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Abstract: In motor control studies, the 90% thresholding of variance accounted for (VAF) is the
classical way of selecting the number of muscle synergies expressed during a motor task. However,
the adoption of an arbitrary cut-off has evident drawbacks. The aim of this work is to describe and
validate an algorithm for choosing the optimal number of muscle synergies (ChoOSyn), which can
overcome the limitations of VAF-based methods. The proposed algorithm is built considering the
following principles: (1) muscle synergies should be highly consistent during the various motor
task epochs (i.e., remaining stable in time), (2) muscle synergies should constitute a base with
low intra-level similarity (i.e., to obtain information-rich synergies, avoiding redundancy). The
algorithm performances were evaluated against traditional approaches (threshold-VAF at 90% and
95%, elbow-VAF and plateau-VAF), using both a simulated dataset and a real dataset of 20 subjects.
The performance evaluation was carried out by analyzing muscle synergies extracted from surface
electromyographic (sEMG) signals collected during walking tasks lasting 5 min. On the simulated
dataset, ChoOSyn showed comparable performances compared to VAF-based methods, while, in
the real dataset, it clearly outperformed the other methods, in terms of the fraction of correct
classifications, mean error (ME), and root mean square error (RMSE). The proposed approach may be
beneficial to standardize the selection of the number of muscle synergies between different research
laboratories, independent of arbitrary thresholds.

Keywords: gait; locomotion; motor module; number of synergies; VAF

1. Introduction

Muscle synergies are a valuable tool to understand the mechanisms behind motor
control in a quantitative and non-invasive way. Applications range from the medical field
(e.g., monitoring of patients suffering from neurological/neurodegenerative diseases [1–3]
or joint disorders [4]), to the rehabilitation field (e.g., pre/post-treatment comparisons [5,6]),
to the robotic field (e.g., control of robotic devices or exoskeletons [7,8]), to the sport field [9].

The hypothesis of muscle synergies provides an insight into how the central nervous
system (CNS) is able to manage a highly complex system with many muscles and joints.
Indeed, the basis of this hypothesis is the ability of the CNS to reduce a large number
of degrees of freedom of the movement thanks to the combination of a few discrete
elements [10]. In other words, to generate movements, the CNS would not control the
different muscles individually, but through functional groups, called muscle synergies.

Muscle synergies are usually extracted from surface electromyography (sEMG) sig-
nals, properly pre-processed, using the non-negative matrix factorization (NMF) algo-
rithm [11,12]. This factorization algorithm requires the number of muscle synergies (n) as
an input, which is not known a priori. Therefore, the factorization is typically run several
times, considering different numbers of synergies (ni = [nmin, nmax]). The only constraint
is that the number of synergies must not exceed the number of muscles (m) considered
in the sEMG acquisition (nmax ≤ m); otherwise, the meaning of “synergy” itself would be
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lost. Afterward, in post-processing, one has to choose the “correct” number of synergies
nc (with nmin ≤ nc ≤ nmax), i.e., the input that feeds the factorization algorithm providing
“good” results, with a “small-enough” reconstruction error. In recent years, the correct
number of muscle synergies (nc) has been proposed as a meaningful feature for the analysis
of motor control strategies in pathological populations [13–17]. A decreased neuromus-
cular complexity during gait has been assessed in post-stroke patients with respect to a
healthy population [13]. Similar results were also found in another work [14], in which
a reduced number of muscle synergies (two to four muscle synergies) were observed in
the affected side of post-acute stroke patients with respect to a healthy population (four
muscle synergies) while executing cycling training. These studies suggest that the number
of muscle synergies and their composition could be correlated with motor control capacity
and its reduction in pathological conditions [13–17].

Here lies one of the main issues of the muscle synergy extraction process: currently
there is a lack of reliable methodologies for choosing the optimal number of muscle
synergies. Most of the published studies choose nc based on the reconstruction accuracy
of the factorization, through the variance accounted for (VAF) [1,2,18–25]. To a lesser
extent, the coefficient of determination R2 [16,26,27] is also used, which is not conceptually
different from VAF. However, this approach requires the selection of an arbitrary threshold
for the VAF. The number nc is defined as the smallest number of synergies that ensures
a VAF value above the threshold. In literature, the VAF threshold is commonly set at
90% [1,2,4,7,18,20–24] and less frequently at 95% [19,25]. This method is very simple to
implement, but it has several drawbacks: the threshold is arbitrary, it is set without an
objective motivation, and there is not a single threshold value shared by all researchers.
A few works have explored alternatives to VAF-based criteria. In particular, a statistical
approach uses unstructured sEMG signals generated by randomly shuffling the original
data across time and muscle [16], while other works consider the variability of muscle
synergies between task cycles [28], or a task decoding-based metric [29,30].

