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Abstract

Circular RNAs (circRNAs) are evolutionarily conserved RNA species that are formed when exons “back-splice” to each other.
Current computational algorithms to detect these back-splicing junctions produce divergent results, and hence there is a
need for a method to distinguish true-positive circRNAs. To this end, we developed Assembly based CircRNA Validator
(ACValidator) for in silico verification of circRNAs. ACValidator extracts reads from a user-defined window on either side of a
circRNA junction and assembles them to generate contigs. These contigs are aligned against the circRNA sequence to find
contigs spanning the back-spliced junction. When evaluated on simulated datasets, ACValidator achieved over �80% sensi-
tivity on datasets with an average of 10 circRNA-supporting reads and with read lengths of at least 100 bp. In experimental
datasets, ACValidator produced higher verification percentages for samples treated with ribonuclease R compared to non-
treated samples. Our workflow is applicable to non-polyA-selected RNAseq datasets and can also be used as a candidate se-
lection strategy for prioritizing experimental validations. All workflow scripts are freely accessible on our GitHub page
https://github.com/tgen/ACValidator along with detailed instructions to set up and run ACValidator.
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Introduction

Circular RNAs (circRNAs) represent a large class of ubiquitously
expressed noncoding RNAs that are formed when exons “back-
splice” to each other. The advent of high-throughput RNA se-
quencing (RNAseq) technologies and bioinformatics algorithms
has facilitated the identification of thousands of circRNAs in mul-
tiple cell and tissue types [1–4]. These studies have found that
circRNAs are highly abundant and evolutionarily conserved, as
well as exhibit cell type- and developmental stage-specific ex-
pression. CircRNAs are also more stable than linear RNAs since

they are covalently closed loops without 50/30 termini or a polya-
denylated tail. Furthermore, studies investigating their functional
relevance have revealed that circRNAs can act asmicroRNA
(miRNA) regulators [3, 5–7], decoys to RNA binding proteins [8],
and regulators of parental gene transcription [9].

Several computational tools have been developed to identify
these back-splicing events in RNAseq data. Strategies employed
by these computational tools to identify circRNAs include: (i) a
pseudo-reference-based strategy, which is used by the known
and novel isoform explorer (KNIFE) tool [10] and (ii) a fragment-
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based strategy, which is used by find_circ [3], CIRCexplorer [11],
Mapsplice [12], and the detect circRNAs from chimeric reads
(DCC) tool [13]. While KNIFE constructs a pseudo-reference of all
possible out-of-order exons to align reads against, fragment-
based strategies detect circRNAs based on the mapping infor-
mation of a split read’s alignment to the reference genome [14].
When segments of a split read align to the reference in a non-
linear order, they are marked as potential circRNA candidates.
Apart from these strategies, CircRNA Identifier(CIRI) uses con-
cise idiosyncratic gapped alignment report (CIGAR) signatures
in the alignment file to identify circRNAs [15].

Tool comparison studies have revealed that existing circRNA
detection algorithms produce divergent results due to the use of
different aligners, heuristics, and filtering criteria [16, 17].
Hence, there is a need for an in silico approach that can distin-
guish true versus false-positive circRNAs identified using these
algorithms. To this end, we developed Assembly-based Circular
RNA Validator (ACValidator), which can be used as an in silico
verification strategy, as well as a candidate selection tool for ex-
perimental validation. While existing approaches focus on de-
tection of circRNAs, our approach performs in silico verification
of circRNAs detected using these existing approaches.
ACValidator first extracts reads from a fixed window on either
side of the circRNA junction of interest from the alignment file
and assembles them to generate contigs. These contigs are then
evaluated for alignment against the circRNA junction sequence.
We defined four different stringency criteria, ranging from 10 to
60 base pairs (bps) overlap across the junction. When evaluated
on simulated as well as experimental datasets, ACValidator
achieves better performance in datasets with higher circRNA
coverage compared to ones with lower coverage.

