
followed those by the CLSI for antifungal agents 
(Supplementary Table S3).35–38 There are no ECVs currently 
available for RVZ, AFG or MFG.

Sequencing of A. fumigatus cyp51A Gene
The full sequences of the cyp51A gene, including the 
promoter region, of all triazole-resistant A. fumigatus iso
lates were amplified and sequenced following the proto
cols described previously.39 The sequences obtained were 
aligned with the sequence of a triazole-susceptible isolate 
(GenBank accession AF338659) using ClustalW 
software.40 Specifically, we followed the steps described 
by Deng et al28 and scanned the predicted cyp51A amino- 
acid sequence for substitutions, particularly those linked to 
triazole resistance as identified previously.

Statistical Analysis
The data collected during the study period were analyzed 
using IBM SPSS Statistics 23.0 software. Percentages of 
the species diversity among different patient populations 
were compared using χ2 test. A P value less than 0.05 was 
considered statistically significant.

Results
Demographic Data of the Patients
In our study, the mean age of the patients was 61.9 (± 
standard deviation: 16.6 years; range: 18–94 years), with 
the largest group in the age range of 61–80 years (48.0%; 
47/98). The male/female gender ratio was 3.1 (74/24). 
According to the recently defined standardized criteria,7 

the clinical profiles of the patients were divided into colo
nization (80.6%; 79/98), CPA (14.3%; 14/98), IPA (3.1%; 
3/98), and ABPA (2.0%; 2/98) groups. No significant 
differences (P value = 0.642) were observed among the 
age group of the patients about the species diversity 
(Figure 1). Remarkably, the proportion of A. fumigatus 
among the colonization patients (53.2%; 42/79) was sig
nificantly lower (P value = 0.034) than that among the 
diseased patients with clinical aspergillosis (CPA, IPA and 
ABPA) (78.9%; 15/19). All the patients were HIV- 
negative, whereas half of them had underlying conditions. 
The most prevalent underlying condition was type 2 dia
betes mellitus (15.3%; 15/98), followed by solid tumor 
(12.2%; 12/98), chronic lung disease (10.2%; 10/98), and 
chronic liver disease (5.1%; 5/98), etc. About 15% (15/98) 
of the patients had more than one kind of underlying 
condition. The detailed clinical profiles of each patient 
are presented in Supplementary Table S1.

Identification of Aspergillus spp
A total of six species complex were unambiguously identified 
among the 98 isolates based on sequences of three DNA 
markers, including A. fumigatus (58.2%; 57/98), the A. flavus 
complex (23.5%; 23/98), the A. niger complex (15.3%; 15/98), 
A. sydowii (1.0%; 1/98), A. terreus (1.0%; 1/98), and 
A. nidulans (1.0%; 1/98). Interestingly, our phylogenetic ana
lysis based on the concatenated sequences (BenA, CaM and 
ITS) identified four rarely observed species in these patients, 
A. tamarii and A. effusus in the A. flavus complex; and 
A. tubingensis and A. awamori in the A. niger complex 
(Figure 2 and Supplementary Table S1).

In vitro Antifungal Drug Susceptibility
With the exception of azoles and AmB in some cases, most 
tested antifungal compounds demonstrated potent activity 
against the 98 Aspergillus isolates (Table 1). The antifungal 
drug echinocandins exhibited the MIC values ranging from 
0.015 to 1 µg/mL. AmB also showed potent activity, with 
MICs ranging from 1 to 4.0 µg/mL, and with geometric 
means (GM) closer to the lowest MIC value, which was 
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observed against A. fumigatus (1.245 µg/mL), the A. flavus 
complex (1.620 µg/mL) and the A. niger complex (1.05µg/ 
mL). For azoles, more variable results were observed with 
MIC values ranging from 0.06 to 16.0 µg/mL. The lowest 
azole GM MIC value was PSZ with GM MIC (0.187 µg/ 
mL) against A. fumigatus, and the highest was ISZ against 
A. niger, with GM MIC value (2.297 µg/mL). Of the 98 
isolates, 11 showed resistance to one or several of the tested 
antifungal drugs (Table 2). Among the 57 isolates of 
A. fumigatus, four were resistant to the azoles, with one 
isolate (in particular CMXY 13,113) being resistant to sev
eral azoles ITZ, VRZ, RVZ and ISZ. Two A. fumigatus 
isolates (CMXY 14,287 and CMXY 10,234) were resistant 
to AmB. Among the 23 isolates of the A. flavus complex, 
four were resistant to azoles, while two isolates (CMXY 
22,879 and CMXY 27,481) were resistant to selected azoles 
(PSZ and ISZ) and AmB. One A. tubingensis isolate 
(CMXY 27,207) was resistant to multiple antifungals ITZ, 
VRZ, RVZ, PSZ and ISZ.