The aim of this work is to overcome VAF-based methods using a data-driven approach.
We designed and validated an algorithm for choosing the optimal number of muscle
synergies (ChoOSyn), based on two parameters directly extracted from muscle synergies
during locomotion: (1) the consistency within the motor task epochs (to identify synergies
that are stable over the duration of the walking task), (2) the intra-level dissimilarity
between synergies (to identify a base of information-rich synergies, avoiding unnecessary
redundancy). Both a simulated and a real dataset were used to compare the performance
of ChoOSyn against VAF-based methods.

2. Materials and Methods
2.1. Real Dataset

The real dataset originates from the retrospective analysis of sEMG signals previously
recorded at Biolab (Politecnico di Torino, Italy) during gait analysis sessions [22–24]. The
dataset contains gait signals from 20 healthy adults: 9 males (age: 56.9 ± 9.8 years, height:
1.71 ± 0.10 m, weight: 79.1 ± 22.0 kg) and 11 females (age: 51.5 ± 10.1 years, height:
1.66 ± 0.09 m, weight: 74.5 ± 24.0 kg).

Subjects walked at a self-selected speed for approximately 5 min. SEMG signals were
acquired using the multi-channel recording system STEP32 for Statistical Gait Analysis
(Medical Technology, Turin, Italy) [31]. The electrodes were positioned over the following
12 muscles of the dominant lower limb and over the trunk (bilaterally): Gluteus Medius
(GMD), Tensor Fasciae Latae (TFL), Rectus Femoris (RF), Vastus Medialis (VM), Lateral
Hamstring (LH), Medial Hamstring (MH), Lateral Gastrocnemius (LGS), Peroneus Longus
(PL), Soleus (SOL), Tibialis Anterior (TA), and both right and left Longissimus Dorsii (LDR
and LDL) muscles.

The volunteers enrolled in this work signed a written informed consent to participate
in a study concerning muscle synergies adopted by healthy subjects during locomotion.
The experimental protocol conformed to the principles of the Helsinki declaration.
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2.2. Simulated Dataset

Similar to previous studies [21,32,33], pseudo-real sEMG data have been generated
from the real dataset to simulate the muscle activity during gait (simulated dataset). The
following steps were used to generate simulated data:

• From the dataset of 20 subjects, 15 subjects were extracted, showing n = 4 (5 subjects),
n = 5 (5 subjects), and n = 6 (5 subjects) clearly recognizable muscle synergies, as
assessed by expert operators (V.A. and M.G.). Hence, for each subject, activation
coefficients (C) and weight vectors (W) were obtained. Figure 1A shows an example
of muscle synergies (n = 5) representative of a specific subject.

• For each group of 5 subjects, data augmentation was performed to obtain 25 “sim-
ulated subjects”, considering all the possible combinations of W and C. In other
words, the matrix of weight vectors of the first subject (Wsubj1) was combined with
the coefficient matrix of every subject in the group (Wsubj1 Csubj1, Wsubj1 Csubj2, . . .
Wsubj1 Csubj5), and the same was performed for the other weight matrixes (Wsubj2, . . .
Wsubj5), obtaining 25 sets of muscle synergies. Overall, 25 sets were obtained with
n = 4, 25 sets with n = 5, and 25 sets with n = 6, for a total of 75 sets.

• For each set of W and C, each muscle’s envelope was reconstructed as the product
Wmuscle * C, where Wmuscle is the weight vector of a specific muscle. Figure 1B provides
an example for the LGS muscle.

• For each muscle’s envelope, a simulated sEMG signal (S) was generated by multiplying
the envelope by a zero-mean Gaussian process (GS) with standard deviation σ = 1 a.u.
(Figure 1C). At this step, no additive noise was superimposed on the signals. This
does not mean that there was “no noise”, but rather that additional noise to the noise
originally present in the envelope was not introduced.

