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The aim of this study was to explore changes in intracellular ATP generation and tight

junction protein expression during the course of brain edema induced by subacute

poisoning of 1,2-dichloroethane (1,2-DCE). Mice were exposed to 1.2 g/m3 1,2-DCE

for 3.5 h per day for 1, 2, or 3 days, namely group A, B, and C. Na+-K+-ATPase and

Ca2+-ATPase activity, ATP and lactic acid content, intracellular free Ca2+ concentration

and ZO-1 and occludin expression in the brain were measured. Results of present study

disclosed that Ca2+-ATPase activities in group B and C, and Na+/K+-ATPase activity

in group C decreased, whereas intracellular free Ca2+ concentrations in group B and

C increased significantly compared with control. Moreover, ATP content decreased,

whereas lactic acid content increased significantly in group C compared with control.

On the other hand, expressions of ZO-1 and occludin at both the protein and gene levels

in group B and C decreased significantly compared with control. In conclusion, findings

from this study suggest that calcium overload and depressed expression of tight junction

associated proteins, such as ZO-1 and occludin might play an important role in the early

phase of brain edema formation induced by subacute poisoning of 1,2-DCE.

Keywords: 1, 2-dichloroethane poisoning, brain edema, ATP generation, blood brain barrier, tight junction

associated proteins

INTRODUCTION

The compound 1,2-dichloroethane (1,2-DCE, CAS number: 107-06-2) is one of the most
widely-produced halocarbons, used mainly in the production of vinyl chloride worldwide. This
chemical is also used as general organic solvent, especially the thinner of adhesives in some
countries. As a volatile organic chemical, 1,2-DCE evaporates quickly into the air, therefore, the
primary route of exposure in the workplace is vapor inhalation (Liu et al., 2010; Sun et al., 2016c). It
is known that subacute poisoning of 1,2-DCE can cause toxic encephalopathy in exposed workers.
Postmortem examinations and clinical studies reported that brain edema was themain pathological
change and cause of death among poisonedworkers (Zhang et al., 2011; Chen et al., 2015). However,
to date, little is known about the mechanisms of 1,2-DCE-induced brain edema.

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00012
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00012&domain=pdf&date_stamp=2018-01-23
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jinyp@mail.cmu.edu.cn
https://doi.org/10.3389/fnins.2018.00012
https://www.frontiersin.org/articles/10.3389/fnins.2018.00012/full
http://loop.frontiersin.org/people/400099/overview
http://loop.frontiersin.org/people/516010/overview
http://loop.frontiersin.org/people/400102/overview
http://loop.frontiersin.org/people/363534/overview


Wang et al. Mechanisms of 1,2-Dichloroethane Induced Brain Edema

Brain edema is commonly classified into cytotoxic and
vasogenic types associated with either intracellular or
extracellular accumulation of abnormal fluid. The former is
due to disordered energy metabolism in injured brain cells,
while the latter results from breakdown of the blood brain
barrier (Michinaga and Koyama, 2015). It is well-known
that intracellular energy metabolism is the process of ATP
generation from the nutrients via oxidative phosphorylation
in mitochondria. Both Na+-K+-ATPase and Ca2+-ATPase are
the enzymes found in the plasma membrane of all animal cells,
where they pump Na+ and Ca2+ out of cells while pumping
K+ into cells against their concentration gradients, using energy
provided by ATP hydrolysis. These transporters help maintain
high intracellular concentrations of K+ and low concentrations
of Ca2+ and Na+ (Jeremias et al., 2012; Liu et al., 2013).
Disordered energy metabolism reduces ATP generation, and
impedes activities of plasma membrane ion pumps, which will
inevitably lead to excessive increase of intracellular Na+ and
Ca2+, and finally cause water excess and calcium overload in
brain cells, thus forming cytotoxic brain edema (Thrane et al.,
2011; Song et al., 2014). It has been reported that recovery
of Na+-K+-ATPase activity coincided with restoration of
cerebral edema after brain hypoxia-ischemia (Mintorovitch
et al., 1994). Our previous study (Sun et al., 2016b) also reported
that exposure to 2-chloroethanol (a metabolite of 1,2-DCE
in vivo) could cause decreased activities of Na+-K+-ATPase
and Ca2+-ATPase in astrocytes, which might be related to
1,2-DCE-induced brain edema. Simultaneously, decreased ATP
supply from mitochondria will promote anaerobic metabolism
in the cytoplasm, leading to accumulation of lactic acid, and in
turn, increased permeability of blood brain barrier (Kubota et al.,
2012; Bosoi and Rose, 2014).