Sequence Variation Among 
Triazole-Resistant Isolates at the cyp51A 
Gene
Among the azole-resistant strains of A. fumigatus, one 
(CMXY13,113) had two mutations in the cyp51A gene 
and a 46-bp tandem repeat in the gene promoter (TR46 

/Y121F/T289A). One ITZ resistant strain (CMXY15837) 

and one PSZ and ISA double resistance strain 
(CMXY28940) of A. fumigatus showed several polymorph
isms in the cyp51A gene (F46Y, G89G, M172V, N248T, 
D255E). However, no cyp51A promoter or amino-acid 
sequence variation was observed for the azole-resistant 
isolate CMXY25241 (Table 2).

Discussion
Aspergillus spp. cause a wide spectrum of human diseases 
and affect more than 14 million people worldwide.7,41 

Diverse Aspergillus spp. frequently differ in their suscept
ibilities to antifungal drugs and geographical differences 
exist in the prevalence of different Aspergillus spp.42,43 

The results of our study expand the knowledge on species 
diversity and antifungal susceptibility of Aspergillus spp. 
from hospitalized patients in Shanghai, China.

In our study, colonization was the dominant (80.6%) 
clinical profile of Aspergillus spp. among the hospitalized 
patients, which should be taken seriously in China. Several 
publications indicate colonization to be an important risk 
factor for the development of IPA,8,44 with approximately 
18% of colonized patients developing IPA, especially 
patients with COPD.45 The proportion of the patients 
colonized by non-A. fumigatus is significantly higher 
than that among the patients with CPA, IPA or ABPA, 
which was not observed in a similar study reported from 
Japan.9 The significance of non-A. fumigatus, especially 

Figure 1 Distribution of Aspergillus spp. in the lower respiratory tract of hospitalized patients of different ages and sexes in Shanghai, China. (The top pie chart shows 
Aspergillus species distribution within each of the five 20-year age groups, 0–20; 21–40; 41–60; 61–80; and 81–100. The bottom bar graph shows the number of Aspergillus 
isolates from the two sexes for each of the five age groups. Aside from the 0–20 age group where only two isolates were obtained, A. fumigatus was the most common 
species across all age groups and that more isolates were obtained from males than females).
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the A. niger complex, colonizing the lower respiratory 
airways among immunocompromised patients, needs 
further research.8 CPA is the second frequent profile of 
Aspergillus spp. in our study, though the exact incidence is 
unclear in other regions.7 The prevalence of IPA (3.1%) in 
our study was within the range reported previously in 
Europe (0.2–6.9%).46,47 Similarly, the prevalence of 
ABPA (2%) in our sample was similar to the recent data 
from a global survey (2.5%).48,49

In the present study, A. fumigatus was the most fre
quently isolated (58.2%). This species is known to be 
prevalent in indoor environments in China50,51 and has 
a superior ability to survive in the lower respiratory tracts 
of humans.7 Similar prevalence has also been reported 
from Beijing, China (59.3%)18 and Madrid, Spain 
(54.7%).52 The A. flavus complex is the second (23.5%) 
most common group of Aspergillus spp. in our study, 

which is also the second most prevalent etiological 
agent of IA worldwide.18,53 It should be noted that the 
A. flavus complex has been reported to cause outbreaks in 
hospital, especially after surgery in high-risk patients.53 

In India, the A. flavus species complex was also the most 
common Aspergillus spp. isolated from air-conditioned 
areas.54 Although the prevalence of IA caused by the 
A. niger complex has increased recently,55 all isolates of 
the A. niger complex analyzed in this study were col
lected from colonized patients but without active asper
gillosis. However, one patient had diabetes and the 
prognosis of pulmonary colonization caused by the 
A. niger complex is generally poor among patients with 
diabetes.56 In addition, we identified one A. sydowii iso
late from lower respiratory tract of a female patient. This 
species also is an important etiologic agent of superficial 
infections.57

Figure 2 A phylogenetic tree for the representative Aspergillus spp. isolates from our study using the maximum likelihood method based on the combined sequences of ITS, 
BenA and CaM loci. (Type strains for all species found in our samples were included as references for confirmation of species identification. “*” means antifungal resistant 
isolates of Aspergillus spp. in our study; “bold font” indicates type strain for that species).
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Owing to the application of MLST,1,58 approximately 
8–19% of isolates of Aspergillus spp. were recently iden
tified as cryptic Aspergillus spp. in Spain and Portugal.27,59 

Among those newly defined “cryptic” species, our samples 
contained four in two of the species complexes: A. tamarii 
and A. effusus in the A. flavus complex and A. tubingensis 

and A. awamori in the A. niger species complex. The 
frequencies of the cryptic species in our samples (15.3%) 
are similar to those reported earlier. Interestingly, no cryp
tic species was identified in the A. fumigatus complex, 
which might be due to the limited number of clinical 
isolates.