• Then, different levels of background noise were added to obtain different SNR values
(15 dB, 20 dB, 25 dB, and 30 dB), through a zero-mean Gaussian process (GN) with a
standard deviation σ = 1/10SNR/20 a.u. [21,34]. Figure 1D shows an example in which
SNR was equal to 20 dB. The formula below (1) summarizes how each simulated
sEMG signal was generated:

S = Wmuscle × C × GS + GN (1)

Therefore, a total of 375 simulated sets were obtained, since we introduced both signals
with no additive noise (75 sets) and signals with 4 different SNR values (75 × 4 sets).

2.3. Muscle Synergy Extraction and Sorting

After sEMG pre-processing [21–24], muscle synergies were extracted and properly
ordered as outlined in Figure 2.
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then sorted accordingly. 

Figure 1. Example of the generation of a simulated sEMG signal for the lateral gastrocnemius (LGS)
muscle: the first step is (A) the extraction of muscle synergies (W and C ) from the real data of
a representative subject with 5 muscle synergies, the second is (B) the reconstruction of the LGS
envelope (obtained as WLGS * C ). Then, (C) a simulated sEMG signal without additive noise is
generated. Finally, noise is added to the previous signals. An example of a simulated sEMG signal
with SNR = 20 dB is shown in (D).
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First, gait cycles were segmented and time-normalized to 1000 samples. Second,
signals were high-pass filtered at 35 Hz through an 8th order Butterworth digital filter to
attenuate slow movement artifacts and baseline wandering [22,35,36]. Third, signals were
demeaned and rectified. Fourth, rectified signals were low-pass filtered at 12 Hz through
a 5th order Butterworth digital filter to obtain the sEMG envelopes [22,35,36]. Fifth, each
envelope was normalized in amplitude with respect to its global maximum. Then, we
concatenated 10 adjacent gait cycles [37]. If the walk contained N gait cycles, the total
number of subgroups was calculated rounding down N/10 to the smallest integer. As an
example, if the walk contained 152 gait cycles, we considered 15 subgroups. Afterward,
muscle synergies were extracted for each 10-cycle subgroup [21–24] through non-negative
matrix factorization (NMF) [11,12]. The NMF algorithm models the original sEMG data as a
linear combination of weight vectors (W) and activation coefficients (C), whose dimensions
depend on the selected number of muscle synergies. In particular, the former models
the time-independent contribution of each muscle to a specific muscle synergy, while
the latter describes the time-dependent modulation of each muscle synergy. Instead of
using the multiplicative update rule of the standard NMF approach [12], we chose to
use another version of the algorithm, NMF with alternating non-negative least-squares
(NMF/ANLS) [38], due to its advantages in terms of reduced computational time [38].
For the NMF/ANLS we set the following parameters: maximum iterations = 1000 [22],
reruns = 5, residual error <10−6 [22], and output variation <10−6 [22]. To explore different
solutions, the NMF algorithm was run several times on the same original sEMG data by
changing the number of muscle synergies n in the range [1,8].

Finally, the 10-gait-cycle activation coefficient (10,000 samples) was time-averaged
across windows of 1000 samples. Thus, we obtained an average activation coefficient for
each subgroup.

The factorization returns W (and C) in a different order for each subgroup, and,
therefore, proper sorting was required to average the correspondent W (and C) between the
subgroups. For each number of synergies (n), we applied a k-means algorithm to reorder
the weight vectors across the different subgroups (number of clusters: n, distance metric:
cosine similarity, max iterations: 105, replicas: 15) [22]. Activation coefficients were then
sorted accordingly.

2.4. Choosing the Optimal Number of Synergies (ChoOSyn)

The algorithm for choosing the optimal number of muscle synergies (ChoOSyn algo-
rithm) is based on the two following muscle synergy features:

• High consistency across time [22,23], that supports the possibility of finding a solution
that is as stable as possible among the various 10-cycle subgroups of the motor task

• Low similarity across synergies, to avoid selecting muscle synergies containing redun-
dant information.

We chose these criteria after considering the characteristics of muscle synergies ex-
tracted from the real dataset.

In the following sections, we introduce the mathematical description of the parameters
used to quantify the features described above. These parameters are a function of the
number of synergies, so they assume a specific value for each number of synergies. They
are also applicable for n ≥ 2, because the similarity parameter cannot be extracted at n = 1
(since there is only one synergy).

2.4.1. Intra-Cluster Variability

The intra-cluster variability (ICV) quantifies the possible inconsistency of weight
vectors (ICVW) and activation coefficients (ICVC) across time, i.e., between the different
subgroups of 10 gait cycles. Its purpose is to quantify the level of variability of a given
synergy during the considered task.

