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Abstract

The antipsychotic drug, olanzapine, one of the most widely used drugs in clinical medicine, has a 

high rate of discontinuation due to inefficacy and/or adverse effects. We identified a SNP in the 

drug metabolizing enzyme cytochrome, P450 3A43 (CYP3A43; rs472660) that highly 

significantly predicted olanzapine clearance in the CATIE trial (p=5.9e−7). Moreover, at standard 

antipsychotic doses, 50% of individuals with the high clearance genotype (AA) have trough blood 

levels below the therapeutic range. Interestingly, a much higher proportion of African Americans 

carry the A allele compared to Caucasians (allele frequency 67% vs. 14%). After accounting for 

CYP3A43 genotype, race is no longer a significant predictor of olanzapine clearance. Olanzapine 

clearance was associated with measures of clinical response. Patients with greater clearance had 

higher symptom ratings and were more likely to discontinue treatment due to an inadequate 

response. Our data identify a genetic mechanism for variation in olanzapine response and 

demonstrate that blood level monitoring of olanzapine treatment is advisable.
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Introduction

The Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) was a systematic 

evaluation of the clinical response to antipsychotics in the treatment of Alzheimer’s disease 

and schizophrenia. In the schizophrenia trial (CATIE-SZ), olanzapine was the most effective 

antipsychotic studied; with the lowest rate of discontinuation for any cause (64% 

discontinued treatment before 18 months).1 There was a wide variability in response to 

olanzapine and the other antipsychotics in the trial and although the response to olanzapine 

was overall more positive, treatment with olanzapine was also associated with greater 

weight gain and alterations in glucose and lipid metabolism.1 One reason for the high rates 

of discontinuation may relate to the wide variability in the pharmacokinetics of these drugs, 

which often results in differences in the pharmacodynamics, both in the response to a drug 

and the incidence of adverse effects. Sex, smoking, and race have previously been shown to 

impact clearance of olanzapine,2 which likely contributes to the variable therapeutic 

response. This study aimed to identify genetic predictors of olanzapine clearance and 

ultimately response.

Patients and Methods

The study design details for the CATIE-SZ study have been published.3 The study was 

approved by an institutional review board at each site, and written informed consent was 

obtained from each patient or his or her legal guardian. Patients with schizophrenia were 

recruited from multiple US sites and patients in this analysis were randomized to receive 

olanzapine (7.5 to 30 mg/day taken a single dose or split into two doses). Demographic 

information was collected at study visits and race was self-reported. A subset of patients 

provided a sample to be used for genetic analysis (CATIE genetics distribution 7, n=235). 

The patients in this subset who had all available data pertinent to this study did not differ 

demographically from all subjects randomized to olanzapine in phase 1 of the CATIE trials 

(n=336, 33% female, 60% Caucasian, 36% African American). Likewise, baseline PANSS 

scores did not differ between this group and the entire sample (74.84 ± 19.45 vs. 76.13 ± 

18.18, p=0.48).

Plasma samples were collected during the study visits and each patient provided between 1 

and 6 samples for determination of olanzapine concentrations. Data were excluded for 

missing or incorrect dose, time of dose, sample, or time of sample. Plasma levels of 

olanzapine were determined using liquid chromatography tandem mass spectrometry, as 

previously described.2,4

Genotyping methods have been previously published.5 We used a candidate gene approach 

and selected single nucleotide polymorphisms (SNPs) that are in or near known olanzapine 

metabolizing enzymes (CYP1A2, CYP2D6, and FMO3)6 as well as CYP3A, which is 

involved in metabolism of approximately half of all drugs and has been reported to be 

altered during olanzapine treatment.7 All of the available SNPs in these genes on the 

Affymetrix 500K chip that was used for genotyping of these patients were tested. A total of 

26 SNPs were tested in or near CYP1A2 (rs2472300, rs2069522, rs2069526, rs4646425, 

rs11631682), CYP2D6 (rs6002616, rs9306356), FMO3 (rs2213712, rs2859228, rs2859229, 
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rs1492899, rs929087, rs10458360) and CYP3A4, 3A5, 3A7 or 3A43 (rs2527894, 

rs2527887, rs4215, rs2525557, rs6960542, rs4729562, rs651430, rs12535293, rs472660, 

rs17161981, rs17161983, rs2572023, rs2527927).

