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Helical coherence of DNA in crystals and solution
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ABSTRACT

The twist, rise, slide, shift, tilt and roll between
adjoining base pairs in DNA depend on the identity
of the bases. The resulting dependence of the
double helix conformation on the nucleotide
sequence is important for DNA recognition by pro-
teins, packaging and maintenance of genetic mate-
rial, and other interactions involving DNA. This
dependence, however, is obscured by poorly under-
stood variations in the stacking geometry of the
same adjoining base pairs within different sequence
contexts. In this article, we approach the problem of
sequence-dependent DNA conformation by statisti-
cal analysis of X-ray and NMR structures of DNA
oligomers. We evaluate the corresponding helical
coherence length—a cumulative parameter quanti-
fying sequence-dependent deviations from the ideal
double helix geometry. We find, e.g. that the solution
structure of synthetic oligomers is characterized
by 100-200A coherence length, which is similar to
~150 A coherence length of natural, salmon-sperm
DNA. Packing of oligomers in crystals dramatically
alters their helical coherence. The coherence length
increases to 800-1200 A, consistent with its theore-
tically predicted role in interactions between DNA at
close separations.

INTRODUCTION

Sequence dependence of the double helix structure and
elasticity appear to play an important role in many funda-
mental processes involving DNA. X-ray and NMR struc-
tures of DNA oligomers reveal that the sequence affects
the twist, rise, roll, tilt and other parameters characteriz-
ing the conformation of adjoining base pairs within the
double helix (base pair step parameters) (1-5). The result-
ing intrinsic preference of the double helix to bend and

twist at certain sequences may be important, e.g. for
nucleosome binding, recognition of DNA by regulatory
proteins, DNA-DNA interactions and synthesis of RNA
on DNA templates (6—11 and references therein).

The actual twisting, stretching and bending of the
double helix (hereafter referred to as the DNA conforma-
tion) may not only reflect the tendency of the base pairs to
stack at distances and angles dependent on their identity
but may also depend on interactions with other molecules.
For instance, the same molecule has ~10.5bp per helical
turn in solution (12-15) and 10.0 bp/turn in hydrated
fibers (15,16). The conformation of DNA may also
depend on other environmental factors, e.g. cations in
the crystallization buffer appear to affect the conformation
of DNA oligomers (17).

Analysis of how the DNA conformation depends on the
nucleotide sequence is complicated by variations in the
stacking geometry of the base pairs at each specific step
with the surrounding sequence (18-20). This dependence
of the base pair step parameters on the sequence context
is not only poorly understood but is sometimes left
unnoticed.

In other words, the sequence-dependent DNA confor-
mation may both affect and be affected by the DNA envir-
onment and function. One approach to understanding
these structure—function relationships is through compu-
ter simulations that explicitly account for each base pair,
e.g. within ab initio, all-atom or wedge models (see 21-24
and references therein). This approach, however, is limited
by our knowledge of microscopic interaction potentials
and by other inherent restrictions and assumptions.

Another approach is through relating important DNA
properties to cumulative statistical parameters rather than
to conformations of individual base pair steps. So far this
approach has been limited primarily to a simplified elastic
rod model of DNA (10,21,25-27). For instance, bending
of the central axis of DNA has been described by the
bending elasticity modulus and bending persistence
length. Twisting of DNA has been described by the
torsional elasticity modulus and the corresponding
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persistence length. These parameters have proved to be
very useful in characterizing a number of DNA properties
and interactions (25-28), but they contain no information
about the helical conformation of the molecule and its
sequence.

To incorporate cumulative parameters of the sequence-
dependent helical structure into the latter approach, we
proposed to describe sequence and thermal variations in
the twist between adjoining base pairs with the twist
coherence length (29-31). This length characterizes the
ability of DNA to follow a structure close to a geometri-
cally perfect double helix in the same way as the bending
persistence length characterizes the ability of DNA center-
line to follow a straight line (Figure 1).

In the present study, we introduce a more general con-
cept of helical coherence that accounts also for sequence-
dependent variations in the rise and other base pair step
parameters. From the structures reported in the Nucleic
Acid Database (NDB) (2), we find a dramatically different
helical coherence of DNA oligomers in crystals (X-ray
structures) compared to those in solution (NMR struc-
tures). The solution helical coherence length estimated
from the NMR structures appears to be consistent with
that for natural, salmon-sperm DNA. After describing the
corresponding results, we discuss their implications
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for understanding the relationship of the double helix
structure with the environment and functional properties
of DNA.

BASIC CONCEPTS
Helical geometry of straight DNA

The geometry of an ideal, continuous, straight helix is
described by a simple equation

2w
P(z) = Dy + 17 z 1
where ¢ is the azimuthal orientation of the helix (e.g. one
of its strands) at the coordinate z along the helical axis,
H is the helical pitch and @, = ¢(z = 0) is the helical
phase.

