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Abstract: For centuries, Fructus ligustri lucidi (FLL; the fruit of Ligustrum lucidum Aiton or Ligus-
trum japonicum Thunb.) has been commonly used in traditional Chinese medicine for treating
hepatitis and aging-related symptoms and in traditional Korean medicine to detoxify kidneys and
the liver. Pharmacological research has shown FLL has antioxidant, anti-inflammatory, anticancer,
anti-osteoporosis, and hepatoprotective activities. This study was undertaken to investigate the
effects of FLL extract (FLLE) on neuroinflammation. After setting a non-toxic concentration using
MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] assay data, we investigated
the effects of FLLE using Western blotting, cell migration, enzyme-linked immunosorbent assay, a
nitric oxide (NO) assay, and immunofluorescence staining in lipopolysaccharide (LPS)-stimulated
murine BV2 microglial cells. FLLE was non-toxic to BV2 cells up to a concentration of 500 µg/mL
and concentration-dependently inhibited the production of NO and prostaglandin E2 and the protein
levels of inducible nitric oxide synthase and cyclooxygenase-2 under LPS-induced inflammatory
conditions. It also inhibited the secretion of the inflammatory cytokines tumor necrosis factor-α
(TNF-α) and interleukin-6 (IL-6). Furthermore, FLLE pretreatment attenuated LPS-induced increases
of CD68 (a marker of microglia activation) and suppressed the activation of mitogen-activated protein
kinases (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways in LPS-stimulated BV2
cells, and significantly increased heme oxygenase (HO)-1 levels. FLLE also reduced the LPS-induced
increase in the migratory ability of BV2 cells and the phosphorylation of vascular endothelial growth
factor receptor 1. Collectively, FLLE effectively inhibited inflammatory response by suppressing
the MAPK and NF-κB signaling pathways and inducing HO-1 in LPS-stimulated BV2 microglial
cells. Our findings provide a scientific basis for further study of FLL as a candidate for preventing or
alleviating neuroinflammation.
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1. Introduction

In concert with an aging population, the number of people suffering from various brain
diseases such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis continues
to increase and this presents an enormous socioeconomic challenge for the management
and treatment of brain disease [1–3]. Despite the numerous studies conducted to date,
the pathogenesis of brain diseases has not been fully elucidated, and no treatment has
been developed.

Neuroinflammation is an immune response that protects brain cells against harmful
stimuli, such as infections, stresses, injuries, and aging, and is one of the most common
symptoms or hallmarks in neurodegenerative diseases including Alzheimer’s, Parkinson’s,
and Huntington’s diseases and multiple sclerosis [4]. Accumulating evidence supports
the view that uncontrolled chronic neuroinflammation is linked to the progression of neu-
rodegenerative diseases [5]. Glial cells include astrocytes, microglia, oligodendrocytes, and
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neuron glia antigen-2 glia and play distinct roles during neuroinflammation [4,6]. Of these,
microglia are brain-specific macrophages residing in the central nervous system (CNS) and
act as the predominant modulators of neuroinflammation [7]. Microglia also play a pivotal
role in the maintenance of homeostasis in the CNS by recognizing and removing exogenous
pathogens or damaged cells and by secreting nerve growth factors [8,9]. Activation of
microglia by pathogens such as amyloid-associated proteins or lipopolysaccharide (LPS, a
bacterial endotoxin) induces neuroinflammatory response by promoting the secretion of
inflammatory mediators (e.g., nitric oxide (NO) and prostaglandin E2 (PGE2)), proinflam-
matory cytokines, and reactive oxygen species [10]. Excessive neuroinflammatory response
causes neurotoxicity, induces neuronal damage, and eventually leads to neuronal degener-
ation [11,12]. Thus, the suppression of microglial overactivation is viewed as an important
target for the prevention and treatment of neurodegenerative diseases. Unfortunately,
drugs that are currently used to treat degenerative brain diseases have toxic and other side
effects and, thus, studies are being conducted to control the inflammatory response using
relatively safe natural products.