More specifically, for each number of synergies n (2 ≤ n ≤ 8), for each synergy i
(with i = 1, . . . , n), and for each subgroup j, we calculate the distance between each
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“cluster element” (Wij and Cij) and the “cluster centroid” (Wi and Ci), through cosine
similarity [22,23,39]. Then, ICV is defined as:

ICVW = max

1− Wij ·Wi

‖Wij‖ ‖Wi‖

 (2)

ICVC = max

1− Cij · Ci

‖Cij‖ ‖Ci‖

 (3)

for the weights and the coefficients, respectively. Notice that the average operator is always
applied across subgroups [22,23]. The “max” function is used to select the most variable
muscle synergy (“worst” condition), obtaining a single ICV value for each n value. The
ICV value ranges from 0 (i.e., perfectly repeatable muscle synergy between the different
subgroups) to 1 (i.e., completely different muscle synergy across subgroups).

2.4.2. Weight Similarity

The parameter weight similarity (WS) is introduced to select the two most similar
weight vectors (“worst-case”) belonging to different muscle synergies.

For each number of synergies n (2 ≤ n ≤ 8), and for each synergy i (with i = 1, . . . , n),

the average weight vector across subgroups is considered (Wi), representing the weights of
a specific synergy over the entire locomotion task. Then, “cosine similarity” is introduced

to quantify the degree of correlation between each couple of weight vectors
(

Wi1 Wk
)

,
and the WS parameter is defined as in (4):

WS = max

(
Wi ·Wk

‖Wi‖ ‖Wk‖

)
(4)

where Wi and Wk represent the average weight vectors computed across subgroups for
the i- and k-synergy, respectively. The WS value ranges from 0 (i.e., completely dissimilar
muscle synergies) to 1 (i.e., completely similar muscle synergies).

2.4.3. Coefficient Similarity

The coefficient similarity (CS) parameter is introduced to select activation coefficients
that limit, as much as possible, any redundant information between different muscle
synergies. In this case, the correlation of muscle synergies is evaluated between levels n
and n − 1, to check if the splitting of a specific synergy (at level n − 1) into two synergies
(at level n) really provides new information.

For each number n of synergies (2 ≤ n ≤ 8), and for each synergy i (with i = 1, . . . ,

n), the average activation coefficient across subgroups is considered (Ci), representing the
coefficients of a specific synergy over the entire locomotor task. Then, we identify the two
(out of n) synergies that originated from a specific synergy belonging to the n−1 level.
These synergies are obtained (except for n = 2) by clustering the weights at level n into n−1
clusters (with the weights of level n−1 as centroids), through k-means [28]. In this way,

the coefficients of the two synergies of interest (Ci and Ck) will belong to the same cluster
(having “forced” n elements to cluster into n−1 clusters). Finally, “cosine similarity” is
introduced to quantify the degree of correlation between the two activation coefficients
just identified, and the CS parameter is defined as in (5):

CS =
Ci · Ck

‖Ci‖ ‖Ck‖
(5)
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The CS value ranges from 0 (i.e., high information content provided by the new muscle
synergy introduced in the level n) to 1 (i.e., low information content provided by the new
muscle synergy introduced in the level n).

2.4.4. ChoOSyn

The ChoOSyn algorithm combines the parameters described above to determine
the optimal number of muscle synergies. In particular, for each number of synergies
n (2 ≤ n ≤ 8), we define:

ChoOSynW(n) = WS(n) + ICVW(n) (6)

ChoOSynC(n) = CS(n) + ICVC(n), (7)

for the weights and the coefficients, respectively. The above formulas include the quantifi-
cation of the synergy similarity through WS and CS to avoid redundant information and
the quantification of the synergy consistency across time through ICV to discourage the
choice of unstable muscle synergies (see Section 2.4.5—ChoOSyn rules).

Figure 3 shows, as bar diagrams, the values of the ChoOSynW and ChoOSynC param-
eters obtained from the data of two representative (real) subjects. Average bar diagrams of
these two parameters were also obtained for the whole simulated and real datasets (and
reported in the Results section).
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Figure 3. Examples of ChoOSynW and ChoOSynC values calculated on muscle synergies extracted
from the data of two representative real subjects. “Steps” and local minima are highlighted by red
segments. These examples show how the optimal number of synergies is chosen when the outputs of
the two parameters are (A) the same or (B) different.

