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Objectives: Treatment for nosocomial bloodstream infections (BSI) caused by multidrug-

resistant (MDR) Gram-negative bacteria (GNB) is challenging. Rising antimicrobial resistance, 

especially in extended spectrum beta-lactamase production, inadvertently increases empiric 

carbapenem consumption. Three antipseudomonal carbapenems (imipenem, meropenem [MER], 

and doripenem [DOR]) are available commercially against MDR GNB in Singapore. The study 

aims to determine the most optimal empiric carbapenem dosing regimens (CDR) and evaluate 

their cost-effectiveness for GNB-BSI in the face of increasing MDR GNB.

Methods: Carbapenem minimum inhibitory concentrations (MICs) were generated for non-

repeat GNB-BSI obtained in 2013–2014 from two hospitals. Monte Carlo simulations were used 

to assess the cumulative fraction of response (CFR) of various CDRs using the percentage of 

time above MIC for 40% (%T > MIC of 40%) as the pharmacokinetic (PK)–pharmacodynamic 

(PD) parameter for efficacy. Carbapenem costs were based on patient antibiotic costs. Antibiotic 

cost-effectiveness was calculated as total daily drug cost/CFR.

Results: A total of 1,140 bloodstream isolates were collected. They comprised 116 Acinetobacter 

baumannii, 237 Pseudomonas aeruginosa, and 787 Enterobacteriaceae. All CDRs achieved 

~40, ~80, and ≥90% CFRs against A. baumannii, P. aeruginosa, and Enterobacteriaceae, 

respectively. Against P. aeruginosa, MER 2 g every 8 h infused over 3 h and DOR 1 g every 

8 h infused over 4 h achieved CFRs 84 and 81%, respectively. Against Enterobacteriaceae, the 

cost of MER 2 g every 8 h infused over 3 h was the lowest among the three carbapenems at 

$0.40/percentage of CFR.

Conclusion: This study demonstrates the utility of PK–PD modeling to formulate the optimal 

selection of a cost-effective empiric CDR in antibiotics guidelines and formulary inclusion. The 

findings support the selection of high MER doses of prolonged infusions as empiric coverage 

for GNB-BSI in our institutions.

Keywords: empiric carbapenem regimens, multidrug resistant, Gram-negative bacteria, blood-

stream infections

Introduction
Resistance to antimicrobial agents is a serious problem that has increased worldwide 

over the past decade.1 Gram-negative bacteria (GNB) (eg, Pseudomonas aeruginosa, 

Acinetobacter baumannii, and Enterobacteriaceae) have diverse mechanisms of resis-

tance that result in reduced susceptibilities to almost all classes of available antimicro-

bial agents. As very few novel antimicrobial agents in the development pipeline have 

activity against these pathogens, one remaining viable option to combat resistance is 

to optimize the use of existing antimicrobial agents.2
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Carbapenems are broad-spectrum antimicrobial agents 

that have excellent activity against a wide variety of bacte-

ria. Antipseudomonal carbapenems have increasingly been 

used as first-line therapy in institutions where there are high 

levels of resistance to other classes of antimicrobial agents 

(aminoglycosides, fluoroquinolones, and cephalosporins).3 

However, emerging resistance in GNB to carbapenems has 

been reported.4–7

Sepsis is a leading cause of mortality and morbidity in 

critically ill patients.8 Infection-related mortality rates for 

infected patients receiving inadequate antimicrobial treat-

ment can be twice as much when compared with infection-

related mortality rates for infected patients receiving adequate 

antimicrobial treatment.9 In addition, infection and related 

sepsis costs can account for ~40% of total intensive care unit’s 

expenditures.8 It is imperative that we advocate the rational 

use of empiric carbapenem treatment through optimizing 

their pharmacodynamic (PD) properties to preserve their 

efficacy, delay emergence of resistance, and provide cost-

effective therapy for patients.

Understandably, optimal and cost-effective antimicrobial 

chemotherapy is dependent on local susceptibility patterns, 

pharmacokinetic (PK) profiles in the local population, PD of 

antimicrobials, and pharmacy acquisition costs. PK refers to 

the achievable antibiotic concentrations at the site of infec-

tions in patients while PD describes the relationship between 

antibiotic exposure and bacteria killing through patient’s 

response. For example, an antimicrobial standard dosing regi-

men may not be effective in a hospital with microorganisms 

having a reduced susceptibility to the antimicrobial agent.