Table 1 Summary Distribution of Susceptibilities of the 98 Clinical Isolates of Aspergillus spp. to Nine Antifungal Drugs as Determined 
Based on the M38-3A Protocol Established by the Clinical and Laboratory Standards Institute (CLSI)

Species/Number MIC or MEC (µg/mL) for

AFG CFG MFG ITZ VRZ RVZ PSZ ISZ AmB

A. fumigatus complex 
(57)

MIC range ≤0.015–0.03 0.06–1 ≤0.015–0.12 0.25–8 0.12–16 0.25–16 0.06–1 0.25–16 1–4
MIC50 ≤0.015 0.25 0.03 0.5 0.5 1 0.25 0.5 1

MIC 90 0.03 0.25 0.12 1 0.5 2 0.25 1 2
GM 0.021 0.221 0.034 0.615 0.443 0.765 0.187 0.711 1.245

A. flavus complex (23) MIC range ≤0.015–0.25 0.12–0.25 ≤0.015–0.25 0.12–0.5 0.5–2 1–2 0.12–1 0.5–2 1–4
MIC50 0.03 0.12 0.06 0.25 1 1 0.25 1 2

MIC 90 0.06 0.25 0.12 0.5 2 2 1 2 2

GM 0.034 0.169 0.057 0.291 0.970 1.128 0.328 1.031 1.620

A. niger complex (15) MIC range ≤0.015–0.03 0.06–0.12 0.03–0.25 0.5–16 0.5–16 0.5–16 0.25–2 0.5–16 0.5–2
MIC50 ≤0.015 0.12 0.12 1 1 2 0.5 2 1

MIC 90 0.03 0.12 0.25 1 2 4 0.5 4 2

GM 0.020 0.109 0.090 0.912 1.260 1.910 0.416 2.297 1.05

A. sydowii (1) MIC range 0.06 0.03 0.03 1 2 2 1 2 2

A. terreus (1) MIC range ≤0.015 0.12 ≤0.015 0.25 2 2 0.12 1 2
A. nidulans (1) MIC range 0.06 0.06 0.03 0.5 0.25 0.25 0.06 0.25 2

Abbreviations: AFG, anidulafungin; CFG, caspofungin; MFG, micafungin; ITZ, itraconazole; VRZ, voriconazole; RVZ, ravuconazole; PSZ, posaconazole; ISZ, isavuconazole; 
AmB, amphotericin B; GM, geometric means; MIC, Minimal inhibitory concentration; MEC, Minimal effective concentration; MIC50, MIC/MEC at which 50% of the isolates 
tested were inhibited; MIC90, MIC/MEC at which 90% of the isolates tested were inhibited.

Table 2 Minimal Inhibitory Concentrations of Antifungal Drug-Resistant Isolates of Aspergillus spp. in Our Study as Determined Based 
on the M38-3A Protocol Established by the Clinical and Laboratory Standards Institute (CLSI)

Species Number MIC (µg/mL) for cyp51A

ITZ VRZ RVZ PSZ ISZ AmB

A. fumigatus CMXY 13,113 8 16 16 1 16 † TR46/Y121F/T289A
A. fumigatus CMXY 15,837 4 † † † † † F46Y, G89G, M172V, N248T, D255E