While for the real dataset, we do not know, a priori, the correct number of synergies,
this information is known for the simulated dataset. Therefore, through analyzing the
bar diagrams of ChoOSynW and ChoOSynC extracted from the simulated dataset, it can
be seen that, in correspondence with the correct number of synergies (n = nc), there is
always a “step” and/or a local minimum. In the following section, this observation will be
used to empirically introduce selection rules for obtaining the correct number of synergies.
The term “step” refers to a “sharp” increase in the value of the parameter, preceded and
followed by “stable” values. The term “local minimum” refers to a situation in which there
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is an abrupt decrease followed by an abrupt increase in the parameter values [28]. Figure 3
shows examples where both steps and local minima are highlighted (red lines).

To choose the correct number of synergies using both ChoOSynW and ChoOSynC
parameters we used specific rules detailed below.

2.4.5. ChoOSyn Rules

The presence of a step reveals that muscle synergies maintain an almost steady consis-
tency and similarity as n increases (n ≤ nc), but after exceeding nc (n > nc) they become
highly variable and with redundant information. Instead, the local minimum represents a
condition in which there are low values of the ChoOSyn parameters at the level n, but if n
increases or decreases by 1 (n−1 and n+1 levels), the muscle synergies “get worse”.

To identify steps and local minima, the ChoOSyn algorithm must be able to recognize
cases where there is an increase in the value of the parameter from cases where the
parameter is almost stable. We introduce the change in the ChoOSyn parameters as n
increases:

∆ChoOSyn(n) = |ChoOSyn(n + 1)− ChoOSyn(n)| (8)

with 2 ≤ n ≤ 7 (9)

Every variation of the parameter value greater than the average of ∆ChoOSyn is
defined as an increase, and every variation smaller than ∆ChoOSyn is defined as “stability”.
In this way, the algorithm can identify the previously introduced steps and local minima.

If there are multiple steps and local minima in the same bar plot, the algorithm selects
only the two highest values of n (Figure 3A, left panel).

On this basis, the two parameters ChoOSynW and ChoOSynC make two separate
selections (Figure 3). Finally, a single optimal value of n is chosen as follows:

• There is at least a common choice in the selection(s) provided by the two parameters
(Figure 3A). In this case, the common number of synergies is selected.

• The two parameters provide a different selection for the number of synergies (Figure 3B).
The number is chosen as the one providing the lowest sum of ChoOSynW(n) and
ChoOSynC(n) (i.e., with the lowest similarity and highest consistency).

2.5. VAF-Based Methods

As already mentioned in the Introduction, the variance accounted for (VAF) is widely
used in the literature to quantify the reconstruction accuracy after the factorization, and it
is defined as the uncentered Pearson’s correlation (in percentage) [1,2,18–25]:

VAF =

(
1− ∑m

i=1(Mi − Ri)
2

∑m
i=1 M2

i

)
× 100, (10)

where M is the matrix before the factorization, R is the reconstructed matrix obtained as
the product between W and C, and m is the number of muscles (12 in this work).

We compare the performance of ChoOSyn with the three main VAF-based methods
(Figure 4):

• T-VAF (Threshold VAF) (Figure 4A): this method is the most widely used in the litera-
ture [1,2,18–25]. It involves the setting of an arbitrary threshold and the subsequent
choice of the first number of synergies with VAF above the threshold. The threshold is
commonly set at 90% and less frequently at 95%: therefore, we chose to test both 90%
and 95% thresholds.

• E-VAF (Elbow VAF) [11] (Figure 4B): this method requires finding the “elbow” of the
VAF curve, i.e., the highest curvature point. It is the only VAF-based method that does
not use arbitrary thresholds.

• P-VAF (Plateau VAF) [40] (Figure 4C): this method requires finding the point beyond
which the VAF curve reaches a plateau. It uses an arbitrary threshold: the mean-square
error obtained by fitting the VAF-curve through a straight line must be smaller than
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10−2. Cheung et al. [40] used a threshold equal to 10−5, but in our simulated dataset
10−2 provided the best performance. The first point satisfying this condition is chosen.
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Figure 4. VAF-based methods used in the literature: (A) T-VAF, the most used method, (B) E-VAF,
based on the curvature, and (C) P-VAF, based on the plateau. The reported VAF curve is calculated
from the data of a real representative subject (the same for Figures 3 and 4).