Nonlinear mixed-effects modeling was used to determine the effects of genotype on 

olanzapine clearance using NONMEM (version 5, level 1.1; GloboMax, Ellicott City, MD) 

and the first order conditional estimation method with interaction. The baseline population 

pharmacokinetic model has been previously published.2 A one-compartment 

pharmacokinetic model with additive error best describes the data. In a previous analysis of 

these data, we identified sex, race, and smoking status as independent significant 

contributors to olanzapine clearance,2 therefore the model used to test each genetic variant 

included sex, race, and smoking status as covariates. Details on the pharmacokinetic 

modeling have been previously published.2 Smoking status was given by patient self-report 

as either active smoker or non-smoker (including past smokers). Concomitant medications 

that had an incidence of approximately 1% or greater were individually tested as discrete 

covariates in the original characterization of the population pharmacokinetics of olanzapine, 

and none had a significant effect.2 Each SNP was tested separately as a categorical covariate 

to determine its effect on the olanzapine population clearance.

To determine the effect of olanzapine concentrations on clinical response measures, we 

performed a series of linear regressions between olanzapine clearance estimated using the 

final model with all significant covariates including CYP3A43 genotype and several 

measures of clinical response to olanzapine for patients in phase 1 or 1A. We chose PANSS 

ratings as a measure of symptom severity, time to discontinuation for all cause, as well as 

reason for discontinuation as measures of clinical response to olanzapine. There were a total 

of 153 patients that were randomized to olanzapine for phase 1 or 1A for which 

pharmacokinetic data, genetic data, and any clinical response data were available. Four 

patients were excluded after blood level analysis indicated the use of an antipsychotic drug 

outside of the study.

The likelihood ratio test was used to determine the effect of each SNP on the model. The 

likelihood ratio test is based on the property that the ratio of the NONMEM objective 

function values (−2 log-likelihood) is asymptotically chi-square distributed. The objective 

function value is the sum of squared deviations between the predictions and the 

observations. An objective function decrease of 3.84 units was considered significant (χ2, 

df=1, p=0.05). That is to say that the SNP had a significant impact on olanzapine clearance 

if the objective function value decreased at least 3.84 points.

Post-processing of NONMEM outputs and all plots were generated using GraphPad Prism 5 

(version 5.02, GraphPad Software, San Diego, CA). Linear regression was performed to 

determine the magnitude of contribution to the variability of clearance for the significant 

covariates (sex and smoking status) as well as genotype effects. In order to correct for 

multiple comparisons for the 26 SNPs tested, we set an a priori threshold based on the 

conservative Bonferroni correction of p=0.002 for the effect of genotype on olanzapine 

clearance. Data are reported as mean ± standard deviation. Data in the plots were estimated 

using the final model, which included the covariates (sex and smoking status) and genotype.
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To address the possibility of population stratification, which could result in finding false 

positive associations in this subset of patients, we completed a multidimensional scaling 

(MDS) analysis. We performed the MDS analysis based on identify by state (IBS) of the 

genome-wide SNP genotypes within each racial group and the first two MDS components 

were extracted to be used as covariates in drug clearance analysis. The IBS and MDS 

analyses were completed using PLINK8 and R package (http://www.r-project.org/).

Results

Patient demographics are listed in table 1. There was a 9-fold difference in clearance across 

the population (range 6.941 to 60.09 L/h) with a mean clearance of 25.83 ± 9.920 L/h. 

Similar to the original pharmacokinetic analysis,2 men had 25% higher clearance than 

women (27.31 ± 9.975 vs. 21.77 ± 8.613 L/h), smokers had 53% higher clearance compared 

to nonsmokers (29.54 ± 9.361 vs. 19.26 ± 7.103 L/h), and African Americans had a 17% 

higher clearance than Caucasians (28.74 ± 10.08 vs. 24.49 ± 9.584 L/h).

We identified a single SNP in cytochrome P450 3A43 (CYP3A43; rs472660) that highly 

significantly predicted olanzapine clearance. The addition of CYP3A43 genotype to the 

pharmacokinetic model, which already included sex, smoking status, and race, resulted in a 

10.261 point decrease in objective function value (χ2, df=1, p=0.0014; table 2). 

Interestingly, when CYP3A43 genotype was entered into the model, race was no longer a 

significant predictor of olanzapine clearance. When race was removed from the model, the 

objective function did not change, again indicating that race no longer contributed to the 

estimate of olanzapine clearance. The difference between a base model (including only 

smoking and sex) and the addition of genotype to the base model is a highly significant 

change in −15.75 points (p=7.2e−5), and the addition of genotype explained an additional 

5% of the variance not explained by the race effect (table 2). As shown in table 3, 95% of 

GG carriers are Caucasian (compared to only 5% African American), while the opposite, 

89% of AA carriers are African American (compared to only 11% Caucasian). These allele 

frequencies are similar to those in the HapMap project.9

CYP3A43 genotype was also a significant predictor of olanzapine clearance within each 

race, indicating that the overall effect is not an artifact of racial stratification. A linear 

regression in the 74 African Americans revealed that CYP3A43 genotype predicted more 

than 10% of olanzapine clearance in these patients (r2=0.1055, F=8.495, DFn=1, DFd=72, 

p=0.0047). A similar analysis in the 161 Caucasians found that CYP3A43 genotype 

predicted almost 5% of olanzapine clearance in this group (r2=0.04596, F=7.660, DFn=1, 

DFd=159, p=0.0063). The overall effect of genotype in both races is that AA carriers have 

37% higher clearance than GG carriers, which translates into a 48% lower trough plasma 

concentration (25 ng/mL compared to 37 ng/mL).