The blood brain barrier is a diffusion barrier essential for
maintenance of normal brain function, which controls influx
of most intravascular compounds from the blood into brain.
It is composed of endothelial cells, pericytes and end-feet of
astrocytes. Among them, endothelial cells are the most critical
elements for preventing toxic substances from entering the brain.
Endothelial cells are connected by tight junctions, which limit
the paracellular flux of hydrophilic molecules across the barrier.
Thus, tight junctions between endothelial cells are the most
important structural components and crucial for permeability
and integrity of the blood brain barrier (Wolburg et al., 2003;
Abbott et al., 2010). Tight junctions consist of three integral
membrane proteins: claudin, occluding, and junction adhesion
molecules. In addition, there are several cytoplasmic accessory
proteins including zona occuldens proteins (ZO-1, ZO-2, and
ZO-3), cingulin and others. ZO-1 and occludin are thought to
play the essential roles in maintaining the integrity of blood
brain barrier, although there may be additional tight junction
associated proteins (Jie et al., 2015). It has been reported
that levels of ZO-1 and occludin were significantly altered in
many pathological conditions, such as stroke, ischemia, hypoxia,
septic encephalopathy, and brain tumors. In most cases, these
pathological conditions were associated with breakdown of blood
brain barrier and vasogenic cerebral edema (Hawkins et al., 2004;
Liu et al., 2008; Jiao et al., 2011; Chen et al., 2012).

The results of our previous study (Wang et al., 2014) showed
increased brain water content and enlargement of perinuclear
and lacunar spaces surrounding vessels in the brain of mice
exposed to 1.2 g/m3 1,2-DCE for 3.5 h per day for up to three
days, which suggested that a mouse model of brain edema
induced by subacute poisoning of 1,2-DCE had been successfully
established. Based on this model, the mechanisms underlying
brain edema were explored in our previous study, and the results
showed that protein expression of aquaporin 4 (AQP4) and
mRNA expression of matrix metallopeptidase 9 in the brain were
up-regulated in the early phase of brain edema formation. In the
present study, alterations of cellular ATP generation and tight
junction associated proteins, i.e., occludin and ZO-1, were further
explored by using this mouse model of brain edema.

MATERIALS AND METHODS

Animals
Female Kunming albino mice weighing between 23 and 26 g
were obtained from the animal laboratory of China Medical
University. The animal room was kept at a temperature of 22–
24◦C with a 12 h light/dark cycle and a relative humidity of 50–
60%. Mice were housed five per cage in the sterilized plastic cages
with wood shaving bedding. Except when exposed to inhalants,
food, and water were available to animals. During the study,
mice were weighed daily and carefully observed for the signs of
morbidity and mortality.

This study protocol has been approved by the Scientific
Research Committee of China Medical University on Ethics in
the Care and Use of Laboratory Animals, and was carried out in
accordance with the National Institutes of Health guidelines in a
manner that minimized animal suffering and animal numbers.

Experimental Procedures
After 1-week adaptation, 100 mice were randomly divided into
four groups, a control group and three exposure groups, as
described in our previous study (Wang et al., 2014). Mice in
exposure groups were exposed to 1.2 g/m3 1,2-DCE (initial
concentration) for 3.5 h per day for one day (group A), two days
(group B) or three days (group C).

Treatment
Static inhalation exposure was used in this study. Mice from
different groups were placed in the static exposure chamber with
a capacity of 100 L, five in each chamber. Mice were exposed
for 3.5 h per day for up to 1, 2, or 3 days. Solution of 1,2-
DCE with purity of more than 99% was weighed according to
administered concentrations, which were calculated by weight
of 1,2-DCE divided by volume of chamber. The compound was
placed on a filter paper in a plate suspended in the chamber, and
then evaporated by a fan after sealing the chamber. Mice in the
control group were kept in chamber without 1,2-DCE exposure.
Following exposure, mice were removed from the chambers
immediately.