In DNA, the twist, rise and other base pair step param-
eters are affected by the nucleotide sequence (1,2,32)
and thermal motions (21,33). Despite its discreteness and
non-ideal helical geometry, straight DNA can still be
described by
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Figure 1. Schematic illustration of non-ideal helical geometry and helical coherence of straight DNA. (A) The base pairs are depicted as rigid blocks
oriented at azimuthal angles ¢; with the twist (); and rise /; between them, where the index /i numbers the base pairs. (B) The bold line in the top
panel shows the dependence of base pair orientations on the distance z; along the helical axis in an ideal helix, in which the twist ) and rise / per
base pair are constant. Sequence dependence of the twist and rise in a DNA molecule (thin line) with the same average twist and rise (<{,> =  and
<h;> = h) results in accumulating mean-square deviation of base pair orientations from the ideal helix. This loss of helical coherence is best
illustrated by aligning several molecules with uncorrelated sequences at z; = 0 (bottom panel). Since twist and rise variations at each base pair
step are small, these molecules remain close to the ideal helical alignment over many steps. However, accumulating twist and rise displacements
eventually disrupt their alignment. (C) To characterize this effect, we introduce the helical phase ®;, which is the difference between the azimuthal
angle ¢; in a DNA molecule and the azimuthal angle expected in the corresponding ideal helix (z;<{);>/</h;>). The helical phase of each DNA is
determined by its sequence, as illustrated by the plot. The mean-square displacement of ®; averaged over all possible sequences accumulates linearly
with z; [Equation (5)]. The helical coherence length is the axial distance at which this mean-square displacement exceeds | rad®. At larger distances,
azimuthal orientations of base pairs on molecules with different sequences become uncorrelated (B, bottom panel). We describe the contributions of
variations in the twist and rise by the twist and rise coherence lengths, correspondingly [Equation (8)]. For instance, the total helical coherence length
would be equal to the twist coherence length if the variations in the rise were negligible. The contribution of correlations between the twist and rise is
characterized by the twist-rise coherence length. Note that the latter is a mathematical construct rather than a physical length. It may be positive or
negative, depending on the sign of twist-rise correlations. All these concepts can be generalized to bent DNA as discussed in the text.
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where z; is the z-coordinate of the base pair i along the
helical axis, ¢, is the azimuthal orientation of the base pair,
®, is the helical phase,

(€2;)

(hi)
is the reciprocal pitch (in an ideal helix Q/h = 27/H), (),
and h; are the twist and rise between the adjoining base

pairs i-1 and i (Figure 1), and < > indicates sequence and
thermal averaging. The helical phase of DNA

b, —(D()-I—Z

may be different at different base pairs, but its average
value is still the same as in an ideal helix, <®;> = ®,,.
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Helical coherence of straight DNA

The displacement of the helical phase from the average
value increases with the length, disrupting the helical
coherence of the molecule (Figure 1C). Over large spans
of DNA, the mean-square displacement accumulates as

|Zi—2j|

(@ -a)) == 5

where A is the helical coherence length (29,30). In straight
DNA with only short-range correlations in the nucleotide
sequence, Equation (5) fully describes the disruption of the
helical coherence at large distances. Thus, A. is a single
parameter that is needed to characterize the effects of
such disruption, e.g. on intermolecular interactions and
X-ray diffraction by DNA (10). It is the correlation
length for azimuthal orientations of the base pairs; the
orientations of base pairs separated by a larger distance
along the DNA molecule become uncorrelated
(Figure 1B).

The total coherence length has contributions from ther-
mal fluctuations as well as sequence-dependent variations
in both the twist and rise. These contributions add up as

1 1 1
— 4 6
O,

(the derivation will be reported elsewhere). Here /,, is the
helical persistence length, which in straight DNA is deter-
mined primarily by thermal fluctuations
1 - kB—T—i-gngT
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where kg is Boltzmann’s constant, 7 is the absolute tem-
perature and C; and Cs are the torsional and stretching
elasticities of the molecule, respectively. The intrinsic
coherence length associated with sequence-dependent var-
iations in the most energetically favorable values of (), and
h; is given by,

L_1 ., 1 2
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where

(1)
haa > (@ = (@0 = (20, ’
is the intrinsic twist coherence length,

h
g {0 - <h<1>l,>)l(hz+,« — (i), 1
is the intrinsic rise coherence length,
hy = (1), 1

20 2 {(S = () )i — () ),

is the intrinsic twist-rise coherence length, and < >; indi-
cates sequence averaging over all base pairs /. In the case
of no sequence-dependent variations in the twist and rise,
1/A9 =0 and A, = ,.

Note that the intrinsic coherence length and the helical
persistence length describe the ability of DNA to follow an
ideal helical geometry in exactly the same way as the static
(intrinsic) and dynamic (thermal) contributions to the
bending persistence length (34) describe the ability of
DNA centerline to follow an ideal straight line.

From the reported values of C; and C [most recently
reviewed in (10)] we find /, ~700 A, which is slightly longer
than the 500 A (25) bending persistence length of DNA. In
‘Results’ section, we estimate Ao o, Aoz Asy, and the cor-
responding A” from (); and h; measured by X-rays in
crystals and by NMR in solution of different DNA
oligomers.