Therefore, the objective of this study is to use Monte 

Carlo simulation with an integration of prior knowledge of 

local susceptibility data, PK/PD of carbapenems, and patient 

antibiotic costs to determine the most appropriate and cost-

effective empiric carbapenem dosing regimen (CDR) for 

GNB bacteremia in the face of increasing MDR GNB.

Methods
Non-repeat isolates from two tertiary hospitals (1,700 beds 

[A] and 800 beds [B]) in Singapore were collected from Janu-

ary 2013 to December 2014. The first or the only isolate was 

collected from each patient only. Isolates of A. baumannii, 

P. aeruginosa, and Enterobacteriaceae were collected from 

patients with bloodstream infections. The phenotypic profiles 

of the carbapenems were determined by the microbroth 

dilution method in accordance with the Clinical Laboratory 

Standards Institute (CLSI).10

The PD profiles of various CDRs were determined: imi-

penem (IMI)/cilastatin 0.5 mg every 6 h (q6h) by 0.5 and 3 h 

infusion and 1 g q6h by 0.5 and 3 h infusion; meropenem 

(MER) 1 and 2 g every 8 h (q8h) by 0.5 and 3 h infusion; 

and doripenem (DOR) 0.5, 1, and 2 g q8h by 1 and 4 h infu-

sion. These regimens were selected based on their utilization 

patterns at both institutions. Continuous infusion regimens 

were not evaluated as they are often logistically challenging to 

administer by nurses. A 5000-subject Monte Carlo simulation 

was performed for each dosing regimen, using the ADAPT II 

software.11 Steady-state exposures for each carbapenem were 

determined using PK mean point estimates obtained from 

previous population PK studies in infected and critically ill 

patient cohorts.12–14

Carbapenems have been reported to demonstrate con-

centration-independent bactericidal activity. The percentage 

of time above minimum inhibitory concentration (MIC) for 

40% (%T > MIC of 40%) of the dosing interval of the serum 

unbound drug concentration has been shown to be the PK/

PD parameter delineating drug exposure to antimicrobial 

effect in carbapenems in vivo.15 Therefore, we evaluated 

the probability of target attainment (PTA) of %T > MIC of 

40% for various CDRs at specific MICs. Subsequently, we 

used a weighted approach to determine the overall PD target 

attainment based on our institution-specific MIC distribu-

tion, which is defined as cumulative fraction of response 

(CFR).16 An optimal regimen was defined as achieving a 

CFR of ≥90%.

In addition to calculating the CFR for each CDR for each 

bacteria population, patient drug costs of each carbapenem 

were obtained from the pharmacy department at the time of 

analysis. The cost-effectiveness was assessed by daily patient 

drug cost/percentage of CFR.17 A dosing regimen with the 

lowest cost/ percentage of CFR ratio would be considered as 

the most cost-effective (due to the highest PD target attain-

ment rate and a lowest patient drug cost).17 We did not account 

for the cost of nursing disposables (intravenous solution 

bags and infusion kits) and labor costs associated with drug 

preparation and administration as these are already included 

as part of the daily ward charges.

Ethics approval
All experimental protocols were reviewed and approved by 

Singapore SingHealth Centralized Institutional Review Board 

(application number: CIRB/2012/423/D). Informed consent 

was not required from subjects as all experiments involved 

microorganisms without patient identifiers.
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Results
A total of 1,140 clinical bloodstream isolates (including 

828 from Hospital A and 312 from Hospital B) were col-

lected. The isolates were collected mainly from the surgical, 

medical oncology, hematology, and intensive care units. 

The majority of isolates collected were Enterobacteriaceae 

(69%), followed by P. aeruginosa (20.8%) and A. baumannii 

(10.2%) (Figure 1). Enterobacteriaceae isolates consisted of 

K. pneumoniae (44.5%), E. coli (15.0%) and “other Entero-

bacteriaceae” (Citrobacter spp., Serratia spp., Enterobacter 

spp., and Proteus spp.; 9.5%). K. pneumoniae and E. coli 

were susceptible to the three carbapenems at >95 and 97%, 

respectively. Both their MIC
50

 and MIC
90

 values were similar. 