Although it was problematic, static inhalation exposure has
its own advantages, including that it is inexpensive, easy to build
and operate, and involves less consumption of test chemicals.
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This is particularly suitable for small animals in experiments
of acute and subacute inhalation exposure. Data from the U.S.
Environmental Protection Agency (1998) and the Chinese
Textbook of Toxicology, state that mice consume 1.38∼2.22 L
per hour of air, indicating that up to 10 mice were permitted in
a 100 L exposure chamber for 4 h. However, in present study,
only five mice were kept in 100 L exposure chamber for 3.5 h. At
the end of exposure, the concentration of oxygen was near 20%,
carbon dioxide was lower than 1.5%, and humidity was lower
than 70% in the chamber. Moreover, the time-weighted average
concentration of 1,2-DCE in the chamber during exposure
was 0.99 g/m3.

Analysis Process
Activities of Na+-K+-ATPase and Ca2+-ATPase
Mice in each group were deeply anesthetized with ether and
sacrificed by decapitation one day after the last exposure.
The right cerebral hemispheres were removed immediately and
homogenized in 0.9% cold physiological saline. Activities of
both Na+-K+-ATPase and Ca2+-ATPase in cerebral homogenate
were spectrophotometrically determined with commercially
available kits (Nanjing Jiancheng Bioengineering Institute,
China) according to manufacturer’s instructions, and defined as
the amount of inorganic phosphorus generated by 1mg protein
per hour (expressed as U/mg protein).

Contents of ATP and Lactic Acid
Cerebral homogenates were prepared as above and centrifuged
at 12,000 rpm for 10min. Supernatant was collected and
analyzed spectrophotometrically by using the commercial assay
kits (Nanjing Jiancheng Biotechnology Institute, China). The
contents of ATP and lactic acid in the brain were expressed as
µmol/g protein.

Concentrations of Intracellular Free Ca2+

The method described previously (Chan et al., 1996) was used
in present study. Briefly, cerebral cortex was digested with 0.25%
trypsin (Sigma, USA) at 37◦C for 20min. The reaction was
terminated with DMEM containing 10% FBS (Hyclon, USA).
Samples were filtered through a cell strainer, and centrifuged at
1,000 rpm for 5min. The precipitated cells were resuspended
in D-Hank’s solution and adjusted to 1×106 cells/ml. They
were loaded with 5µM fura-2 AM (Sigma, USA) at 37◦Cfor
30min in the dark, washed twice with D-Hank’s solution,
and incubated at 37◦C for 5min in the dark. Concentrations
of intracellular free Ca2+ [Ca2+]i were determined by using
fluorospectrophotometer (Hitachi F-4500, Japan). The following
equation was used for calculation:

[Ca2+]i=Kd×[(R–Rmin)/(Rmax–R)]×(Sf380/Sb380), where
Kd is the dissociation constant of the dye (224 nM was used);
R is the ratio at excitation wavelengths 340/380 nm; Rmin is the
ratio at zero [Ca2+]i, and Rmax is the ratio at saturated [Ca2+]i.
Rmax was obtained by adding 0.2% Triton X-100 to make
cell membrane permeable to Ca2+, allowing the extracellular
and intracellular free Ca2+ to equilibrate. Thereafter, Rmin was
determined by adding chelator to erase all extracellular and
intracellular free Ca2+. Results were expressed as nmol/L (106

cells/ml).

Immunofluorescence Staining
Five mice in each group were anesthetized with ether. They
were perfused through heart with PBS containing 0.02% heparin,
followed by 4% paraformaldehyde in PBS. Cerebral cortexes
were quickly removed to a cold plate, then fixed overnight in
4% paraformaldehyde. Fixed samples were immersed in 30%
sucrose for 3 days and embedded in OCT-compound. Serial
frozen coronal sections (8µm) were sliced at −20◦C using a
cryostat microtome. Thereafter, sections were permeabilized for
30min in PBS containing 0.3% Triton X-100 and incubated for
30min with normal goat serum (ZSGB-BIO, Beijing, China) to
block nonspecific binding of antiserum.