Fructus ligustri lucidi (FLL, known in Chinese as Nu Zhen Zi or Nvzhenzi) is the
dried ripe fruit of Ligustrum lucidum Aiton or Ligustrum japonicum Thunb., which are both
members of the Oleaceae family [13,14]. FLL has been often prescribed in doses of 6–15 g
per day to treat several diseases in traditional Korean medicine [15]. Traditionally, it is
considered to counteract the effects of preventing aging by tonifying the liver and kidneys,
improving vision, and preventing hair graying [14,16]. Er Zhi Wan is a representative
prescription and contains FLL and the herb Ecliptae Herba (Eclipta prostrata Linne) and has
long been used to prevent or treat various liver and kidney diseases [17]. Modern research
supports the usefulness of FLL for the treatment of backache, blurred vision, insomnia,
menopausal symptoms, palpitations, rheumatic pains, and tinnitus and for alleviating age-
related symptoms [18,19]. Furthermore, FLL has been shown to have anti-inflammatory
effects in mouse peritoneal macrophages [20], and recently, a phenol glycosides extract of
FLL was reported to alleviate depressive-like behavior by inhibiting neuroinflammation
in mouse hypothalamus [21]. However, evidence-based medicinal proof of therapeutic
efficacy of FLL in neuroinflammation is lacking.

For decades, numerous chemical compounds have been identified in FLL including
triterpenoids, flavonoids, iridoids, phenylethanoid glycosides, etc., and triterpenoids are a
main compound type of high content [22,23]. In particular, FLL contains large amounts
of representative triterpenoids oleanolic acid and ursolic acid, and oleanolic acid has
been used as a quality control standard for FLL [24]. Identification of the components of
FLL and their pharmacological studies support that FLL has beneficial effects on various
health conditions. Both oleanolic and ursolic acids have been reported to have antiviral
activity against hepatitis C virus, and oleanolic acid has shown hepatoprotective and
immunomodulatory effects [25]. Furthermore, hydroxytyrosol, salidroside, and several
secoiridoid glucosides such as lucidumoside B and C, neonuezhenide, oleoside dimethyl
ester, and oleuropein has been reported to have antioxidant activities [25].

In the present study, we investigated the effect of an extract of FLL (FLLE) and
the mechanism responsible for its inhibitory effects on inflammatory response in LPS-
stimulated murine BV2 microglial cells.

2. Results
2.1. Effects of Fructus Ligustri Lucidi Extract (FLLE) on Inflammatory Response Induced by
Lipopolysaccharide (LPS) Stimulation in BV2 Cells

To determine an appropriate concentration for the FLLE treatment of BV2 microglia cells,
we first investigated its cytotoxic effect by measuring cell viability. As shown in Figure 1A,
more than 95% of cells treated with FLLE at concentrations up to 500 µg/mL for 24 h survived,
and thus, FLLE was considered to be non-toxic at concentrations up to this level. Next, we
examined the effects of FLLE on the levels of NO and PGE2 under inflammatory conditions.
Dexamethasone (Dex), a synthetic glucocorticoid with anti-inflammatory and immunosup-
pressive activity, is known to treat various diseases related to inflammation in the body [26]
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and was used here as a positive control. LPS stimulation increased NO production in BV2 cells
by about 3-fold, whereas FLLE pretreatment suppressed this increase in a dose-dependent
manner (Figure 1B). In particular, 300 or 500 µg/mL of FLLE inhibited this increase more than
1 µM dexamethasone (p < 0.001). PGE2 levels were elevated by about 4-fold versus non-treated
controls at 18 h after LPS stimulation (control 442 ± 40.71 pg/mL vs. LPS 1817 ± 69.35 pg/mL,
p < 0.001) (Figure 1C), but FLLE pretreatment effectively prevented this increase at all concen-
trations used (p < 0.001 vs. LPS).

Figure 1. Effects of Fructus ligustri lucidi extract (FLLE) on the cell viability of BV2 and on levels of
lipopolysaccharide (LPS)-induced inflammatory mediators. (A) Cytotoxicity evaluation of FLLE
using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] assay. BV2 microglia
were treated with different concentrations of FLLE (i.e., 50, 100, 300, or 500 µg/mL) for 24 h. Microglia
viabilities were determined using an MTT assay. (B) Inhibitory effects of FLLE on LPS-induced NO
production. (C) Inhibitory effects of FLLE on LPS-induced PGE2 secretion. Significant vs. vehicle-
treated controls, ### p < 0.001; significant vs. LPS controls, ** p < 0.01, *** p < 0.001.