2.6. Performance Evaluation

The performances of the ChoOSyn algorithm were compared to those of T-VAF, E-VAF,
and P-VAF methods by means of the fraction of correct classifications, mean error (ME),
and root mean square error (RMSE), both for the simulated and real datasets. RMSE is
used to quantify how far a given method deviates from the correct number of synergies,
while ME provides information about the sign, to know whether the method goes wrong
by defect or excess. ME and RMSE are defined as follows:

ME =
∑NS

i=1(ni − nc,i)

NS
(11)

RMSE =

√
∑NS

i=1(ni − nc,i)
2

NS
(12)

where n is the number of synergies identified by a method, nc is the number of correct
synergies, and NS is the total number of subjects in the dataset.

To know which number of synergies should be considered as correct (nc) in the real
dataset, we developed a “ground truth” using the judgment of two expert operators.
Their judgment was performed blind to the details of the ChoOSyn algorithm as well
as to the results of the various methods tested. For each real subject, they analyzed the
muscle synergy plots considering different numbers of muscle synergies n and they chose—
separately—the number they considered as correct, based on their knowledge of motor
control strategies, muscle synergy analysis, and gait biomechanics. It should be noted that
expert judgment is subjective, at least to some extent. Cohen’s kappa statistic [41] was used
to compute the degree of agreement between the raters. In case of disagreement, the two
expert operators discussed the discordant cases to achieve a common ground truth. For the
simulated dataset, its own nature guarantees its objectivity, knowing a priori the correct
number of muscle synergies.
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3. Results
3.1. Simulated Data

Figure 5A–C show the two ChoOSyn parameters extracted from the simulated dataset.
More specifically, data obtained simulating n = 4, n = 5, and n = 6 muscle synergies are
displayed. The bar plots show a marked “step”, in correspondence to the correct number
of synergies. This is the main feature that allows the algorithm to identify the optimal
number of synergies without thresholds. In addition, in some cases, the plots present a
local minimum just before the step.
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Figure 5. Bar plots representing the mean ± standard error of the two parameters ChoOSynW and ChoOSynC. (A–C) Upper
plots: simulated dataset. Each bar represents a different noise condition. The dataset is divided into three subsets with (A) 4,
(B) 5, and (C) 6 muscle synergies, respectively. (D–F) Bottom plots: real dataset. It is divided into subjects that express (D) 4,
(E) 5, and (F) 6 muscle synergies, respectively. We used the ground truth to divide the real dataset into three subsets.

The final results obtained applying the ChoOSyn rules are reported in Table 1. The
row “no noise” shows the performance of the different methods tested without additive
noise. The results obtained considering increasing levels of additive noise are also reported
to evaluate the robustness of the methods at different SNR values.



Sensors 2021, 21, 3311 11 of 15

Table 1. Simulated dataset—performance of the different methods in terms of the fraction of correctly
classified, mean error (ME), and root-mean-squared error (RMSE).

Fraction of Correctly
Classified

T-VAF
(90%)

T-VAF
(95%) E-VAF P-VAF ChoOSyn

No noise 2/75 36/75 75/75 75/75 73/75
SNR = 30 dB 0/75 24/75 75/75 75/75 73/75
SNR = 25 dB 0/75 18/75 75/75 75/75 74/75
SNR = 20 dB 0/75 9/75 74/75 72/75 72/75
SNR = 15 dB 0/75 0/75 65/75 73/75 63/75

ME 1 T-VAF
(90%)

T-VAF
(95%) E-VAF P-VAF ChoOSyn

No noise −1.29 −0.52 0.00 0.00 −0.03
SNR = 30 dB −1.48 −0.68 0.00 0.00 −0.03
SNR = 25 dB −1.57 −0.79 0.00 0.00 −0.01
SNR = 20 dB −2.11 −1.04 0.01 0.04 −0.05
SNR = 15 dB −3.07 −1.93 −0.15 0.03 0.04

RMSE 1 T-VAF
(90%)

T-VAF
(95%) E-VAF P-VAF ChoOSyn

No noise 1.39 0.72 0.00 0.00 0.16
SNR = 30 dB 1.56 0.82 0.00 0.00 0.16
SNR = 25 dB 1.65 0.92 0.00 0.00 0.12
SNR = 20 dB 2.19 1.17 0.12 0.20 0.28
SNR = 15 dB 3.15 2.00 0.53 0.16 0.53

1 Unit of measure of ME and RMSE: number of synergies.

Overall, T-VAF methods fail to identify the correct numbers of synergies, while E-VAF,
P-VAF, and ChoOSyn show comparable performances (except for SNR = 15 dB).