Linear regression analysis in all subjects revealed that patients with the AA genotype had 

significantly higher olanzapine clearance (31.60 ± 8.990 L/h) compared with GA (27.64 ± 

10.70 L/h) and GG genotypes (23.09 ± 8.716 L/h; F= 26.39, DFn=1, DFd=233, p=5.89e−7, 

figure 1). A linear regression estimated that smoking accounts for 25%, sex accounts for 6%, 

and CYP3A43 genotype accounts for 10% of the variability in olanzapine clearance. The 
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combined effect of all three covariates is that smoking men with AA genotype (n=16) have 

2.5 times higher clearance of olanzapine than nonsmoking women who have the GG 

genotype (n=13), 37.37 ± 8.175 compared to 15.14 ± 3.870 L/h (figure 1). None of the other 

25 SNPs tested were significantly associated with olanzapine clearance. In addition, 

pharmacokinetic analysis of the clearance data from another drug in the CATIE trial, 

ziprasidone, in which race was not a predictor,10 revealed no effect of rs472660 genotype 

(p=0.176), implicating a relatively specific effect of this SNP on olanzapine.

In the CATIE olanzapine dataset, there were 150 subjects treated with 15 to 25 mg/day 

(once or twice a day; median dose 20 mg/day), with 474 measurements of olanzapine 

plasma concentrations. The mean olanzapine clearance was 25.63 ± 9.934 (range 6.940 to 

50.87) L/h, which resulted in a mean steady state concentration of 36.67 ± 24.71 (range 0.09 

to 178.5) ng/mL. Based on these data, the mean individual predicted trough concentration 

would be 31.74 ± 19.20 (range 7.760 to 132.0 ng/mL, which is a 17 fold difference). If we 

compare groups based solely on genotype, GG carriers have a mean individual predicted 

trough concentration of 34.84 ± 18.99, GA carriers 31.17 ± 21.07, and AA carriers 23.47 ± 

13.59 ng/mL. Moreover, 50% of AA carriers (13 of 26), 33% of GA carriers (15 of 46) and 

18% of GG carriers (14 of 78) have individual predicted trough concentrations less than 20 

ng/mL, a blood level thought to represent the lower therapeutic limit.

The olanzapine clearance model based on genotype was also significantly associated with 

measures of clinical response. Patients with a higher clearance (i.e. lower concentrations of 

olanzapine), had a higher total PANSS score at the end of phase 1/1A (n=131, F=11.39, 

r2=0.0811, p=0.0010; figure 2), meaning that they had more symptoms, particularly positive 

symptoms (F=11.48, r2=0.0817, p=0.0009) and general psychopathology ratings (F=11.24, 

r2=0.0801, p=0.0011) rather than negative symptoms (F=2.774, r2=0.0211, p=0.098), 

consistent with the fact that antipsychotic drugs are more efficacious in ameliorating 

positive psychotic symptoms than negative symptoms. While olanzapine clearance did not 

predict time to discontinuation for all cause in phase 1/1A (n=149, F=1.620, r2=0.011, 

p=0.205), it did significantly predict the reason for discontinuation. Patients who 

discontinued olanzapine due to unacceptable side effects (n=34) had the lowest clearance 

(24.41 ± 8.900 L/h); patients who discontinued due to an inadequate response (n=19) had 

the highest clearance (30.97 ± 9.192 L/h); and those who discontinued for other reasons 

(n=15) had an intermediate clearance (29.91 ± 6.687 L/h; ANOVA F=4.361, p=0.0167). 

Patients with unacceptable side effects had 27% lower clearance than those who had an 

inadequate response (Bonferroni corrected p=0.031). This means that patients who had a 

higher olanzapine clearance/lower olanzapine concentrations were more likely to 

discontinue due to an inadequate therapeutic effect (F=3.981, r2=0.0569, p=0.050), and 

those with lower olanzapine clearance/higher olanzapine concentrations were more likely to 

discontinue due to unacceptable side effects (F=8.705, r2=0.117, p=0.0044).