Helical coherence of curved and nearly straight DNA

Natural curvature of some sequences, thermal motions
and interactions with proteins may cause DNA bending.
The helical coherence length of curved DNA can be cal-
culated along the centerline of the molecule using a similar
approach, as discussed above, but the choice of a reference
frame for defining the base pair step parameters with
respect to the centerline is not a trivial issue (35-37). In
the present study, we use a different, less general approach
that is more convenient for analyzing effects of the helical
coherence on X-ray diffraction and interaction between
DNA in hydrated fibers and liquid-crystalline aggregates.
In such aggregates DNA remains ‘nearly straight’ over
long stretches, i.e. its centerline exhibits only small displa-
cements from a straight axis. The helical coherence length
of a nearly straight DNA can be calculated not only along
its centerline but also along this global helical axis. It is the
latter ‘axial’ helical coherence length that determines
X-ray diffraction patterns and intermolecular interactions
in hydrated DNA fibers. Note that the coherence length
along the centerline of nearly straight DNA should be
only slightly larger and it may be used as an upper
bound approximation for the coherence length along the
global axis.

The actual value of the helical coherence length of
‘nearly straight” DNA along the global axis can be calcu-
lated from Equations (2—11) with all twist and rise values



defined in a reference frame associated with this axis. In
this reference frame, variations in the other base pair step
and conformation parameters (tilt, roll, slide, propeller
twist, etc.) do not result directly in accumulation of devia-
tions from the ideal helical conformation (to be reported
elsewhere).

X-ray diffraction

The intensity of X-ray scattering by a single, long and
straight DNA double helix at the scattering vector (X, k.)

o0
KK, k)= > (K, k) 12
n=—o00
is the sum of scattering intensities along layer lines n,
which can be approximated by (10)

Ji(Ka)
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We assume that the molecule is oriented along the z-axis
and perpendicular to the incident beam. Here K is the
coordinate of the scattering vector perpendicular to the
incident beam and the z-axis, k. is the z-coordinate of
the scattering vector, a is the DNA radius, J,(x) is a
Bessel function of order n, g is the reciprocal DNA
pitch defined by Equation (3), and A. is the helical coher-
ence length of DNA defined by Equations (6-11).

The interpretation of X-ray diffraction from non-
crystalline, hydrated DNA fibers is more difficult due to
intermolecular interactions and complex coherent scatter-
ing effects (38). Nevertheless, our recent analysis indicates
that the scattering intensity at the n = +5 layer lines may
have the form of Equation (13) with A.approximately equal
to the helical coherence length of an undeformed double
helix in solution (to be reported elsewhere). In ‘Results’
section, we use the latter diffraction peaks from previously
reported patterns (16,39), to provide an independent esti-
mate of the helical coherence length in natural DNA.

METHODS

Analysis of DNA oligomer structures from the Nucleic Acid
Database

For the analysis of quenched, sequence-dependent varia-
tions in the twist and rise, we utilized the structures of
B-DNA oligomers from the NDB (2), which were deter-
mined in crystals by X-ray diffraction and in solution by
NMR. We excluded DNA oligomers with modified/
substituted/mismatched base pairs, cross-links, and large
defects as well as DNAs co-crystallized with drugs, pep-
tides or other macromolecules. From the remaining set of
50 crystal structures, we picked several overlapping sub-
sets: (1) 22 structures with no kinks or significant bending
apparent upon examination with a 3D viewer, (ii) dode-
camers only, (iii) decamers only, (iv) decamers without
spermine in the crystallization buffer and (v) decamers
with spermine in the buffer. Independent analysis based
on the full set and all these subsets produced similar
results, as discussed in the Supplementary material.
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Because fewer NMR structures were available, we selected
only one set of 26 oligonucleotides for their analysis. A list
of NDB names and sequences of these oligonucleotides is
provided in the online Supplementary material.

The reasoning behind this conservative and somewhat
limited selection of oligomers was to avoid artificially
enhancing differences between the base pair step para-
meters in crystal and solution structures as well as to dis-
count those structures with defects and sharp bends in the
DNA. Our stringent sampling may, therefore, underesti-
mate some of the structural differences between different
sequences.

To account for possible correlations between the struc-
tural parameters at different (mostly adjacent) base pair
steps along a molecule, we constructed models of DNA
with 10° base pairs by stacking 4-10bp fragments from
the selected oligomers. Fragments of these sizes were
chosen, as opposed to simply using individual base pair
steps of these oligomers, to illustrate the effects of longer
range (>1 bp step away) correlations of the base pair step
parameters.

These randomly sized fragments, eliminating the term-
inal base pairs of the oligomers to avoid end effects, were
randomly selected within the oligomers. They were spliced
by matching the last base pair step of the preceding frag-
ment with the first step of the fragment to be added to
build up the model DNA molecule. For example, if the
final base pair step of a stacked sequence was T-C, the
next fragment to be connected to this sequence was
required to have a T-C step for its first step. Upon stack-
ing of the new fragment, the values of the twist and rise of
the last T-C step of the preceding sequence were replaced
by those of the first T-C step of the new fragment. This
construction (matching the two base pairs of the step
rather than matching only the last and first individual
base pairs of the previous and succeeding fragments,
respectively) provides consistency in the base pair
sequence text of the long molecule as well as subsumes
any possible correlated behavior along the whole mole-
cule. The stacking was performed either only with crystal-
line structures, resulting in DNA-cry models, or only with
NMR structures, resulting in DNA-nmr models.