Next, to find out whether FLLE affects the secretions of pro-inflammatory cytokines
under neuroinflammatory conditions, we measured amounts of tumor necrosis factor-α
(TNF-α) and interleukin-6 (IL-6) secreted into media. TNF-α and IL-6 levels increased by
about 14- and 40-fold, respectively, by LPS stimulation (p < 0.001, 36.56 ± 13.91 pg/mL
vs. 503.67 ± 49 pg/mL for TNF-α and 14.32 ± 11.11 pg/mL vs. 579.39 ± 52.94 pg/mL for
IL-6) and these increases were significantly reduced by FLLE pretreatments in the range
100 to 500 µg/mL (Figure 2).
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Figure 2. Effects of FLLE on the LPS-induced up-regulations of pro-inflammatory cytokines in BV2 microglia. The up-
regulations of tumor necrosis factor-α (TNF-α) (A) and interleukin-6 (IL-6) (B) by LPS were significantly suppressed by
FLLE pretreatment at concentrations from 100 to 500 µg/mL. Significant vs. vehicle-treated controls, ### p < 0.001; significant
vs. LPS controls, * p < 0.05, ** p < 0.01, *** p < 0.001. Con, vehicle-treated control.

2.2. Effects of FLLE on M1 Microglia Polarization by LPS Stimulation in BV2 Cells

Western blotting was used to confirm the expressions of inducible nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated BV2 migroclia. iNOS and COX-
2 protein levels were markedly augmented after LPS stimulation for 18 h, and FLLE
pretreatment at 100 to 500 µg/mL significantly inhibited these increases. In fact, at 300 to
500 µg/mL FLLE prevented these increases (Figure 3A,B).

Figure 3. Effects of FLLE on the LPS-induced M1 polarization of BV2 microglia. (A) Inhibitory effects
of FLLE on LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) levels
in BV2 microglia, as determined by western blotting. Representative images are shown and experi-
ments were repeated three times. (B) Quantification of iNOS and COX-2 levels relative to β-actin.
Results are expressed the means ± standard errors of the means (SEMs) of three independent experi-
ments. Significant vs. vehicle-treated controls, ### p < 0.001; significant vs. LPS controls, *** p < 0.001
(C) Representative immunofluorescent images of CD68 expression in FLLE-treated BV2 cells under
normal or inflammatory conditions. CD68: green, DAPI (4,6-diamidino-2-phenylindole): blue.
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We then investigated whether FLLE affects M1 microglia polarization by detecting
CD68 (a microglia marker of the active M1 microglial phenotype) by immunofluorescence
staining. The results showed numbers of CD68 positive microglia increased after LPS
stimulation, and FLLE pretreatment reduced these numbers (Figure 3C), which indicated
the attenuation of inflammatory response by FLLE may have been due to the suppression
of M1 polarization.

2.3. Effects of FLLE on Inflammatory Mitogen-Activated Protein Kinases (MAPK) and Nuclear
Factor-Kappa B (NF-κB) Signaling Pathways in BV2 Cells

To confirm that FLLE affects inflammatory signaling pathways, we checked the protein
levels of MAPK (mitogen-activated protein kinases) subfamilies by western blotting. As
was expected, LPS significantly induced phosphorylations of ERK1/2 (extracellular signal-
regulated kinase 1/2), JNK (c-Jun N-terminal kinase), and p38 MAPK, and these activations
were dose-dependently inhibited by FLLE pretreatment (Figure 4).

Figure 4. Effects of FLLE on the mitogen-activated protein kinases (MAPK) signaling pathway in
LPS-stimulated BV2 microglia. BV2 cells were pre-treated with different concentrations of FLLE
for 18 h and then treated with LPS (1 µg/mL) for 30 min. Protein levels of total or phosphorylated
MAPKs (i.e., extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and
p38 MAPK) were analyzed by western blotting. Representative images are shown and experiments
were repeated three times. Significant vs. vehicle-treated controls, ## p < 0.01, ### p < 0.001; significant
vs. LPS controls, * p < 0.05, ** p < 0.01.

To determine how FLLE regulates nuclear factor-kappa B (NF-κB) activation under
inflammatory conditions, the protein levels of NF-κB and IκBα (regulator of NF-κB) and the
nuclear translocation of NF-κB were investigated. FLLE at 300 and 500 µg/mL markedly
suppressed the LPS-induced phosphorylations of NF-κB p65 and IκBα (Figure 5A). Fur-
thermore, the LPS-induced nuclear translocation of NF-κB was effectively prevented by
300 µg/mL FLLE as determined by immunofluorescence staining (Figure 5B).