The synthetic signals are less complex to factorize, and, hence, the reconstruction
accuracy (VAF) shows higher values already at lower numbers of synergies. Indeed, T-VAF
identifies as the optimal number of synergies 1 to 4 units lower than the correct one. T-VAF
also shows the highest ME and RMSE values.

The performance of T-VAF (95%) decreases with increasing additive noise, while,
considering E-VAF, P-VAF, and ChoOSyn, the performance degradation is notable only in
the worst condition (at 15 dB). For the ChoOSyn algorithm, this result was also predictable
from the bar plots of Figure 5A–C. There is a marked step in the case without additive
noise (purple bar) and, to a lesser extent, with high SNR values (red, orange, and yellow
color bars), while the step becomes markedly shorter for the green bars representing
SNR = 15 dB.

3.2. Real Data

Figure 5D–F show the two ChoOSyn parameters extracted from the real dataset.
Overall, trends observed in the simulated dataset (Figure 5A–C) are also present in the
real dataset (Figure 5D–F). In the latter case, we used the expert ground-truth to divide
the population into subjects that express 4, 5, and 6 muscle synergies. The inter-rater
agreement, computed by means of Cohen’s kappa, was equal to 0.5, suggesting a moderate
agreement between the two expert operators.

Considering the real dataset (Table 2), ChoOSyn achieved the best performance,
with 17 out of 20 correct classifications and the lowest ME and RMSE. A slightly worse
performance was observed for E-VAF, which obtained 12 out of 20 correct classifications.
T-VAF and P-VAF achieved the worst performances.
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Table 2. Real dataset—Performance of the different methods as the fraction of correctly classified,
mean error (ME), and root-mean-squared error (RMSE).

T-VAF
(90%)

T-VAF
(95%) E-VAF P-VAF ChoOSyn

Fraction of correctly classified 8/20 7/20 12/20 6/20 17/20
ME 1 −0.90 0.55 0.70 0.90 0.20

RMSE 1 1.30 0.98 1.18 1.18 0.55
1 Unit of measure of ME and RMSE: number of synergies.

4. Discussion

Choosing the correct number of muscle synergies that control a motor task is funda-
mental to understand how the CNS drives the muscles. However, the method employed
for selecting the correct number of synergies plays a critical role. The number of syn-
ergies characterizing a given activity, e.g., locomotion, varies within and across studies,
even for unimpaired individuals [28]. There is a lack of standardized methods for the
precise identification of the number of synergies, making comparisons across studies and
cohorts difficult.

The method currently accepted and used by the vast majority of researchers is based
on VAF (variance accounted for) [1,2,18–25], which quantifies the reconstruction accuracy,
i.e., how faithfully the muscle synergies represent the signals collected from the muscles.
Among the various VAF criteria applied to select the optimal number of synergies, the
threshold-VAF (T-VAF) is the most widely adopted, although, it relies on the definition of a
fixed threshold T (i.e., T = 90%, Figure 4A). The first number of synergies that produces a
VAF value equal to or greater than the threshold is selected as optimal. In the literature, the
threshold T is commonly set at 90% [1,2,4,7,18,20–24], and less frequently at 95% [19,25].

The T-VAF method is very simple to implement, but, on the other hand, the presence
of a fixed threshold is a well-known issue. First, the threshold is set arbitrarily and different
research groups may use different T-values: globally, there is a lack of clear criteria to
choose a specific value with respect to another. Second, a small variation in the T-value
could also significantly change the results. Therefore, it would be necessary to test the
robustness of the threshold itself.

In this work, we proposed and validated a method to choose the optimal number of
muscle synergies (ChoOSyn), which is independent of the definition of arbitrary thresholds.
ChoOSyn is an alternative to VAF and relies on two parameters directly estimated from
data: consistency and similarity of muscle synergies.

Other research groups have introduced alternatives to VAF cutoff criteria. More specif-
ically, Cheung et al. [16] proposed a statistical approach based on real and unstructured
sEMG signals, generated by randomly shuffling the original sEMG signals across time
and muscles, to select the correct number of muscle synergies in a more interpretable way
with respect to standard threshold-based approaches. Ref. [28], instead, introduced intra-
class and between-level correlation coefficients to discriminate “reliable” from “unreliable”
synergies. Their approach was based on k-means clustering and was tested on 9 healthy
subjects, considering eight leg muscles during treadmill walking. Delis et al. [29,30] devel-
oped a more “physiological” approach, introducing a task decoding-based metric during
an arm pointing task.