Note that large (>10° base pairs) length of DNA-cry and
DNA-nmr was required to achieve relatively small errors
for the correlations in the base pair step parameters and in
calculations of the coherence lengths. The analysis was
repeated many times with different random seeds to test
the reproducibility and determine standard deviations for
the extracted correlation functions and coherence lengths.

These very long and unconfined DNA models remained
nearly straight over large stretches but not over the entire
length, so that the global helical axis could not be defined
for the entire molecule. To evaluate the average helical
coherence length for the large nearly straight stretches,
we used the following three approximations.

(i) As an upper bound approximation, we calculated the
intrinsic helical coherence length (A”) along the curved
centerline. We used the NDB twist (£);) and rise (%)
values at the base pair step i defined in a standard local
reference frame (1,35-37) and determined with the 3DNA
program (40). We calculated the coherence length by
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direct fitting of Equation (5), where we replaced the axial
coordinate z with the coordinate along the rise trajectory
(used here as the DNA centerline). The helical phase at
each point along this trajectory was calculated from
Equation (4). Alternatively, we calculated the coherence
length from Equations (8-11). Both procedures returned
the same 1.

(i1) For a lower bound approximation, we used (); and /;
determined from PDB coordinates with respect to the
global helical axis of each oligonucleotide with the
Freheelix98 program (41). We calculated A from
Equations (4,5 or 8-11) as above. This procedure under-
estimates A for the following reasons. (i) It is equivalent
to introducing small kinks at joints between different oli-
gonucleotide fragments in the DNA construct (so that the
global axes of these fragments match and the whole con-
struct remains nearly straight). The kinks may exaggerate
twist and rise variations, reducing the calculated A?). (ii)
The Freehelix algorithm may further exaggerate rise var-
iations because of the reference frame implemented in it
(42), reducing A9 even more.

(iii) Finally, we calculated A(”) using the same procedure
as in the upper bound estimate described above but with
Q); and h; determined in a local reference frame for each
base pair step with the Freehelix98 program. Comparison
of this calculation based on local Freehelix base pair step
parameters with the calculation based on local 3DNA
parameters allowed us to get a better idea of the effect
of using different reference frames and definitions of the
step parameters.

Both 3DNA and Freehelix98 programs used in this
study can be found online at http://ndbserver.rutger
s.edu/services/index.html.

Analysis of fiber diffraction patterns

Original X-ray films with diffraction photographs of
oriented, hydrated fibers of salmon sperm DNA at differ-
ent densities, initially reported in (16), were generously
provided by S. Zimmerman. The photographs were digi-
tized on Arcus Il (AGFA, Brentford, UK) or FUJI
FLAS000 (Fuji Medical Systems, Stamford, CT, USA)
scanners. The patterns were calibrated using the known
diffraction angle of calcite crystals, placed in the X-ray
beam together with DNA fibers as an internal standard
during the diffraction experiments. The density profiles of
the diffraction patterns in the k. direction were analyzed at
the position of the maximum intensity at the n =45 layer
lines. The peaks at all layer lines contributing to this cross
section were simultaneously fitted by Lorentzian functions
[Equation (13)] with Systat PeakFit software. This fitting
procedure was repeated for each quadrant in the diffrac-
tion pattern, providing four width measurements for the
n = =5 diffraction peaks. The value of A. and its standard
deviation were estimated from averaging of these four
measurements.

The diffraction pattern of calf thymus DNA from (39)
was analyzed based on a digital copy of the paper from
www.nature.com. The pattern was calibrated using the
k, = 2mn/H positions of the helical layer lines associated
with the H = 34 A pitch of DNA. Although the pattern

reproduction could distort the image contrast and reduce
the accuracy of the analysis, these results were consistent
with those obtained from the original X-ray films of
salmon sperm DNA described above.

RESULTS
Oligonucleotide-based DNA models

To characterize sequence effects in the double helix struc-
ture, we generated DNA-cry models based on known
X-ray crystal structures of different oligomers with no
visible defects, nucleotide modifications and co-crystal-
lized macromolecules (see ‘Methods’ section). We built
separate models based on a full set of 50 such oligonucleo-
tide structures and its different subsets, all of which pro-
duced similar results discussed in Supplementary material.
Here we show the results obtained for a subset of 22 oli-
gonucleotides with no kinks or bending apparent upon
examination with a 3D viewer. We similarly generated
DNA-nmr models based on known NMR solution struc-
tures of 26 oligomers, also with no defects, apparent kinks
or bending. The NDB names and nucleotide sequences of
all oligomers are listed in the Supplementary material. The
average values of the twist and rise and their dispersions
for different base pair steps in these oligomers (Figure 2)
were consistent with the corresponding values reported
(32,43) from less selective data sets (see Figure SIA and
C in the Supplementary material).