For immunofluorescence staining, sections were incubated
with rabbit antibodies against ZO-1 (Millipore, CA, USA) and
occludin (Zymed, MA, USA), and mouse antibody against GFAP
(Millipore, CA, USA) at 4◦C overnight. On the following day,
goat anti-rabbit FITC and goat anti-mouse TRITC conjugated
secondary antibodies (ZSGB-BIO, Beijing, China), were added
and incubated for 30min at 37◦C in a dark room. Finally,
the frontoparietal region was observed under a fluorescence
microscope (Olympus BX50). Images were captured using a
digital camera system (Olympus SC35). The relative fluorescence
intensities of ZO-1 and occludin were quantified using image J
software (NIH, USA).

Western Blot Analysis
Cerebral tissues were homogenized in RIPA lysis buffer, and
then lysate was centrifuged at 4◦C, 12,000×g for 20min.
After centrifugation, supernatant was collected for SDS-PAGE.
Protein concentrations were measured using BCA protein
assay kits (Pierce, IL, USA). An equal amount of protein
(45 µg per lane) was subjected to SDS-polyacrylamide gels
and separated by electrophoresis. Subsequently, blots were
transferred to polyvinylidene difluoride (PVDF) membranes
(Millipore, MA, USA), and probed with rabbit antibodies
against ZO-1, occludin or β-actin (Santa Cruz Biotech, Santa
Cruz, CA, USA). Membranes were incubated with peroxidase
conjugated secondary antibody. Immunoreactive bands were
detected with an ECL kit (GE Healthcare, Buckinghamshire,
UK). For quantification of immunoblot signals, band
intensity was assessed semi-quantitatively by densitometry
using an image analyzing software (Gel-Pro analyzer v4.0),
and normalized by intensity of β-actin (as the internal
control).

Quantitative Real-time PCR Assay
Total RNA was extracted from cerebral tissues using Trizol
Reagent (Invitrogen, CA, USA). The first strand of cDNA
was synthesized from total RNA using PrimeScript RT reagent
Kits (Takara, Tokyo, Japan). Thereafter, cDNA was served as
templates for real-time PCR amplification using SYBR Premix
Ex Taq II (Takara, Tokyo, Japan) and ABI 7500 Real-Time
PCR System (Applied Biosystems, CA, USA). To amplify a
fragment of ZO-1, occludin and GAPDH (as house-keeping
gene), the following primer pairs detailed in Table 1 were used.
Amplification was conducted for 40 cycles of 5 s at 95◦C and
34 s at 60◦C. Results were analyzed using the comparative Ct
method as described by Livak and Schmittgen (2001). RNA
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TABLE 1 | Oligonucleotide sequences used for real-time RT-PCR.

Gene Primer sequences Product (bp)

ZO-1 5′-AAGCGATTCAGCAGCAACAG−3′

5′- GGACCGTGTAATGGCAGACT−3′
269

Occludin 5′- GCTATGGAGGCTATGGCTATGG−3′

5′- CTAAGGAAGCGATGAAGCAGAAG−3′
161

GAPDH 5′- CAATGTGTCCGTCGTGGATCT−3′

5′- GTCCTCAGTGTAGCCCAAGATG−3′
124

abundance was expressed as 2−11Ct for target gene normalized
against GAPDH gene (as the internal control), and presented as
fold-change vs. contralateral control samples.

Statistical Analysis
Data were expressed as mean ± standard deviation (SD), and
analyzed using SPSS for Windows, version 13.0 (SPSS Inc. IL,
USA). Significant difference was evaluated by analysis of variance
test (one-way ANOVA). Post hoc tests were analyzed by Student-
Newman-Keuls test (SNK). Statistical significance was defined as
P < 0.05.

RESULTS

General Health of Mice Affected by
1,2-DCE Poisoning
As described in our previous paper (Wang et al., 2014), mice
in group B showed body tremors and forelimb flexure. These
signs were more severe in mice of group C. There were no
abnormalities in control group during experimental period.