Plants 2021, 10, 688 6 of 16

Figure 5. Effects of FLLE on nuclear factor-kappa B (NF-κB) activation in LPS-stimulated BV2 microglia. (A) Western blot
images of total or phosphorylated NF-κB and IκBα. Representative images are shown and experiments were repeated three
times. (B) The activation of NF-κB was assessed immunocytochemically. Fluorescence images showed that at 300 µg/mL
pretreatment with FLLE inhibited the LPS-induced nuclear translocation of NF-κB in BV2 microglia. p-NF-κB: Green, DAPI:
blue. Significant vs. vehicle-treated controls, ## p < 0.01, ### p < 0.001; significant vs. LPS controls, * p < 0.05, ** p < 0.01,
*** p < 0.001.

2.4. Effects of FLLE on Heme Oxygenase (HO)-1 Expression in BV2 Cells

Western blotting and NO assay were used to determine whether FLLE induces the
expression of the anti-inflammatory mediator heme oxygenase (HO)-1 in BV2 microglia.
FLLE dose-dependently increased levels of HO-1, and the highest expression was observed
at 500 µg/mL FLLE (Figure 6A). In addition, at 300 µg/mL FLLE started to induce HO-1
after 8 h of treatment and its expression peaked at 24 h (Figure 6B). These results show
FLLE markedly increased HO-1 expression in a time- and dose-dependent manner.

To determine whether FLLE exhibited anti-inflammatory effects by inducing HO-1
expression, we measured amounts of NO in BV2 microglia pretreated with 50 nM Tin
protoporphyrin IX (SnPP, a HO-1 inhibitor) for 30 min, then with 300 µg/mL FLLE for 1 h,
and finally with 1 µg/mL LPS for 18 h. When BV2 cells were pretreated with SnPP to block
HO-1 induction by FLLE, the inhibitory effect of FLLE on the LPS-induced NO production
was reduced (Figure 6C). These results indicate that HO-1 induction contributes, at least in
part, to the anti-inflammatory effect of FLLE in BV2 microglia.
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Figure 6. Effects of FLLE on heme oxygenase (HO)-1 expression in BV2 microglia. (A) HO-1 protein
expression patterns in BV2 cells treated with different concentrations of FLLE. BV2 cells were treated
with various concentration of FLLE for 18 h. (B) HO-1 protein expression patterns in 300 µg/mL
FLLE-treated BV2 microglia at various time points (from 1 to 24 h). Representative images are shown
and experiments were repeated three times. (C) The role played by HO-1 in the inhibition of NO
production by FLLE under inflammatory conditions. Cells were pre-treated with 50 nM SnPP (a
HO-1 inhibitor) for 30 min, followed by treatment with 300 µg/mL FLLE for 1 h, and subsequently
stimulated with 1 µg/mL LPS for 18 h. NO levels are presented as means ± SEMs. Significant vs.
vehicle-treated controls, ** p < 0.01, *** p < 0.001.

2.5. Effects of FLLE on the Migratory Ability of BV2 Cells

The effect of FLLE on the migratory ability of microglia was assessed using a wound-
healing migration assay. LPS stimulation significantly promoted the migration of BV2
microglia, whereas co-treatment with 300 µg/mL FLLE and LPS had a weaker effect on
LPS-induced microglia migration (Figure 7A).
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Figure 7. Effects of FLLE on the migration ability of LPS-stimulated BV2 microglia. (A) Microscopic images of migration
assay results. Photographs were taken of gaps observed under a microscope at different times (0 and 19 h) and dotted lines
show starting line before moving. (B) Western blot band images of total and phosphorylated vascular endothelial growth
factor receptor 1 (VEGFR1) in FLLE pretreated BV2 microglia under inflammatory conditions. Pretreatment with FLLE
inhibited LPS-induced VEGFR1 overexpression in BV2 microglia. Representative images are shown and experiments were
repeated three times. Significant vs. vehicle-treated controls, # p < 0.05; significant vs. LPS controls, * p < 0.05, ** p < 0.01.