Using the DNA-cry and -nmr models, we calculated the
pair correlation functions (x|y) = ((x — (x))(y — (M))),
for the twist (<€, |+ ; >, rise (g§<h,\h/+,» >), twist-rise
(go<Qylh; + >), and helical phase step (<6®;0P; . ;>
where 6@, = ®, — ®,_;) as outlined in the ‘Methods’ sec-
tion. Here the indices / and i indicate the number of the base
pair step in the DNA construct. We used three different sets
of Q; and A; (see “Methods’ section): (i) based on the stan-
dard local reference frame implemented in NDB, to which
we refer to as a local z/3DNA set; (ii) based on the global
helical axis for each oligonucleotide and Freehelix refer-
ence frame, to which we refer to as a global z/Freehelix
set and (iii) based on the local Freehelix reference frame,
to which we refer to as a local z/Freehelix set. All three sets
produced similar pair correlation functions (Figure 3).

Despite similar average values of the crystal and solu-
tion parameters for each base pair step (Figure 2), the
correlations between these parameters in DNA-cry and
DNA-nmr appear to be markedly different (Figure 3). A
pronounced saw-tooth like pattern of the pair correlations
in DNA-cry and large, negative (x;|y;+1) indicate strong
anti-correlation between successive base pair steps in oli-
gonucleotide crystals. The step parameters deviate in
opposite directions from the average on successive steps.
Each step appears to correct distortions at the preceding
one. Similar anti-correlations were observed when a larger
set of 50 crystal structures and its different subsets were
used to construct DNA-cry (see Supplementary material).

No anti-correlations were found in DNA-nmr. Positive
correlations in the helical phase step (<0®,/0®;, ;>) in
DNA-nmr suggest that the local pitch deviations on suc-
cessive steps within DNA in solution tend to occur in the
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same direction, contrary to DNA in crystals. As one may
expect, the DNA-nmr correlation functions appear to be
shorter range than in crystals.

As expected, by direct averaging we found linear accu-
mulation of mean-square deviations in the helical phase
from that of an ideal helix [Equation (5)]. Figure 4 shows
that Equation (5) becomes accurate in both DNA-cry and
DNA-nmr at length scales larger than ~50 A. This accu-
mulation results in the loss of correlations between azi-
muthal orientations of the base pairs with increasing
separation between them along the molecule, which is
described by the intrinsic helical coherence length A
(Figure 1B).

All three sets of ); and &, produced close values of A"
(Figure 5). These values are consistent with the expected
role of the calculation based on the local z/3DNA set as
an upper bound approximation and the calculation based
on the global z/Freehelix set as the lower bound approx-
imation. Thus, we estimate 800 < A?) < 1200 A in DNA-
cery and 100 < A© < 200A in DNA-nmr. The intrinsic
helical coherence length of DNA appears to be 6-8
times smaller in solution than in crystals. The nearest
neighbor anti-correlations in the local pitch within
DNA-cry reduce the accumulation of the helical phase
distortion, thereby increasing the helical coherence
length. The positive correlations within DNA-nmr have
an opposite effect, they decrease the helical coherence.

Salmon sperm DNA in hydrated fibers

One drawback in using NMR versus X-ray structures
for analyzing helical coherence is that NMR structures
often have lower resolution and may be more
dependent on the force fields and algorithms employed
for their computer refinement (4). Since we could not
exclude potential inconsistency in compiling the data for
oligomers refined by different authors, we also evaluated
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Figure 3. The twist (A and E), rise (B and F), twist-rise (C and G) and helical phase (D and H) correlations within DNA-cry (A-D) and DNA-nmr
(E-H) at base pair steps separated by / intervening base pairs (i = 0 for correlations at the same step, i = 1 for adjoining steps, etc.).
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the helical coherence length based on X-ray diffraction
patterns from hydrated DNA fibers.

A typical diffraction pattern from hydrated, oriented
fibers of B-DNA is illustrated in Figure 6A by a reproduc-
tion of the classical Franklin and Gosling picture (39).
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Figure 4. Relative accuracy of Equation (5) at different length scales
(shown for local z/3DNA but similar for all models). The dashed line is
the prediction from Equation (5).

The two strong peaks on the equator (n = 0Oline) at
K = ++/3/2d;y, are coherent scattering on DNA packed
in a hexagonal array with the interaxial separation d,,
(intermolecular scattering). For a long time the diffraction
peaks at n==+1, £2, 43 and 45 lines were believed to
be incoherent scattering on separate molecules (intramo-
lecular scattering) (39,44). A recent study showed that
intermolecular scattering may contribute to the latter
peaks as well, but this contribution decreases exponen-
tially with n* and becomes small already at n = 43 (38).
While different interpretation of the n =41, £2, 3 peaks
may still be possible, it is clear that the n==+5 peaks in
hydrated fibers should not be affected by intermolecular
scattering.

Moreover, a more detailed theoretical analysis shows
that the effect of structural adaptation of DNA due to
intermolecular interactions on the latter peaks may also
be minimal, provided that the fibers are sufficiently
hydrated. In such fibers, intermolecular interactions may
alter the average twist angle and cause significant devia-
tions from Equation (5) at large |z,—z,/ (30) and from Equa-
tion (13) at n==£1, £2 (to be reported elsewhere). Still,
the form of the shorter-range correlations (smaller |z;,—z))
is given by Equation (5). Also, the n = £5 diffraction
peaks, described by Equation (13), may be unaffected
at sufficiently large intermolecular separations (to be
reported elsewhere). Fitting of the cross sections of the
latter peaks at constant K with Equation (13) can then be
used to extract A, for the solution structure of DNA.