Materials and methods

ACValidator takes as input a sequence alignment mapping
(SAM) file and the circRNA coordinate(s) to be validated (Fig. 1).
ACValidator operates in three phases: (i) extraction and assem-
bly of reads from the SAM file to generate contigs; (ii) generation
of a pseudo-reference file; and (iii) alignment of contigs from
Phase 1 against the pseudo-reference from Phase 2. First, reads
are extracted from a user-defined window size w on either side
of the given SAM file [(“start-coordinate”þw) and (“end-coor-
dinate” � w); where the start-coordinate is the splice acceptor
and the end-coordinate is the splice donor of the circRNA junc-
tion]. Our datasets were run using two different window sizes,
where w¼ insert size or w¼ 2* insert size, in order to understand
the effect of window size on the results. We chose the above-
mentioned window sizes in order to capture as many reads
overlapping the circRNA junction as possible, given our use of
paired-end sequencing data. However, a range of values be-
tween insert size and 2* insert size can be used, and users can
adjust this parameter based on their library insert size. The tool
thus extracts aligned reads within w bp on either side of the
junction from the SAM file using SAMtools [18]. The extracted
reads are then converted intoFASTQs and assembled using the
Trinity assembler [19] to generate contigs (FASTA file). In the
second phase, a pseudo-reference of the sequence surrounding
the circRNA junction of interest is generated. This is performed
by also extracting w bp from the end and start of the circRNA
junction from the genome reference FASTA file (GRCh37; refer-
ence FASTA files of the genome of choice can be downloaded
from https://genome.ucsc.edu/ or http://www.ensembl.org/)
and concatenating the two sequences from end to end to cap-
ture the sequence on either side of the circRNA junction. Lastly,

the assembled contigs from Phase 1 are aligned to the pseudo-
reference from Phase 2 using the widely useed BWA-MEM [20]
aligner. Each resulting alignment record is then examined to
check whether it overlaps with the circRNA junction sequence
using four different stringency criteria. The criteria require the
following minimum lengths of alignment on both sides of the
circRNA junction: high stringency—30 bp (total 60 bp overlap);
medium stringency—20 bp (total 40 bp overlap); low strin-
gency—10 bp (total 20 bp overlap); and very low stringency—5 bp
(total 10 bp overlap). These stringency cut-offs were defined in
order to capture as many tests as possible while still accounting
for the extent of overlap between the contig and the circRNA
junction sequence, as well as to assess whether we observe dif-
ferences in sensitivity measurements across these cut-offs.

Datasets used for evaluation

Simulated datasets
We used CIRI-simulator [15] to generate 18 synthetic RNAseq
datasets that had variable average number of supporting reads
for circular and linear RNAs (2–80), as well as three different
read lengths (50, 100, and 150 bp) to evaluate the performance of
our workflow (Table 1). CIRI-simulator takes a FASTA-formatted
reference file and a GTF annotation file as input, and generates
circular and linear RNA sequences. Recently, Zeng et al. [17] re-
designed this tool to generate synthetic reads for circRNAs depos-
ited in circBase [21]. We generated simulated datasets with mini-
mum circRNA size of at least 50 bp and insert size of 300 bp.
Overall, an average of 89,293 circRNAs were generated across
these simulated datasets. CIRI-simulator ensures this circRNAs
map to locations distributed across the entire genome, thereby
eliminating any bias associated with genomic location (Fig. 2). The
generated true-positive simulation datasets are named using the
convention pos_<circRNA_coverage>_<linearRNA_coverage>_
<read_length> (pos: positive; Table 1). Users can reproduce all
simulated datasets by using the parameters described in Table 1
in CIRI-simulator.

Experimental datasets
All subjects were enrolled in the Banner Sun Health Research
Institute (BSHRI) Brain and Body Donation Program (BBDP) in
Sun City, Arizona, and written informed consent for all aspects
of the program, including tissue sharing, was obtained either
from the subjects themselves prior to death or from their legally
appointed representative. The protocol and consent for the
BBDP were approved by the Western Institutional Review Board
(Puyallap, Washington).