A. fumigatus CMXY 28,940 † † † 0.5 2 † F46Y, G89G, M172V, N248T, D255E

A. fumigatus CMXY 25,241 † † † 1 † † #
A. fumigatus CMXY 10,234 † † † † † 4 #

A. fumigatus CMXY 14,287 † † † † † 4 #
A. effusus CMXY 22,227 † † † 1 † † ##

A. flavus CMXY 22,879 † † † 1 2 4 ##

A. effusus CMXY 27,481 † † † 1 2 4 ##
A. flavus CMXY 30,197 † † † 1 † † ##

A. tubingensis CMXY 27,207 16 16 16 2 16 † ##

Notes: “†” means the MIC ≤ epidemiological cutoff values; “#” means the mutant site of cyp51A gene was not be found; “##” means the cyp51A gene were not analyzed. 
Abbreviations: ITZ, itraconazole; VRZ, voriconazole; RVZ, ravuconazole; PSZ, posaconazole; ISZ, isavuconazole; AmB, amphotericin B; MIC, minimal inhibitory 
concentration.
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Currently, azoles, particularly VRZ, remain the pre
ferred agents for treatment of IA.19,60 Our results sug
gested that most azoles (in particular PSZ) were highly 
active against Aspergillus spp. However, the reduced sus
ceptibility to novel triazoles, such as RVZ and ISZ, was 
found in the A. niger complex. PSZ is the most potent drug 
against strains of A. fumigatus (GM MIC 0.187 µg/mL) 
and the A. niger complex (GM MIC 0.416 µg/mL), which 
was consistent with previous studies from China and 
Italy.17,30 The novel azoles ISZ and RVZ demonstrated 
a strong inhibitory activity against both A. fumigatus and 
A. flavus, similar to the results of previous studies from 
India and China.28,61 However, the reduced susceptibility 
(MIC≥1µg/mL) of ISZ and RVZ among the majority iso
lates of the A. niger complex in our study was not con
sistent with the results of previous reports from Spain and 
the USA.36,62 In addition, our results also suggest that 
echinocandins (in particular AFG) are the potent drugs 
against clinical isolates of Aspergillus spp., which was 
similar to the previous studies from the USA, India and 
China.28,61,63 Therefore, our results support the current 
recommendation issued by the Infectious Diseases 
Society of America in using azoles as the primary treat
ment against Aspergillus spp. infections,19 in conjunction 
with echinocandins and/or polyenes if needed.

Since the first reported ITZ-resistant A. fumigatus iso
late in 1997,64 the isolates of azole-resistant A. fumigatus 
have been increasingly reported worldwide.7,65,66 The 
amount of azole fungicide used in China is much higher 
than those used in European countries,26 which suggests 
a high selective pressure for environmental A. fumigatus. 
Several studies have indicated that the TR34/L98H and 
TR34/L98H/S297T/F495I mutations were the predominant 
mutations in China.26,65,67 In 2015, three clinical isolates of 
A. fumigatus were found to harbor either the TR34/L98H/ 
S297T/F495I or the TR34/L98H mutations in Fuzhou, 
Nanjing, and Shanghai.65 One study reported a worldwide 
clonal expansion of triazole-resistant isolates with the 
TR34/L98H mutations, while triazole-resistant isolates 
with the TR34/L98H/S297T/F495I mutation from China 
were genetically distinct from resistant isolates in other 
countries.26 Notably, the TR46/Y121F/T289A mutation 
was found in one isolate of A. fumigatus (CMXY 13113). 
This isolate showed a high level of multi-azole resistance, 
similar to the result from the Netherlands in 2015.68 Studies 
so far have shown that isolates with the TR46/Y121F/ 
T289A mutation are typically resistant to ITZ and VRZ 
but have variable susceptibility to PSZ. Such a result is 

different from that observed for strains with the TR34 

/L98H mutation, which typically show ITZ resistance, but 
with variable susceptibility to VRZ and PSZ.69,70 To our 
knowledge, this is the first time the mutation has been 
identified within isolates of A. fumigatus in Shanghai, 
China. In addition, the F46Y, G89G, M172V, N248T and 
D255E mutations were found in two other isolates in our 
study, which also was observed in Australia and 
Netherlands.71,72 However, no cyp51A promoter or amino- 
acid sequence mutation was observed for the azole-resistant 
isolate CMXY25241. This result suggests that mutation(s) 
in gene(s) other than cyp51A was likely responsible. For 
example, a recent study reported that mutations in ATP- 
binding cassette (ABC) or major facilitator superfamily 
(MFS) efflux pumps were associated with triazole resis
tance in A. fumigatus.21 Our findings suggest diverse 
genetic backgrounds among the isolates of azole-resistant 
A. fumigatus from Shanghai, China. In addition, 
A. fumigatus isolates harboring the TR34/L98H or TR46 

/Y121F/T289A mutations were not only found in azole- 
naïve patients, but also found in soil and/or woody debris 
samples in New Zealand, India, Tanzania, and Africa,73 

consistent with these mutations being originated from 
azole fungicide usage in the environment and agriculture.

Conclusions
Our study revealed a considerable diversity of Aspergillus 
spp. in lower respiratory tract of hospitalized patients in 
Shanghai, China. Although the frequency of azole resistance 
is relatively low (approximately 9%), a number of strains 
showed resistance to multiple triazoles and even to multiple 
classes of antifungal drugs. The profiles of antifungal drug 
susceptibility provide important information for clinicians 
and local public health officials in determining the best 
treatment and prevention strategies. Our study emphasizes 
the need to not only identify all isolates of Aspergillus spp. at 
the species level, but also to perform antifungal susceptibility 
tests in clinical laboratories worldwide.
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