(0) (0) 0)
’IQ,Q ;Lh,h }“Q,h A, ;LQ,Q ﬂh,h ﬂVQ,h A, /IQ,Q ﬂh,h Aop A
L 1 L 1 . 1 1 1 1 3000 1 1 1 1
15000 /M DNA-cry ] - .
1 pNA- ] H E 2000
h o 1 2000
10000 - 1 1000-% -
5000 [ .
N - 1 1500
1500 _— — 500
o
& 1000
50 1000
=
)
) 0
3} r ]
g 500 F .
E 500 -1000 5 E
[} [ ]
O r 1
0 r 1
0 | | -3000 : ]
=500 - 1 -5000 [ .
-500 r 1 F :
r local z/ 3DNA b I local z / Freehelix T 1 F global z / Freehelix ]
-1000 —7000

Figure 5.

Intrinsic helical coherence length A?) and its components, as described by Equations (8-11).
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Figure 6. (A) A typical diffraction pattern of hydrated DNA fibers (39) showing the layer lines. Imperfect vertical alignment results in broadening of
these lines, but average tilt may be estimated from the width of the equatorial Bragg peak. (B) The helical coherence length extracted from
experimental diffraction patterns taken from DNA fibers at different degrees of hydration (fiber density); open circles from data provided kindly
by S. Zimmermann (16,38) and the filled square from the pattern shown in (A). The plotted values of . were extracted by direct fitting of k, cross
sections of n = £5 peaks with Equation (13) without any corrections. The correction for the imperfect vertical alignment discussed in the text

(‘Results’ section) increases estimated A. by 20-30% to 100-130 A.

Fitting of the n=+£5 peaks in the Franklin and Gosling
picture (39) produced 1. ~ 90-130 A (Figure 6B), but this
estimate could be affected by distortions of the diffraction
intensity in the process of picture reproduction. For more
accurate measurements, we reanalyzed 17 diffraction pat-
terns of hydrated DNA fibers from reference (16), for
which the original X-ray films were generously provided
to us by S. Zimmerman. Direct fitting of the n =45 peaks
in the latter patterns produced A. ~ 80-100 A (Figure 6B),
consistent with fitting of the Franklin and Gosling pat-
tern. The fitted values of A. were virtually independent
of the interaxial spacing, consistent with the theoretical
prediction for minimal or no effect of intermolecular inter-
actions on the diffraction peaks at n=45.

However, such fitting underestimates A.. It assumes that
A. 1s inversely proportional to the peak width in the k.
direction, neglecting an unrelated peak broadening due to
imperfect vertical orientation of DNA in fibers. Arcing of
the peaks on the equator and meridian and tilting of the
diagonal peaks in Figure 6A clearly indicate that imperfect
DNA orientation does contribute to the width of the
n = £5 peaks. By examining all these experimental mani-
festations, we estimated the latter broadening as ~20-30%
at smaller d;,, and even larger in more hydrated fibers
(potentially contributing to the small downward trend in

Ao in Figure 6B). Thus, our estimate of A. should be
increased by the same amount to A, ~ 100- 130 A.

From this estimate and Equatlon (6) with /, ~ 700 A,
we find A9 ~ 120-160A, in good agreement with 100
<20 < 200 A deduced from DNA-nmr but clearly differ-
ent from 800 < A < 1200 A deduced from DNA-cry.

DISCUSSION

Sequence-dependent variations, fluctuations and correla-
tions between base pair step parameters were discussed

by many authors in application to DNA structure
and mechanics (see e.g. 1,3,5,19-24,32,33,45-47 and refer-
ences therein). The new question posed by the present
study is how these variations and correlations affect the
double helix coherence, i.e. its ability to follow a geometri-
cally perfect helical structure. The helical coherence
was proposed to play a significant role in DNA
interactions (10).

To answer this question, we analyzed several different
sets of crystal oligonucleotide structures, all of which pro-
duced similar results independent of the oligonucleotide
selection and the crystallization method. A much smaller
number of solution structures were available with only a
handful measured with high-resolution NMR techniques.
Insufficient representation of some base pair steps pre-
cluded the analysis based just on the high-resolution
NMR structures. Even with the addition of lower-
resolution, NOE-based structures, we were still able
to analyze only a single set of oligonucleotides.
Nevertheless, predictions for this set were in complete
agreement with an independent analysis of X-ray diffrac-
tion patterns from highly hydrated, non-crystalline DNA
fibers, giving us reasonable confidence at least in our qua-
litative conclusions.

Probably the most interesting aspect of these new find-
ings is that intermolecular interactions dramatically alter
the helical coherence of DNA in crystals compared to solu-
tion. The underlying changes in the twist and rise between
adjoining base pairs are rather subtle, despite their dra-
matic effect on the helical coherence. It may not be surpris-
ing that these changes have not been delineated before.