To elucidate the mechanism responsible for the inhibition of BV2 migration by FLLE,
we investigated the effects of treatments on the expression pattern of VEGFR1 (vascular
endothelial growth factor receptor 1)/Flt-1 (fms-like tyrosine kinase 1) protein. LPS stimula-
tion significantly induced Flt-1 phosphorylation, and FLLE pretreatment dose-dependently
reduced the protein levels of phosphorylated VEGFR-1 (Figure 7B). These results indi-
cated the attenuation of BV2 motility by FLLE may have been due to the suppression of
VEGFR-1 phosphorylation.

2.6. Quality Control of FLLE

For quality control (QC) purposes, we selected oleanolic and ursolic acids as QC
markers. Typical high-performance liquid chromatography (HPLC) chromatograms of
FLLE and its standards oleanolic and ursolic acids are shown in Figure 8. As presented,
the retention times of these two components were 15.193 and 15.707 min, respectively.
Concentrations of the two compounds in FLLE were determined using calibration curves
prepared using oleanolic and ursolic acids standards and were found to be 892.728 and
359.769 mg/kg, respectively.
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Figure 8. High-performance liquid chromatography (HPLC) chromatograms of FLLE. FLLE and
its marker compounds, oleanolic and ursolic acids, were analyzed by HPLC. (A) Chromatogram of
oleanolic and ursolic acids (B) Chromatogram of FLLE.

3. Discussion

The remarkable growth of the medical industry witnessed over past decades is more
than matched by increasing demands centered on improving quality of life. As we en-
ter what has been described as the era of super-aged societies, disease prevention and
health management have become focal points of research efforts. In aging societies, the
incidences of brain diseases such as cerebrovascular diseases and neurodegenerative dis-
eases are rapidly increasing and, thus, the prevention, diagnosis, and treatment of these
brain diseases have become even more important. To meet these demands, our group
continues to try to establish scientific bases that support the use of herbal medicines by
identifying medicinal herbs that prevent, improve, or cure neurodegenerative diseases and
by elucidating their action mechanisms.

The present study shows that FLLE suppresses LPS-induced neuroinflammation and
presents the mechanism involved in murine BV2 microglial cells. For centuries, FLL has
been widely used in traditional Chinese medicine to cure hepatitis and aging-related
symptoms, and in traditional Korean medicine to detoxify kidneys and liver [27]. Modern
pharmacological studies have reported that FLL has antioxidant, anti-inflammatory, anti-
cancer, anti-osteoporosis, and hepatoprotective activities [28–32]. Our results are in line
with these findings and show FFL potently inhibits neuroinflammation in LPS-treated BV2
microglial cells.

The pathological processes of neurodegenerative diseases are related to the production
of oxidative and inflammatory mediators. Microglia can be activated by infection or brain
injury and, when activated, secrete inflammatory cytokines, which have been shown to
induce neuron damage and result in neurodegenerative disease [33,34]. The present study
demonstrates that FLLE significantly reduces the secretions of proinflammatory cytokines
such as TNF-α and IL-6 under inflammatory conditions.
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Microglia are categorized into M1 and M2 phenotypes [35]. M1 polarization is associ-
ated with pro-inflammatory responses, whereas M2 polarization leads to anti-inflammatory
responses [36]. An imbalance of microglial polarization due to excessive M1 activation and
M2 dysfunction promotes a neuroinflammatory cascade amplifying neuronal damage [37].
Thus, the regulation of microglia polarization presents a potential target for the treatment
of neuroinflammatory disorders [38,39]. In the present study, FLLE effectively inhibited
LPS-induced increases in CD68, iNOS, and COX-2 levels in BV2 microglia, and inhibited
NO and PGE2 levels mediated by iNOS and COX-2. These results suggest that FLLE
suppressed M1 polarization by inhibiting LPS-induced markers of M1 activation such as
CD68, iNOS, and COX-2.

Activations of MAPK and NF-κB pathways, which are well-known representative
inflammatory signaling pathways, result in the secretion of pro-inflammatory cytokines
(e.g., TNF-α, IL-1β, IL-6, and IL-8), which trigger inflammatory responses [40,41]. Thus,
inhibition of these pathways offers a promising means of blocking or delaying neurode-
generative processes associated with inflammation and microglial activation [42,43]. We
confirmed that LPS activated MAPKs, including ERK1/2, JNK, and p38 MAPK, in BV2
cells, and increased the secretions of TNF-α and IL-6. Our results show that FLLE markedly
inhibited LPS-induced MAPKs activation in these cells.