The approach proposed in this work was validated both on a simulated and on a
real dataset, considering an overground walking task. The performance of ChoOSyn
was directly compared against VAF-based methods, in terms of the fraction of correct
classification, mean error (ME), and root mean square error (RMSE).

Analyzing the simulated dataset, we found that ChoOSyn correctly identified the
number of synergies in almost all cases with very small errors. E-VAF and P-VAF methods
showed overall performances similar to ChoOSyn. On the contrary, the T-VAF method
fails to identify the correct number of muscle synergies. This is probably due to the nature
of the dataset: the simulated signals are less complex to factorize, and the VAF assumes
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higher values already at small numbers of synergies. Indeed, the ME values show that the
T-VAF always goes wrong by defect.

When tested on the real dataset, ChoOSyn achieved the best performance, with a
marked difference compared to the other methods. The ME and RMSE values of ChoOSyn
are also much lower than those of the other VAF-based methods. The worst performing
methods were T-VAF and P-VAF, which are based on arbitrary thresholds, further high-
lighting the problem mentioned above. E-VAF, which does not require thresholds, has the
best performance of the VAF-based methods.

Therefore, we proved that ChoOSyn shows equal (simulated dataset) or even higher
(real dataset) performance in the correct identification of the number of synergies with
respect to the methods currently available in the literature. Indeed, the misclassifications
are limited and the number of synergies obtained is close to the correct number, with
ME and RMSE values comparable (simulated dataset) or smaller (real dataset) than those
obtained with VAF-based methods. Moreover, ChoOSyn operates without thresholds.

The number of muscle synergies can also be strongly influenced by other steps of
the muscle synergy extraction process, such as the sEMG pre-processing (e.g., low-pass
filtering techniques) [42] and the number and choice of muscles acquired [18]. However,
the focus of this contribution is on developing an approach that can be applied after
a factorization algorithm, to select the correct number of muscle synergies, and not on
evaluating the effect of different pre-processing techniques on the identification of the
synergy number. We demonstrated that the ChoOSyn algorithm is more reliable than
VAF-based methods. This suggests that the two newly introduced ChoOSyn parameters
and the concepts behind them are relevant. It is desirable to obtain a high consistency
of muscle synergies over the motor task duration, and low intra-level similarity between
synergies (avoiding redundant information). Following these guidelines facilitates the
proper selection of the correct number of synergies. We found that a method based on
these concepts is more discriminative than the reconstruction accuracy (at the base of
VAF-methods) in the search for the correct number of muscle synergies.

The proposed method was tested on 20 healthy subjects. It would be interesting to test.
ChoOSyn both on a larger population and on different cohorts (for age or pathological

condition). The need for long-lasting sEMG acquisitions to properly select the number of
muscle synergies does not limit the feasibility and applicability of the proposed approach
to pathological populations. Indeed, gait analysis is commonly used only in those patients
that can independently walk, for at least some minutes, without external supports or
walking aids. In the past, several studies demonstrated the feasibility of long-lasting gait
data acquisition in patients suffering from different neurological conditions, such as normal
pressure hydrocephalus [43], mild ataxia [44], and cerebral palsy [45]. Future work should
focus on providing algorithm validation for patients affected by neurological disorders,
such as patients affected by Parkinson’s disease or stroke survivors, by also increasing the
number of expert operators for the “ground truth” definition. Moreover, the dataset used
includes signals acquired from the lower limb and the trunk while walking. However, the
ChoOSyn method is not necessarily associated with the specific motor task considered
and can be generalized to signals acquired during a different motor task or from different
muscles. Indeed, since the proposed approach does not rely on arbitrary thresholds or
task-dependent rules, it can be potentially extended to other cyclic motor tasks, such as
running or cycling.

5. Conclusions

We described and validated an algorithm (ChoOSyn) to select the optimal number
of synergies expressed during gait, which overcomes the limitations of VAF thresholding
methods. The proposed approach may support the standardization of reports, in motor
control studies, among different research laboratories. Moreover, ChoOSyn may be applied
to different repetitive motor tasks (reaching movements of the upper limbs, etc.) without
any specific need for adaptation to the motor task considered.
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