The “other Enterobacteriaceae” group had a higher (two-

fold) IMI MIC
90

 than those of MER and DOR (Table 1). The 

P. aeruginosa susceptibility rates were 48.1, 68.8, and 70.5% 

for IMI, MER, and DOR, respectively. P. aeruginosa had an 

IMI MIC
90

 that was two-fold higher than those of MER and 

DOR as well. A. baumannii isolates exhibited high resistance 

rates to all the carbapenems tested with susceptibility rates 

of only ~35%. Susceptibility results were not significantly 

different between the two hospitals. Hence, results from the 

two hospitals were pooled and analyzed together.

The CFRs for the various CDRs are shown in Table 2. 

Results using normal and log-normal distributions of the 

parameter estimates in the Monte Carlo simulations were not 

considerably different (<1% difference, data not shown). The 

data were thus presented using a log-normal distribution for 

brevity sake. Regardless of dose or infusion rate, all CDRs 

obtained optimal exposures as defined by CFR ≥90% against 

E. coli, K. pneumoniae populations, and “other Enterobacte-

riaceae” except for IMI 0.5 g q6h by 0.5 h infusion. However, 

only the DOR regimens of 1 g q8h by 4 h infusion and 2 g q8h 

by 1 and 4 h infusion and the MER regimen of 2 g q8h by 3 h 

infusion achieved CFRs ≥80% against P. aeruginosa. None 

of the CDRs obtained an optimal CFR against A. baumannii. 

Against the pooled MIC distribution of all isolates, MER 2 g 

q8h by 3 h infusion and DOR 2 g q8h by 4 h infusion were 

the only optimal dosing regimens that achieved ≥90% CFRs.

The antibiotic cost-effectiveness of the various regimens 

is summarized in Table 2. Using the normalized cost/percent-

age of CFR ratio, MER 2 g q8h by 3 h infusion was the most 

cost-effective and optimal regimen at $1.20 in the overall 

pooled isolates’ analysis. MER 1 g q8h by 3 h infusion and 

IMI 0.5 g q6h by 3 h infusion were the most cost-effective 

dosing regimen against K. pneumoniae, E. coli, and other 

Enterobacteriaceae with no significant difference between 

the two regimens. Against P. aeruginosa, MER 2 g q8h by 

3 h infusion and DOR 1 g q8h by 4 h infusion were the most 

cost-effective regimens with achieving modest CFR. No cost-

effective regimens were evaluated against A. baumannii, as 

no regimens achieved optimal CFRs.

Discussion
Antimicrobial resistance is an emerging public health prob-

lem in Singapore, and preserving our existing antibiotic 

Table 1 MICs and antimicrobial susceptibility for imipenem, 
meropenem, and doripenem against A. baumannii, P. aeruginosa, K. 
pneumoniae, E. coli, and other Enterobacteriaceae collected from 
the two hospitals

  MIC50  
(mg/L)

MIC90  
mg/L)

Susceptibility  
(%)

Total isolates
A. baumannii (n=116)

Imipenem ≥64 ≥64 35.7
Meropenem ≥64 ≥64 33.9
Doripenem ≥64 ≥64 33.9

P. aeruginosa (n=237)
Imipenem 4 ≥64 48.1
Meropenem 1 ≥64 68.8
Doripenem 1 ≥64 70.5

K. pneumoniae (n=507)
Imipenem 0.5 1 96.6
Meropenem ≤0.25 ≤0.25 96.1
Doripenem ≤0.25 ≤0.25 95.9

E. coli (n=117)
Imipenem ≤0.25 0.5 97.1
Meropenem ≤0.25 ≤0.25 97.7
Doripenem ≤0.25 ≤0.25 97.1

Other Enterobacteriaceae (n=109)
Imipenem 1 2 89.9
Meropenem ≤0.25 ≤0.25 94.5
Doripenem ≤0.25 0.5 94.5

Abbreviations: A. baumannii, Acinetobacter baumannii; E. coli, Escherichia coli; 
K.  pneumoniae, Klebsiella pneumoniae; MICs, minimum inhibitory concentrations; 
P. aeruginosa, Pseudomonas aeruginosa.

Figure 1 Breakdown of the 1140 bloodstream isolates.
Abbreviations: A. baumannii, Acinetobacter baumannii; E. coli, Escherichia coli; K. 
pneumoniae, Klebsiella pneumoniae; P. aeruginosa, Pseudomonas aeruginosa.
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armamentarium is critical. The cost of antimicrobial agents 

represents a significant portion in institutional pharmacy 

budgets; therefore, management of drug formularies have 

profound economic implications. In addition to limited 

resources and the global trend toward increasing health care 

costs, it is essential to develop efficacious treatment strategies 

that are cost-effective as well.