Forces affecting helical coherence of DNA in
solution and crystals

First, we should emphasize that the helical coherence of
DNA directly depends only on the twist and rise variations.
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The other base pair step parameters change the helical
coherence only through their effect on the twist and
rise. A comparison of X-ray and NMR structures of syn-
thetic DNA oligomers (Figure 2) reveals that the average
values and dispersions of the twist and rise at each base pair
step except CA/TG are similar in solution and crystals
(2,4,48 and Supplementary material). The difference
in the twist at CA/TG may be related to bimodal distribu-
tion with distinct low and high twist conformations at this
step in dodecamer and decamer crystals, correspondingly
(3, see also Figure S1B in the Supplementary material).
At the same time, our analysis suggests that the correla-
tions between these parameters and correlations of indivi-
dual step parameters among adjoining steps along the
sequences may be different, dramatically altering the ability
of the DNA backbone to retain its helical coherence.

In solution, a larger than average twist between adjoin-
ing base pairs is more likely to be accompanied by a smal-
ler than average rise, amplifying the distortion in the
helical pitch at this base pair step (Figure 3G). A higher
probability of a similar distortion and similar deviation in
the helical phase at the next step (Figure 3H) exacerbates
helical coherence disruptions, causing accumulation of sig-
nificant deviations from the ideal helical geometry over a
shorter axial distance.

In crystals, a totally different trend is observed. In con-
trast to solution, larger than average twist is more likely to
be followed by smaller than average twist at the next base
pair step (Figure 3A). As a result, the distortions in the
helical pitch and deviations in the helical phase occur in
opposite rather than similar directions at successive steps,
reducing the helical coherence disruptions.

In solution, correlations between the base pair step
parameters are determined by base pair stacking
(in which we include steric clashes) and mechanics of the
sugar-phosphate backbone (in which we include all intra-
molecular interactions within the backbone). The stacking
interactions define preferential conformation at individual
base pair steps. The backbone mechanics couples confor-
mation parameters within each step and between adjacent
steps. A smaller than the average rise upon larger than the
average twist may reduce stretching while gradual relaxa-
tion of helical pitch variations may prevent sharp bending
of the backbone.

In crystals, correlations between the base pair step para-
meters are in addition affected by steric clashes between the
molecules and their hydration layers and by electrostatic
interactions between the charged backbones. All these
intermolecular interactions depend on the alignment
between the ridges and grooves on opposing surfaces
formed by the backbone, with the ridges facing the grooves
being the most favorable alignment (10). Anti-correlated
pitch distortions at consecutive steps may introduce an
extra mechanical strain into each molecule, but they
favor more beneficial alignment between molecules.
Apparently the latter constraint is more important; invert-
ing the helical phase correlations compared to those in
solution and dramatically increasing the helical coherence.
The only other way to enhance the helical coherence would
be to make all twists and rises more uniform, independent
of the sequence. But, this is not what we observe.

Note that only twist-rise correlations in crystals appear
to be altered by the choice of the reference frame
(Figure 3C). This is consistent with the previous report
that the reference frame may affect the rise but not the
twist (42). The calculated helical coherence length of
DNA, however, is less affected by the choice of the refer-
ence frame, making it a convenient measure of sequence-
dependent variations in the double helix conformation.

Helical coherence of DNA in non-crystalline,
hydrated fibers

While easier to study, the double helix conformation in
relatively dilute solutions or in crystals may not fully
represent that inside cells. Packaging of meters of nucleic
acids inside micron size compartments in cells necessitates
close intermolecular interactions; yet the double helices
remain more hydrated and not as tightly packed as in
crystals, and they participate in more heterogeneous inter-
actions. In vitro studies of DNA in hydrated fibers and
liquid crystals designed to mimic some of the intracellular
interactions revealed a surprising variety of phenomena,
most recently reviewed in (10). Better understanding of the
DNA helical coherence in such aggregates may help in
understanding molecular mechanisms underlying these
phenomena.

The adaptation of the double helix structure to inter-
molecular interactions does occur in hydrated DNA
aggregates too, e.g. unwinding of the double helix from
~10.5bp/turn to 10.0bp/turn (15,16). However, this
adaptation is predicted to be more subtle than in crystals
(to be reported elsewhere). Instead of altering short-range
correlations between the base pair step parameters, the
interaction between hydrated DNA results in the appear-
ance of a new length scale, the ‘torsional adaptation
length’ (30). The interaction alters the correlations bet-
ween the base pair step parameters at larger length
scales, preventing unlimited accumulation of the helical
coherence distortions. As a result, the molecules gain the
longer range coherence necessary for more energetically
favorable alignment over a large juxtaposition length. At
the same time, the correlations between the base pair step
parameters and the helical coherence within shorter
stretches of DNA remain essentially the same as in solu-
tion. The stronger the intermolecular interaction is, the
shorter the torsional adaptation length will be (30).
Crudely, one may think of crystals as a limiting case, in
which the torsional adaptation length becomes so small
that the correlations between base pair step parameters
are affected by intermolecular interactions at all distance
scales.