To test ACValidator on experimental data, we analyzed six
pairs of ribonuclease R (RNase R)-treated and nontreated sam-
ples (N¼ 12; Table 2). RNase R is an exoribonuclease that selec-
tively digests linear RNA but leaves behind circular structures,
and it is hence widely used for circRNA enrichment. Three of
these sample pairs were downloaded from the sequence read
archive (SRA) [22] and were generated from HeLa and Hs68 cell
lines treated or not treated with RNase R. The remaining three
sample pairs were generated in-house from total RNA extracted
from the middle temporal gyrus (MG) of three human postmor-
tem healthy elderly control brains.

Polymerase chain reaction validation

Polymerase chain reaction (PCR) was performed to experimen-
tally validate the presence of selected circRNA candidates that
were in silico validated by ACValidator. cDNA was synthesized
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Figure 1: ACValidator workflow. ACValidator takes as input the SAM file and the circRNA junction coordinate(s) to be validated. In Phase 1, reads from either side of the

junction within a user-defined window (w) are extracted and assembled using Trinity. A pseudo-reference containing the circRNA sequence of interest is generated

from the reference genome in Phase 2. The pseudo-reference consists of w bp from either side of the circRNA junction of interest (solid blue and pink blocks in Phase

2). The broken blue and pink segments represent the remaining portions of the exons that constitute the circRNA but that are not a part of the pseudo-reference.

Lastly, in Phase 3, the assembled contigs are aligned to this pseudo-reference and checked for overlap with the sequence of the junction to be validated.
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Figure 2: Chromosomal distribution of simulation datasets. Simulation datasets were generated using CIRI-simulator. The distribution of generated circRNAs across

the different chromosomes is similar to the chromosomal size distribution.
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from RNA isolated from the MG of the three tissue samples of
interest using SuperScript II reverse transcriptase
(ThermoFisher Scientific, Waltham, MA, USA). PCR was per-
formed using 100 ng cDNA of each sample, 12.5 ml of Kapa HiFi
polymerase (2X), 1 ml of the forward primer (5 mM), 1 ml of the re-
verse primer (5 mM), and 9.5 ml of molecular-grade water with the
following thermocycler program: denaturation—60 s at 95�C,
amplification—15 s at 95�C, 15 s at 55–63�C, 30 s at 72�C (cycle
35–40X), extension—60 s at 72�C. Primers were designed using
Primer version 3 (http://bioinfo.ut.ee/primer3-0.4.0) and product
sizes were assessed on a TapeStation 4200 instrument (Agilent
Technologies, Santa Clara, CA, USA).

Software requirements/dependencies

ACValidator can be implemented on a Linux-based high-perfor-
mance computing cluster and has minimal requirements and

dependencies. These requirements include the following: (i)
Trinity version 2.3.1 or above; (ii) Python version 2.7.13 or higher
with the pysam package installed; (iii) Bowtie2 version 2.3.0 [23]
or above (required by Trinity); (iv) SAMtools version 1.4 or above
and (v) BWA version 0.7.12 or above and (vi) BEDTools version
2.26 or above [24].

Results and discussion
Performance evaluation of ACValidator using simulated
data

To evaluate ACValidator, we generated 18 simulation datasets
with varying circular, linear RNA coverages, and read lengths
(Table 1). We selected circRNA candidates above/below an ex-
pression cut-off as true positives/true negatives, respectively.
For true-positive candidate set, we selected the top 2% of

Table 1. Simulation dataset parameters

Simulation
set

Simulation
dataset
name

Average no.
of circRNA
supporting
reads

Range of no.
of circRNA
supporting

reads

Average no.
of linear RNA
supporting
reads

Read
length
(bp)

No. of
reads

generated

Window
lengths

tested (bp)

Overlapping
base

thresholds
tested (bp)