It had been reported that the bacteriostatic and bacteri-

cidal activities of carbapenems are dependent on the percent-

age of time > MIC in animal infection models.15 A prolonged 

infusion strategy may be beneficial in achieving a more favor-

able PD exposure when compared with intermittent infusion 

administration. A retrospective study by Feher et al18 reported 

that extended infusion of MER was associated with a higher 

treatment success (68.4 vs 40.9%) compared to short-term 

infusion in neutropenic patients who presented with fever 

after receiving hematopoietic stem-cell transplantation or 

induction chemotherapy for acute myeloid leukemia. Lorente 

et al19 also reported that continuous infusion of MER achieved 

a higher clinical cure rate in ventilator-associated pneumonia 

patients (90.4 vs 59.6%) compared to intermittent infusion.

In our study, using a prolonged infusion of the carbapen-

ems (compared to giving high doses infrequently) was a 

more rational dosing strategy to achieve a carbapenem 

concentration consistently above the MIC. When used as an 

empiric treatment strategy against the pooled isolates, our 

findings showed that MER 2 g q8h by 3 h infusion is the most 

optimal and cost-effective carbapenem regimen in our local 

setting. Clinical settings where patients are at higher risk for 

P. aeruginosa and/or multidrug-resistant (MDR) GNB bacte-

remia suggested the need for aggressive dosing for empirical 

therapy until the pathogen identification and susceptibilities 

are available as the standard CDRs were unable to achieve 

optimal CFRs against all the isolates.

Most pharmacoeconomic analyses usually compare two 

different antimicrobial agents in a single patient population 

of a certain infection (eg, community-acquired pneumonia) 

in a clinical trial setting. As broad-spectrum antibiotics may 

be used in a variety of infections and each microorganism 

can cause several types of infections, there are numerous 

possible microorganism–antibiotic combinations. The 

possibility of many such scenarios makes it a challenge to 

extrapolate results from such pharmacoeconomic evalua-

tions from clinical trial to clinical practice. In the choice of 

empiric antibiotic therapy, we have used PK/PD (%T>MIC 

of 40% of the dosing interval of the serum unbound drug 

concentration) as a surrogate for the efficacy of antimicrobial 

treatment to perform the cost-effective analyses. Unlike most 

Table 2 CFR and cost-effectiveness (cost/%CFR) for the various carbapenem dosing regimens against A. baumannii, P. aeruginosa, K. 
pneumoniae, E. coli, and other Enterobacteriaceae collected from the two hospitals

Carbapenem  
regimen  
(infusion 
duration)

All isolates A. baumannii P. aeruginosa K. pneumoniae E. coli Enterobacteriaceae 
(others)

CFR  
(%)

Cost/% 
CFR

CFR  
(%)

Cost/% 
CFR

CFR  
(%)

Cost/% 
CFR

CFR  
(%)

Cost/% 
CFR

CFR  
(%)

Cost/% 
CFR

CFR  
(%)

Cost/% 
CFR

Imipenem
0.5 g q6h (0.5 h) 81 $0.65 33 $1.59 58 $0.91 91 $0.58 93 $0.57 86 $0.62
0.5 g q6h (3 h) 88 $0.60 36 $1.45 72 $0.73 98 $0.54 99 $0.53 97 $0.55
1 g q6h (0.5 h) 83 $1.27 35 $3.01 67 $1.57 92 $1.14 94 $1.12 90 $1.17
1 g q6h (3 h) 89 $1.19 39 $2.73 78 $1.35 98 $1.07 99 $1.06 99 $1.07

Meropenem
1 g q8h (0.5 h) 86 $0.63 34 $1.61 72 $0.76 97 $0.56 99 $0.55 95 $0.57
1 g q8h (3 h) 89 $0.61 37 $1.48 78 $0.70 98 $0.56 99 $0.55 99 $0.55
2 g q8h (0.5 h) 88 $1.24 35 $3.09 76 $1.44 97 $1.12 99 $1.10 97 $1.13
2 g q8h (3 h) 90 $1.20 42 $2.59 84 $1.30 98 $1.11 99 $1.10 99 $1.10