Changes in Na+-K+-ATPase and
Ca2+-ATPase Activity, ATP And Lactic Acid
Content in the Brain Induced by 1,2-DCE
Poisoning
To explore changes in intracellular ATP generation in the
brain of mice induced by 1,2-DCE poisoning, Na+-K+-ATPase
and Ca2+-ATPase activities, ATP and lactic acid contents in
mouse brain were determined. As shown in Figure 1, Na+-
K+-ATPase activity in group C, and Ca2+-ATPase activities in
group B and C decreased significantly (P < 0.05) compared
with control. Moreover, compared with control, ATP content
decreased significantly (P < 0.05), whereas lactic acid content
increased significantly (P < 0.05) in group C. On the other hand,
as shown in Figure 2, intracellular free Ca2+ concentrations in
group B and C also increased significantly (P < 0.05) compared
with control.

Changes in ZO-1 and Occludin Expression
in the Brain Induced by 1,2-DCE Poisoning
Figures 3a, 4a show representative micrographs illustrating
immunereactivity of ZO-1 and occludin in the brain, captured
on different exposure days. There was continuous expression
of ZO-1 and occludin in cerebral tissues in the control group,
surrounded by GFAP-positive astroglia processes. However,

expression of both ZO-1 and occludin in exposure groups,
especially in group B and C appeared discontinuously.
Furthermore, as shown in Figures 3b, 4b, compared with
control, fluorescence intensities of ZO-1 and occludin in group
B and C significantly decreased (P < 0.05).

Figures 5a, 6a show typical western blots for ZO-1 and
occludin. Figures 5b, 6b disclosed the quantitative analysis of
protein blots. Consistent with the results of immunoreactivity,
protein levels of both ZO-1 and occludin in group B
and C decreased significantly (P < 0.05) compared with
control. Additionally, graphs shown in Figures 5c, 6c disclosed
quantitative analysis of mRNA expression, which demonstrated
that mRNA levels of both ZO-1 and occludin in group B
and C decreased significantly (P < 0.05) compared with
control.

DISCUSSION

According to the results we reported previously (Wang et al.,
2014), a mouse model of brain edema could be established by
exposure to 1.2 g/m3 1,2-DCE, 3.5 h per day for up to 3 days.
The results in the present study showed decreased ATP levels
and ATPase activities after 1,2-DCE exposure. On one hand,
reduced ATP levels may be due to mitochondrial dysfunction
or decreased oxygen supply induced by 1,2-DCE poisoning,
which may contribute to decreased activities of these pumps
since the energy derived from ATP hydrolysis is needed when
the cells pump out Na+ and Ca2+ against their concentration
gradients. On the other hand, decreased activities of the pumps
may lead to excessive increase of intracellular Na+ and Ca2+,
which may cause mitochondrial dysfunction and subsequently
result in reduced ATP generation. In addition, the results in the
present study suggested that suppressed Ca2+-ATPase activity
might occur and lead to calcium overload in the early phase
of 1,2-DCE-induced brain edema, since alterations of Ca2+-
ATPase and intracellular free Ca2+ appeared earlier than other
indicators after 1,2-DCE exposure. It is generally accepted that
Ca2+-ATPase transports free Ca2+ into endoplasmic reticulum
and out of the cell from cytoplasm using energy obtained through
ATP hydrolysis. Thus, suppressed Ca2+-ATPase activity might
result in excessive levels of cytoplasm free Ca2+, which could
induce a series of catastrophic enzymatic processes, culminating
in mitochondrial dysfunction (Putney, 2003) and certain brain
pathologies (Paluzzi et al., 2007; Thrane et al., 2011; Song et al.,
2014).

Therefore, our results suggest that exposure to 1,2-DCEmight
disturb calcium homeostasis in brain cells, thereby causing an
energy metabolism disorder (Liu et al., 2013; Rosa et al., 2015;
Vlodavsky et al., 2017). It has been reported byWang et al. (2007)
that treatment with 1,2-DCE could increase the concentration of
calcium in rat neurons, which was consistent with our results.
Similarly, in our previous study (Sun et al., 2016b), primary
cultured astrocytes were exposed to different levels of 2-CE, and
the result showed inhibited activities of Na+-K+-ATPase and
Ca2+-ATPase in the cells, which is consistent with our present
in vivo results.
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FIGURE 1 | Changes in Na+−K+-ATPase and Ca2+-ATPase activity, ATP and lactic acid content in mouse brain cells induced by subacute poisoning of 1,2-DCE.