No. of
candidates
passing
top 2%
expression
cut-off

No. of
candidates

below
bottom

1% expression
cut-off

1 pos_2_80_150 2 2–11 80 150 30 926 238 300, 600 60, 40, 20, 10 1196 13 176
2 pos_2_80_100 2 2–10 80 100 46 264 524 300, 600 60, 40, 20, 10 1616 12 829
3 pos_2_80_50 2 2–13 80 50 92 271 226 300, 600 60, 40, 20, 10 620 12 670
4 pos_5_40_150 5 2–17 40 150 22 725 820 300, 600 60, 40, 20, 10 712 5261
5 pos_5_40_100 5 2–18 40 100 33 962 378 300, 600 60, 40, 20, 10 944 3887
6 pos_5_40_50 5 2–17 40 50 67 667 118 300, 600 60, 40, 20, 10 1296 4122
7 pos_10_20_150 10 3–28 20 150 24 867 386 300, 600 60, 40, 20, 10 1238 1391
8 pos_10_20_100 10 2–27 20 100 37 173 692 300, 600 60, 40, 20, 10 1628 1802
9 pos_10_20_50 10 2–26 20 50 74 092 068 300, 600 60, 40, 20, 10 1069 1641
10 pos_20_10_150 20 5–40 10 150 39 314 956 300, 600 60, 40, 20, 10 1456 1304
11 pos_20_10_100 20 4–42 10 100 58 844 010 300, 600 60, 40, 20, 10 1020 1039
12 pos_20_10_50 20 4–41 10 50 117 432 918 300, 600 60, 40, 20, 10 1405 1047
13 pos_40_5_150 40 8–65 5 150 73 285 586 300, 600 60, 40, 20, 10 1413 1303
14 pos_40_5_100 40 11–68 5 100 109 808 870 300, 600 60, 40, 20, 10 1775 1246
15 pos_40_5_50 40 10–74 5 50 219 344 762 300, 600 60, 40, 20, 10 1480 895
16 pos_80_2_150 80 15–119 2 150 143 598 648 300, 600 60, 40, 20, 10 1507 1115
17 pos_80_2_100 80 22–120 2 100 215 278 690 300, 600 60, 40, 20, 10 1746 897
18 pos_80_2_50 80 27–115 2 50 430 284 334 300, 600 60, 40, 20, 10 1493 960

All simulation datasets are based on data generated from human cerebellum and diencephalon, SH-SY5Y cells, Hs68 cells, HeLa cells, and HEK293 cells.

Columns C–F are user-defined parameters supplied to CIRI-simulator. Minimum circRNA size used in simulation: 50 bp, insert size used in simulation: 300 bp.

Table 2. Summary of experimental, non-simulated datasets used in this study

Data source Dataset Cell line/tissue type RNase R treated? Number of reads Number of mapped reads Median
insert size

SRA SRR1636985 HeLa Yes 26 619 490 24 370 337 200
SRR1637089 HeLa No 89 866 900 63 842 205 140
SRR1636986 HeLa Yes 47 011 426 42 027 801 200
SRR1637090 HeLa No 71 370 620 53 957 685 130
SRR444974 Hs68 Yes 316 611 710 271 345 091 160
SRR444655 Hs68 No 314 106 316 109 706 923 150

In-house MG_1 MTG Yes 107 609 934 96 300 242 150
generated MG_5 MTG No 96 215 516 86 315 844 150

MG_2 MTG Yes 96 840 790 86 560 619 150
MG_6 MTG No 101 609 754 90 750 108 150
MG_3 MTG Yes 111 576 344 100 264 691 150
MG_7 MTG No 111 314 114 98 894 498 150
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circRNAs based on supporting read counts (expression level),
while for the true-negative candidate set, we selected the bot-
tom 1% of circRNAs, also based on the supporting read counts
(Supplementary Data, Tables S1 and S2). We replicated our
analysis using two different window sizes: (i) w¼ insert size
(300 bp) and (ii) w¼ 2 * insert size (600 bp) (Materials and meth-
ods section).