NF-κB is a transcription factor of the toll-like receptor 4 signaling pathway, and a
key regulator of a variety of inflammatory genes, including iNOS and COX-2, and those
of various cytokines and chemokines [44]. Several studies have reported that NF-κB
binds to the promoter regions of target genes, and thereby increases the expressions of
pro-inflammatory mediators [45,46]. Under normal conditions, NF-κB is restricted to
cytoplasm due to complex formation with IκB, but various inflammatory stimuli (e.g.,
IL-1β, TNF-α, or LPS) result in the phosphorylation and subsequent ubiquitination of
IκB protein and the activation of NF-κB [47], which is then free to translocate in the
nucleus, where it binds to DNA-binding sites in the promoter regions of many genes,
and activates their transcription [48]. Our results show that in BV2 cells, FLLE inhibited
the LPS-induced phosphorylations of IκB and the p65 subunit of NF-κB, and that these
inhibitions suppressed the nuclear translocation of the p65 subunit of NF-κB.

HO-1, belonging to the family of the heat-shock proteins, is induced in response
to oxidative stressors or inflammatory stimuli. HO-1 is known to have anti-oxidative,
anti-inflammatory, anti-apoptotic, and immunomodulatory effects [49]. Furthermore, it
has been reported that the anti-neuroinflammatory effects of several herbal medicines
and phytochemicals, such as Gyejibokryeong-Hwan, Atractylodis rhizoma Alba, quercetin,
sulforaphane, and tryptanthrin, are due to the induction of HO-1 [50–54]. Similarly, we
found that FLLE strongly induced HO-1 activation in BV2 cells and that this inhibited
NO production.

In response to pathological stimuli, microglia are activated, migrate to injury sites, and
promote inflammatory responses, which lead to chronic neuroinflammation and nerve dam-
age [55]. Microglial motility/migration is known to be regulated by various intracellular
signaling pathways [56]. Among these, VEGFR1/Flt-1 (a VEGF receptor subtype) has been
reported to play crucial functional roles in mediating microglial chemotactic inflammatory
responses [57]. Liu, et al. [58] reported that paeoniflorin, a compound isolated from the
root of Paeonia lactiflora Pallas, suppressed the overactivation and migration of microglia
induced by beta-amyloid by inhibiting the VEGF/Flt-1 axis, which demonstrated that
modulating microglial migration can attenuate inflammatory processes in the CNS, and
that Flt-1 is a potential target for treating neuroinflammation. In the present study, FLLE
attenuated BV2 migration by suppressing the phosphorylation of Flt-1 under inflammatory
conditions, which suggests FLLE diminishes neuroinflammation by reducing the migration
and activation of microglia.

Finally, we confirmed FLLE contains oleanolic and ursolic acids by HPLC analysis.
These naturally occurring pentacyclic triterpene acids are found in many medicinal plants
and have been reported to have anti-cancer, anti-hyperlipidemia, and hepatoprotective
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effects [59–61]. In particular, their anti-inflammatory properties have long been known [59].
It has been reported that ursolic acid protects against LPS-induced cognitive impairment by
inhibiting the production of pro-inflammatory factors by blocking the p38/NF-κB signaling
pathway in mouse brain [62]. Furthermore, Castellano, et al. [63] recently reported that
oleanolic acid inhibits LPS-induced BV2 microglial activation. These previous studies and
the present study strongly support the notion that oleanolic and ursolic acids contribute to
the anti-neuroinflammatory effect of FLLE.

4. Materials and Methods
4.1. Chemicals and Reagents

PGE2 parameter assay kits were obtained from R&D Systems (Minneapolis, MN,
USA) and the ELISA (enzyme-linked immunosorbent assay) kits for detection of TNF-α
and IL-6 were obtained from Ab Frontier (Seoul, Korea). Primary antibodies for NF-
κB, p-NF-κB, IκBα, p-IκBα, JNK, p-JNK, ERK1/2, p-ERK1/2, p38 MAPK, and p-p38
MAPK were purchased from Cell Signaling Technologies (Danvers, MA, USA). Anti-iNOS
and anti-p-Flt-1 (Y1213) antibodies were purchased from Novus Biologicals (Littleton,
CO, USA) and St John’s Laboratory (London, UK), respectively. Other primary anti-
bodies and HRP (horseradish peroxidase)-linked secondary antibodies were supplied by
Santa Cruz Biotechnology (Santa Cruz, CA, USA). SnPP (Tin protoporphyrin IX) was
purchased from Porphyrin Products (Logan, UT, USA), and the LPS (E. coli endotoxin),
4,6-diamidino-2-phenylindole (DAPI), MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide], Griess reagent, and other reagents were purchased from Sigma-
Aldrich (St. Louis, MO, USA).