(a) Comparison of Na+-K+-ATPase activity in mouse brain cells among groups; (b) Comparison of Ca2+-ATPase activity in mouse brain cells among groups;

(c) Comparison of ATP content in mouse brain among groups. (d) Comparison of lactic acid level in mouse brain among groups. The number of mice were 10 in

control group, 9 in group A, 8 in group B, and 8 in group C. Data were given as mean ± SD, and analyzed by One-way ANOVA. Significant difference was defined as

P < 0.05. * vs. control group.

FIGURE 2 | Comparison of intracellular free Ca2+ concentration in mouse

brain cells among groups. Five mice in each group were selected for this

analysis. [Ca2+]i represented concentrations of intracellular free Ca2+. Data

were given as mean ± SD, and analyzed by One-way ANOVA. Significant

difference was defined as P < 0.05. *, vs. control group.

Additionally, it is wellknown that lactic acid is the energy
source for neurons in the brain. In injured neurons, less lactic
acid may be consumed, leading to accumulation of lactic acid
in the brain (Preuss, 2012; Bosoi and Rose, 2014). Nevertheless,

intracellular contents of ATP and lactic acid are the important
indicators of energy metabolism in the brain (Borutaite, 2010;
Dienel, 2014). Though disordered energy metabolism is the main
cause of cytotoxic edema in the brain, it might also result in
vasogenic brain edema since increased levels of intracellular lactic
acid induced by cytotoxic edema might disturb the function of
the blood brain barrier (Chen et al., 2000; Rose, 2010; Yang et al.,
2012; Afadlal et al., 2014). Therefore, although brain edema can
be divided into cytotoxic and vasogenic edema at the initial stage,
given that cytotoxic and vasogenic edema can be the cause of each
other, it will become mixed brain edema soon.

Occludin, an integral protein at the tight junctions has
four transmembrane domains, two extracellular loops and one
intracellular loop (Fusco and Paluzzi, 1993). Among them, the
extracellular loops originated from the neighboring cells form the
paracellular barrier of tight junctions. The cytoplasmic domain
is directly associated with ZO proteins for assembly of occludin
into tight junctions. It has been reported that occludin is the
most reliable immunohistochemical marker for tight junctions,
reflecting structural integrity of blood brain barrier (Wells and
Bonetta, 2005; Wen et al., 2014). ZO-1 belongs to the family
of proteins known as membrane-associated guanylate kinase-
like protein. It contains three PDZ domains, one SH3 domain
and one guanyl kinase like domain. It has been reported that
the guanylate kinase-like domain interacts with occludin, and
the C-terminal binds to actin, forming a scaffold to anchor
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FIGURE 3 | Comparison of ZO-1 protein expression in mouse brain among groups (scale bar = 25µm). Five mice were selected in each group. Data were given as

mean ± SD, and analyzed by one-way ANOVA. Significant difference was defined as P < 0.05, * vs. control group. (a) Immunofluorescence staining, green

represented ZO-1, and red is for GFAP. A to C represented three exposure groups, in which mice were exposed to 1,2-DCE for 1, 2, or 3days. (b) Comparison of

relative fluorescence intensity for ZO-1 among groups.

transmembrane proteins to the cytoskeleton in epithelial cells
(Kojima et al., 2013). Based on the studies done so far, it
is thought that both ZO-1 and occludin are essential for the
integrity of the blood brain barrier (Jiao et al., 2011; Li et al., 2014;
Mohamed Mokhtarudin and Payne, 2015).