A multidimensional scaling analysis of the whole genome data revealed no evidence of 

stratification as an explanation of these genotype associations with clearance both within 

and across racial groups (supplemental figure 1). While there were some individuals in the 

Caucasian group that were outside the main cluster, the proportion of outlier individuals was 

similar for each genotype. In addition, we performed an analysis controlling for sex, 
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smoking and first two dimensions of the MDS data, and the effect of genotype remained in 

both Caucasians (p=0.0131) and African Americans (p=0.0018) using a general linear 

model.

Discussion

Approximately half of all drugs are metabolized by the CYP3A family of enzymes,11 which 

spans 220 kb on chromosome 7q21.1 and consists of four genes, CYP3A4, CYP3A5, 

CYP3A7, and the most recently identified CYP3A43.12–15 The amino acid sequence of 

CYP3A43 is 75% identical to CYP3A4 and CYP3A5,13 which results in some overlap in 

substrate specificity. The SNP in CYP3A43 showing association with olanzapine clearance 

is intronic and has not been established as a functional variant. However, as illustrated in 

supplemental figure 2, in the Caucasian sample, it is only in minor linkage disequilibrium 

(LD) with other CYP3A43 SNPs in HapMap, suggesting that it is either functional or in LD 

with a previously untyped CYP3A43 variant in this population. In the Yurubi sample there 

is more significant LD with SNPs (rs667660, rs585071, rs620020, rs2740566) in the 5′ 

domain of the gene which were not typed in the dataset, nor were any SNPs in LD with 

these SNPs (supplemental figure 2; SNP version 2.1, www.broadinstitute.org/mpg/snap). 

Further investigation of genetic variation in CYP3A43 is needed to identify the functional 

variants likely monitored by this SNP.

CYP3A43 is expressed at much lower levels in human liver compared to CYP3A416 and 

therefore has previously been thought to be less important in drug metabolism, although 

analogous to CYP3A5, it may contribute to a large fraction of total hepatic CYP3A enzyme 

activity due to genetic variation.17 Interestingly, CYP3A43 has higher levels of extrahepatic 

expression with highest levels in the brain,13, 18 which could result in even larger differences 

in olanzapine levels at the site of its therapeutic action. In fact, one study showed that 

differences in CYP3A43 expression resulted in differences in CYP3A43-specific 

metabolism of alprazolam to alpha-hydroxy alprazolam in human brain.18

While rs472660 was the only SNP tested to have a significant effect on olanzapine 

clearance, there are likely SNPs in other metabolizing enzymes that contribute to variability 

in olanzapine clearance, and future studies should test known and identify novel functional 

polymorphism in CYP450s and other metabolizing enzymes. For example, there is evidence 

that a genetic variant in UDP-glucuronosyltransferase 1A4 (UGT1A4), a phase 2 

metabolizing enzyme that catalyzes the conjugation of a glucuronosylgroup, has a 

significant effect on olanzapine clearance.19

While further research into CYP3A genetics is needed, these data suggest that genetic 

variation in CYP3A43 contributes to the wide variability in olanzapine pharmacokinetics 

and therefore likely results in differences in clinical response. While genotype alone did not 

predict clinical outcome, olanzapine clearance estimated using CYP3A43 genotype 

significantly predicted PANSS score, and was also associated with reason for 

discontinuation. These results indicate that olanzapine pharmacokinetics can have a direct 

impact on clinical response and therefore it may be important to take CYP3A43 genotype 
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and other contributors to pharmacokinetic variability into consideration when dosing 

olanzapine.

Dose-response curves20 and international dosing recommendations of olanzapine21 agree 

that effective doses of olanzapine are in the minimum range of 15 to 20 mg/day, with target 

plasma concentrations of 20–50 ng/mL22, 23 Based on our clearance data, 50% of AA 

carriers have individual predicted trough concentrations less than 20 ng/mL. These results 

suggest that while CYP450 genetic testing may ultimately have utility in clinical monitoring 

of olanzapine therapy, in the absence of more extensive genetic analyses, at the minimum, 

monitoring blood levels of olanzapine is advisable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The combined effect of smoking, sex, and CYP3A43 genotype on olanzapine clearance. 

Caucasians are in blue. African Americans are in red. Horizontal lines represent median.
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Figure 2. 
Olanzapine clearance predicts total PANSS score at end of phase 1/1A.
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Table 1

Patient demographics by CYP3A43 genotype.

All patients (n=235) GG genotype (n=124) GA genotype (n=76) AA genotype (n=35)

Sex 63 F (27%) 31 F (25%) 18 F (24%) 14 F (40%)

Smokers 150 (64%) 76 (61%) 51 (67%) 23 (66%)
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Table 3

CYP3A43 genotype frequency.

GG GA AA

Caucasian (n=161) 118 (73%) 39 (24%) 4 (2%)

African American (n=74) 6 (8%) 37 (50%) 31 (42%)
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