4.2. Preparation of FLLE

Fructus ligustri lucidi was supplied by Humanherb (Daegu, Korea), and authenticated
by Prof. Sun-Dong Park at the Department of Prescriptions, College of Korean Medicine,
Dongguk University, where a voucher specimen was deposited (No. DUMCKM2015-
046). Dried fruits of Ligustrum lucidum (100 g) were added to 800 mL of 30% ethanol and
extracted under reflux at 80 ◦C for 4 h. The extract was filtered twice using Whatman filter
paper (8 µm pore size) and the filtrate was concentrated under reduced pressure at 40 ◦C
using a rotary evaporator (EYELA, Japan). Dry powder (FLLE, 6.4 g) was obtained via
lyophilization by using a freeze dryer (EYELA) and stored at –20 ◦C until required.

4.3. High-Performance Liquid Chromatography (HPLC)

FLLE was analyzed using Thermo ScientificTM UltimateTM 3000 HPLC (Thermo Fisher
Scientific, Waltham, MA, USA) to determine oleanolic and ursolic acids (Sigma-Aldrich)
contents. Separation was performed using an Inno C18 column (Youngjin Biochrom, Korea,
250 × 4.6 mm, 5 µm) at a column temperature of 30 ◦C and a flow rate of 1 mL/min
over 30 min under isocratic elution mode using 80% acetonitrile as eluant. Detection was
performed at 210 nm and data were processed using Chromeleon 6.8 software (Thermo
Fisher Scientific).

4.4. Cell Culture and Drug Treatment

To investigate the effects of FLLE on microglial cells, we used murine BV2 microglia,
which were cultured in DMEM (Dulbecco Modified Eagle Medium; Welgene, Gyeongsan,
Korea) supplemented with 1% penicillin-streptomycin (Gibco BRL, Gaithersburg, MD,
USA) and 10% heat-inactivated fetal bovine serum (FBS, Welgene) at 37 ◦C in a 5% CO2
incubator (Thermo Fisher Scientific). FLLE was dissolved in culture grade dimethyl
sulfoxide (DMSO, AppliChem, Darmstadt, Germany) to prepare a 100 mg/mL stock
solution. After 6 h of serum starvation, BV2 microglia were pretreated with FLLE for 1 h
and then exposed to 1 µg/mL LPS for 18 h. In another experiment, cells were pretreated
with 50 nM SnPP for 30 min, treated with 300 µg/mL of FLLE for 1 h, and then exposed to
1 µg/mL LPS for 18 h.
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4.5. Cell Viability Assay

BV2 cells were seeded at 1 × 104 cells per well (100 µL) on 96-well plates and incubated
overnight. After starvation for 6 h in serum-free media, cells were treated with different
concentrations of FLLE (50–500 µg/mL) for 24 h, and then 10 µL of MTT solution (2 mg/mL)
were added to each well for another 2 h. After removing supernatants, formazan crystals
were fully dissolved in 100 µL of DMSO (Junsei Chemical Co., Tokyo, Japan), and well
absorbances were assessed by using a microplate reader (Tecan, Research Triangle Park,
NC, USA) at 540 nm.

4.6. Nitric Oxide Production Assay

BV2 cells were plated at a density of 1 × 106 cells/mL in 24-well plates. After pre-
treatment with various concentrations of FLLE (50, 100, 300, or 500 µg/mL) or 1 µM
dexamethasone for 1 h, cells were exposed to 1 µg/mL LPS for 18 h. Supernatants were
reacted with an equal volume of Griess reagent in a darkened room for 10 min at room
temperature, and the amount of NO was assayed by measuring the absorbance at 540 nm
using a microplate reader (Tecan).

4.7. Enzyme-Linked Immunosorbent Assay (ELISA)

BV2 cells were pretreated with various concentrations of FLLE for 1 h, stimulated
with LPS (1 µg/mL) for 18 h, and supernatants were collected. Amounts of the PGE2, IL-6,
and TNF-α secreted into media were determined using ELISA kits. Absorbances were
measured at 450 nm using a multimode microplate reader.