Findings from this study demonstrated that both protein
and gene levels of occludin and ZO-1 in the brain decreased

apparently after two exposure days, suggesting that loss of tight
junction associated proteins might occur at the early phase
of 1,2-DCE- induced brain edema. In addition, our results
suggest that expression of both ZO-1 and occludin were down-
regulated at the transcriptional level in 1,2-DCE poisoned
mice. Although the mechanisms concerning regulation of tight
junction associated proteins are not completely understood,
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FIGURE 4 | Comparison of occludin protein expression in mouse brain among groups (scale bar = 25µm). Five mice were selected in each group. Data were given

as mean ± SD, and analyzed by one-way ANOVA. Significant difference was defined as P < 0.05, * vs. control group. (a) Immunofluorescence staining, green

represented occludin, and red is for GFAP. A to C represented three exposure groups, in which mice were exposed to 1,2-DCE for 1, 2, or 3 days. (b) Comparison of

relative fluorescence intensity for occludin among groups.

it is known that there are two principal signal transduction
pathways: signals transduced from the cell interior to guide tight
junction assembly, and signals transmitted from tight junctions
to the cell interior to modulate gene expression. Multiple
elements including Ca2+, protein kinase A and C, G protein
and calmodulin, may be implicated in these processes. Among
them, Ca2+ can act both intracellularly and extracellularly to

regulate tight junctions. It has been reported that intracellular
free Ca2+ plays a role in trans-endothelial resistance as well as in
ZO-1 migration from intracellular sites to the plasma membrane
(Brown and Davis, 2002). Saitou et al. (2000) reported that
calcium deposits accumulated progressively in the cerebellum
and basal ganglia in occludin -/- mice, and the small granular
calcium deposits were often localized along small vessels, mainly
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FIGURE 5 | Comparison of ZO-1 protein and mRNA levels in mouse brain among groups. The number of mice used for Western blots and real-time RT-PCR were 10

in control, 9 in group A, 8 in group B, and 8 in group C. Data were given as mean ± SD, and analyzed by one-way ANOVA. Significant difference was defined as

P < 0.05, * vs. control group. (a) Western blot analysis; (b) Densitometric analysis of Western blots; (c) Quantitation of mRNA by real-time RT-PCR. The mRNA levels

were normalized to GAPDH and presented as fold change vs. control group.

FIGURE 6 | Comparison of occludin protein and mRNA levels in mouse brain among groups. The number of mice used for Western blots and real-time RT-PCR were

10 in control, 9 in group A, 8 in group B, and 8 in group C. Data were given as mean ± SD, and analyzed by one-way ANOVA. Significant difference was defined as

P < 0.05, * vs. control group. (a) Western blot analysis; (b) Densitometric analysis of Western blots; (c) Quantitation of mRNA by real-time RT-PCR. The mRNA levels

were normalized to GAPDH and presented as fold change vs. control group.

venules and capillaries, suggesting that occludin was tightly
associated with uptake and transport of free Ca2+. Extracellular
calcium is also necessary for the homotypic interactions of E-
cadherin, which is believed to be the initial event of junctional
complex formation. When extracellular calcium is removed,

there is a concurrent decrease in transmembrane electrical
resistance and an increase in permeability (Huber et al., 2001).
Therefore, in this study, it could be hypothesized that down-
regulated gene and protein expression of both occludin and
ZO-1 might contribute, at least in part, to depressed activity
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of Ca2+-ATPase, which could lead to enhanced concentration
of intracellular free Ca2+. The accumulated results in our
laboratory have demonstrated that up-regulated expression of
MMP-9 and AQP4, and down-regulated expression of tight
junction proteins, such as ZO-1 and occludin could be induced
by 1,2-DCE poisoning during the course of brain edema.
It is well known that up-regulated expression of MMP-9
could contribute to disruption of the blood brain barrier
integrity. Moreover, findings from our studies have disclosed
that activated Mitogen Activated Protein Kinase (MAPK) signal
pathways were implicated in the modulation of proinflammatory
factors, such as MMPs, iterleukins and tumor necrosis factor,
AQPs, tight junction proteins during course of brain edema
induced 1,2-DCE poisoning (Sun et al., 2016a; Wang et al.,
2017).

Taken together, our data suggest that calcium overload and
downregulated expression of tight junction associated proteins,
such as occludin and ZO-1might be the primary events occurring
in the early phase of brain edema induced by subacute poisoning
of 1,2-DCE. Accordingly, it was reasonable to speculate that
brain edema might ensue from disordered intracellular calcium
homeostasis and loss of tight junction associated proteins.
Nevertheless, at present we could not address clearly how 1,2-
DCE poisoning resulted in these alterations. Further studies
are needed to provide us with clues to clarify the pathogenesis
underlying 1,2-DCE-induced brain edema.
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