Doripenem
0.5 g q8h (0.5 h) 86 $2.21 35 $5.48 73 $2.59 97 $1.96 99 $1.92 95 $2.00
0.5 g q8h (4 h) 88 $2.16 35 $5.38 78 $2.43 98 $1.93 99 $1.91 98 $1.94
1 g q8h (0.5 h) 87 $4.35 35 $10.75 77 $4.94 98 $3.88 99 $3.82 97 $3.90
1 g q8h (4 h) 89 $4.26 37 $10.25 83 $4.57 98 $3.86 99 $3.82 99 $3.84
2 g q8h (0.5 h) 89 $8.57 36 $20.89 81 $9.37 98 $7.72 99 $7.65 99 $7.70
2 g q8h (4 h) 91 $8.38 45 $16.96 86 $8.88 99 $7.69 99 $7.05 99 $7.67

Abbreviations: A. baumannii, Acinetobacter baumannii; CFR, cumulative fraction of response; E. coli, Escherichia coli; K. pneumoniae, Klebsiella pneumoniae; P. aeruginosa, 
Pseudomonas aeruginosa; q6h, every 6 h; q8h, every 8 h.
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cost-effectiveness analyses that mainly examine the costs and 

efficacy of a treatment, our analysis also measured whether 

the marginal CFR (PD exposure of a drug) gained was worth 

the cost of treatment. Our method is a general approach to an 

institution-specific analysis, incorporating local susceptibil-

ity patterns (PD), different patient cohorts (PK), and varying 

patient antibiotic costs (economics) to evaluate an antibiotic 

regimen’s cost-effectiveness. Additional comparisons can 

also be made between a single antibiotic against differ-

ent bacteria to enhance existing institution antibiograms. 

Evaluations of various antimicrobial agents against a single 

organism are also useful in developing institution treatment 

guidelines and provide objective cost-effective information 

on the addition of antimicrobial agents into the drug formu-

lary. All these form part of an ongoing quality improvement 

process where we can regularly update the latest susceptibility 

data to carbapenems and antibiotic costs to reflect the most 

optimal and cost-effective CDRs in each institution in an 

evidence-based manner.

Despite its potential utility, our approach has a few limita-

tions. Our analysis did not evaluate various PK/PD thresholds 

of the proportion of the dosing interval during which the con-

centration of unbound (free) drug in plasma remains above the 

MIC of a specific pathogen (the percentage of time > MIC) 

as the target for optimal therapy. For carbapenems, the PK/

PD threshold is widely considered to be 40%T > MIC.15,20 

Institution-specific cost-effectiveness studies should also be 

considered to validate our modeling approach. The design 

of such studies should take into account the PK–PD of the 

antimicrobial agent as well as the patients’ co-morbidities 

and the severity of illness. As the PK data used in the analysis 

were obtained from a Caucasian population, the extrapola-

tion of the results may not be fully applicable to local patient 

populations. Pooling of data from different organisms from 

only two local hospitals has yielded a recommendation to use 

aggressive dosing regimens empirically and did not account 

for sub-strata patient populations with lower risks for MDR 

GNB. Generalizability may be a concern, given these suscep-

tibility patterns may not reflect many other practice settings 

locally and globally. While our results had suggested the use 

of extended infusions in our local setting, carbapenem stabil-

ity after reconstitution in room temperature may be a limiting 

factor for administration. Therefore, critical consideration has 

to be taken at pharmacy & therapeutics (P&T) or procurement 

committees to include carbapenem formulations that have 

good stability data in the clinical ward setting where extended 

infusion of carbapenems will be administered.

Future research should include local PK studies in the 

target patient population to verify whether published PK 

profiles are relevant. Pathogen susceptibility, clonality pat-

terns, and patient antibiotic costs can be updated on a periodic 

basis based on individual institution-specific data. This will 

improve the applicability of the data over time in various 

settings. A multicenter study examining the PK of MER in 

the critically ill patients is currently ongoing in Singapore.21

Conclusion
A comprehensive pharmacoeconomic analysis to evaluate 

the cost-effectiveness of antimicrobial agents should encom-

pass local susceptibility patterns, population PK, PD, and 

antibiotic acquisition costs. This approach can guide clini-

cians in selecting the most appropriate antibiotic regimens 

and guide P&T committees beyond mere drug acquisition 

costs in formulary inclusion, especially for agents in a 

functional class.
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