4.8. Cell Migration Assay

BV2 cells were plated at a density of 4 × 105 cells/mL on a 6-well plate and incu-
bated overnight. When the cells were ~90% confluent, wounds were made in confluent
monolayers with a sterile 1 mL pipette tip. After washing with phosphate buffered saline
(PBS), cells were incubated in DMEM medium supplemented with 5% FBS containing
LPS (1 µg/mL) or FLLE (300 µg/mL) plus LPS for 19 h. Phase-contrast photomicrographs
were taken in the same fields at 19 h or when wounds had completely healed, whichever
occurred first.

4.9. Western Blotting

BV2 cells were lysed with radioimmunoprecipitation assay buffer (Thermo Scientific,
Rockford, IL, USA) containing protease and phosphatase inhibitor cocktail (GenDEPOT,
Barker, TX, USA) and total proteins were quantified using a PierceTM bicinchoninic acid
protein assay kit (Thermo Scientific). Equal amounts of total proteins (40 µg) were sub-
jected to 10% SDS-polyacrylamide gel electrophoresis and transferred onto AmershamTM

HybondTM polyvinylidene fluoride membranes (Sigma-Aldrich). After blocking with 5%
skim milk for 1 h at room temperature, membranes were incubated with the primary anti-
bodies at 4 ◦C overnight. After washing with PBST (phosphate buffered saline with Tween
20), membranes were reacted with HRP-linked secondary antibodies (goat anti-rabbit and
goat anti-mouse immunoglobulin Gs (IgGs)) for 1–2 h at room temperature. Blots were
developed using Amersham ECL Prime detection reagent (GE Healthcare, Little Chalfont,
UK) and images of target protein bands were obtained using a Fusion Solo 2M chemilumi-
nescence imaging system (Vilber Lourmat, Marne-la-vallée, France). Band densities were
quantified using ImageJ 1.48v software (NIH Bethesda, Rockville, MD, USA).

4.10. Immunofluorescence Microscopy

To investigate the translocation of NF-κB or expression of CD68, BV2 cells were culti-
vated directly on cover glasses in 6-well plates in the presence of 300 µg/mL FLLE in the
absence or presence of LPS (1 µg/mL). Cells were fixed with ice-cold methanol for 10 min,
permeabilized in PBS containing 1% Triton X-100 (Sigma-Aldrich) for 10 min, and blocked
with 5% bovine serum albumin (GenDEPOT) for 1 h. Cells were then incubated with
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antibodies for NF-κB or CD68 (1:200) overnight at 4 ◦C and treated with FITC (fluorescein
isothiocyanate)-conjugated goat anti-rabbit (IgG) secondary antibody (1:1000, Invitrogen,
Carlsbad, CA, USA) for 1 h at room temperature. Nuclei were counterstained with DAPI
for 5 min. After mounting the coverslips on glass slides using ProLong® Gold Antifade
Reagent (Thermo Fisher scientific), fluorescence images were captured using a fluorescence
microscope (Olympus BX50, Olympus Optical Co., Tokyo, Japan). Fluorescence image
analysis was performed using ImageJ 1.48v software (USA). At least three high power
fields were selected for analysis of immunofluorescent intensity for CD68 and NF-κB. CD68
expression was measured by analyzing the green fluorescence mean intensity. The fluo-
rescence intensity of NF-κB was determined by dividing the fluorescence intensity in the
nucleus by fluorescence intensity in the cytoplasm to detect the ratio of NF-κB translocation
from the cytoplasm into the nucleus.

4.11. Statistical Analysis

All experiments were performed independently at least three times and results are
expressed as means ± standard errors of the means (SEMs). The analysis was performed
using one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparisons
using Prism 5.0 software (GraphPad Software, Inc., San Diego, CA, USA). Statistical
significance was accepted for p value < 0.05.

5. Conclusions

This study demonstrates the neurobiological activity of FLLE by verifying its inhibitory
effect on LPS-induced neuroinflammatory response in BV2 microglial cells. Our results
show that FLLE suppresses pro-inflammatory induction in BV2 microglia and suggests that
these effects are mediated by its inhibition of the MAPK/NF-κB signaling pathway and
the induction of HO-1. Accordingly, our findings suggest that FLL may have the potential
to develop as a drug candidate to prevent or relieve neuroinflammation.
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