Helical coherence length of natural DNA

To quantify helical coherence distortions, we introduced
a helical coherence length, A., which is the length scale at
which accumulation of displacements from an ideal helical
structure disrupts correlations in the helical phase
[Figure 1B and C; Equation (5)]. Azimuthal orientations
of the base pairs separated by a larger distance along the
molecule become uncorrelated. This cumulative, statistical
parameter depends both on the deviation of the base pair



step parameters from the average and the correlations
between these parameters. At scales smaller than A,
DNA can be perceived as an ideal double helix, but at
longer scales this is not the case. The sequence dependence
of preferential base pair step parameters determines the
intrinsic coherence length A®) of DNA [Equations
(8-11)]. Thermal fluctuations reduce the total coherence
length A, compared to A" [Equations (6 and 7)].

Analysis of the helical coherence based on DNA
models, constructed by stacking oligomers with known
structures, yielded A ~100-200 A when using NMR
structures in solution and A0 ~ 800-1200 A when using
X-ray structures in crystals (Flgure 5). The difference in
29 by almost an order of magnitude is associated primar-
ily with the changes in base pair step parameter correla-
tions, induced by the above discussed DNA-DNA
interactions. Just as they suppress bending (33,43), crystal
packing forces suppress helical pitch fluctuations, drama-
tically increasing the intrinsic helical coherence length.

Evaluation of the helical coherence length of natural,
salmon sperm DNA in solution from X-ray diffraction
on hydrated fibers yielded A.~100-130 A (Figure 6) and
A9 ~ 150 A, in agreement with the 29~ 100-200 A esti-
mate based on NMR  structures. However neither the
X-ray data analysis nor the models of stacked oligomers
are perfect. For instance, splicing and stacking of the oli-
gomers could affect the model analysis; and imperfect ver-
tical alignment of the molecules in fibers and non-linear
response of the X-ray film could affect interpretation of
the diffraction patterns. The uncertainty in 1. and A9 asso-
ciated with these factors, however, cannot be responsible
for the large difference between the helical coherence of
DNA in solution and crystals. In any case, we expect
these estimates to be accurate at least by an order of
magnitude.

Effect of helical coherence on DNA interactions and
homology recognition

While helical coherence may also be important, e.g. for
interactions of DNA with proteins, we currently can say
more about its potential role in DNA-DNA interactions.
The potential importance of helical coherence for such
interactions at biologically relevant intermolecular dis-
tances (packing densities) is suggested by the following
observations and arguments.

Detailed theoretical analysis (10) suggests the following.
Close juxtaposition of DNA is more energetically favor-
able when their sugar-phosphate backbones are aligned in
such a register that minimizes the repulsion between nega-
tively charged phosphates (49). This in-register alignment
may become even more favorable upon binding of posi-
tively charged counterions in DNA grooves and juxtapo-
sition of bound counterions with phosphates on the
opposing surface (50). Disruptions of helical coherence
preclude undeformed molecules from establishing such a
register (29). Torsional deformation restores more favor-
able alignment, but at a corresponding energetic cost. This
cost is an essential part of the interaction energy. It is
determined by the balance between the torsional rigidity
and the helical coherence length (30).
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The tendency of hydrated DNA assemblies to form
chiral, cholesteric liquid crystalline phases both in vitro
and in vivo [see e.g. (51) and references therein] is direct
experimental evidence for the importance of an in-register
alignment. Without such an alignment, chirality of most
important interactions between the molecules (e.g. electro-
static interactions between sugar-phosphate strands)
would simply be averaged out (52). The alignment is
also supported by the observation of strong azimuthal
correlations between DNA helices, even in highly
hydrated fibers (38). The observed double helix unwinding
to 10 bp/turn in fibers (15,16) appears to be a manifesta-
tion of the torsion deformation accompanying this
alignment.

The in-register alignment without torsional deformation
is possible only upon juxtaposition of homologous (iden-
tical or nearly identical) sequences, when helical imperfec-
tions of the two molecules match. The energetic advantage
of the juxtaposition between homologous sequences
versus non-homologous sequences (sequence recognition),
is determined by the cost of the torsional adaptation (30).
A greater torsional adaptation is required for the
in-register alignment of non-homologous molecules with
shorter helical coherence length, resulting in a larger
sequence recognition energy.

The recognition may be sufficiently strong, e.g. to
explain segregation and pairing of homologous sequences
recently observed within cholesteric spherulites formed by
mixtures of two fragments with the same length and base
pair composition but different sequences (53) Note that
the recognition energy calculations reported in the latter
study assumed A© ~300A. Our current estimates of
shorter A0 suggest even stronger sequence recognition.

Additional experiments are still needed before the
observed sequence homology recognition is established as
a general feature of interactions between any double-
stranded DNA fragments. Alternative interpretations of
such recognition, e.g. via bubble formation and cross hybri-
dization of the resulting single strands, should also be
tested. Nevertheless, the possibility is not just intriguing
but also potentially crucial. Pairing of homologous
sequences within intact double-stranded DNA was pro-
posed to precede double strand breaks that trigger homo-
logous recombination in cells (54,55). Can the potential
intrinsic ability of double-stranded DNA to recognize seq-
uence homology from a distance contribute to the pairing?
This question remains to be answered by future studies.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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