We observed that simulations with higher circRNA coverages
and longer read lengths achieved higher sensitivity
(Supplementary Data, Fig. S1). Specifically, when using w¼ 300
and overlap cut-off of 10 bp between the contig and pseudo-
reference, simulations 7, 10, 13, and 16, which have average
circRNA coverages >10 and read length of 150 bp, achieved over
81% sensitivity. For simulations 8, 11, 14, and 17, for which the
average circRNA coverage was >10 but the read length was re-
duced to 100 bp, we observed a slight reduction in sensitivity by
approximately 1–3%. However, when further reducing the read
length to 50 bp, the sensitivity reduced to <¼49% for simulations
9, 12, 15, and 18 (average circRNA coverage >10). When the aver-
age circRNA coverage was decreased to 5 or below (simulations
1–6), we observe an overall reduction in sensitivity while datasets
with longer read lengths demonstrated improved performance
compared to ones with shorter read lengths (20–26% sensitivity
for simulations 3 and 6 and 57–79% for simulations 1 and 4, re-
spectively). In datasets with lower circRNA coverage and/or
shorter read length, this reduction in sensitivity was because
Trinity did not find sufficient reads to assemble across these
regions and hence was not able to generate contigs. We detect a
similar pattern when using w¼ 600 and did not observe a drastic
difference in sensitivity between the two window sizes
(Supplementary Data, Table S1). Furthermore, we calculated the
F1 score [F1¼ (2*Precision* Sensitivity)/(PrecisionþSensitivity)], a
measure of accuracy, which indicates how well a tool achieves
sensitivity and precision simultaneously (Supplementary Data,
Fig. S1). We observed that for datasets with read length of 100 bp,
the F1 score increases with coverage, while for datasets with read
length of 150 bp, saturation is attained for datasets with average
circRNA coverage >20. Overall, results from our simulation data
indicate that higher circRNA coverage coupled with longer read
length yields better performance of our approach.

Additionally, we evaluated sensitivity using four stringency
thresholds for the number of overlapping bases (30, 20, 10, and
5 bp; Materials and methods section). We observed that for data-
sets with average circRNA coverage >10 and read lengths of 100
or 150 bp, there was no notable difference in the sensitivity
across the different thresholds for the number of overlapping
bases, with an average of 79–81% sensitivity, respectively
(Fig. 3). However, for simulations with circRNA coverage <10
and read length of 50 bp, the sensitivity increases by �4–8% (10–
34%) when reducing the overlap stringency from high to very
low (Fig. 3). Thus, users can choose a less stringent overlap
threshold such as 10 bp when running ACValidator on low cov-
erage/short read length datasets but for higher circRNA cover-
age and longer read lengths, this threshold can be increased to
40 or 60 bp.

Performance evaluation of ACValidator using
experimental data

We next evaluated ACValidator using experimental, nonsimu-
lated datasets generated from human tissues or cell lines
(Table 2). Since we do not know the true-positive circRNAs for
these datasets, we ran ACValidator on circRNAs that were called
in both the RNase R-treated and nontreated datasets using six

existing circRNA detection algorithms, find_circ version 1, CIRI
version 2, Mapsplice version 2, KNIFE version 1.4, DCC version
0.4.4, and CIRCexplorer version 1.1.0. Each tool was run using
RNAseq aligners and parameter settings as recommended by
the respective developers. Co-ordinates returned by CIRI,
MapSplice and DCC were converted from 1-based to 0-based
coordinates to make them consistent with the other three de-
tection tools. We considered those candidates that were called
by at least three of the six tools (requiring exact co-ordinates to
be detected by each tool) in both the treated and nontreated
samples, and not depleted following RNase R enrichment, as
true circRNAs (Supplementary Data, Table S3). A circRNA candi-
date is determined to be not depleted if the number of spliced
reads per billion mappings [SRPBM; calculated as (number of
circRNA supporting reads/total mapped reads) � 109] [2] does
not decrease following enrichment. We thus ran ACValidator on
these nondepleted potential true circRNA candidates for
evaluation.

Overall, except for the SRR1636986–SRR1637090 pair, over
89% of the candidates that were called in both the treated and
nontreated pairs were not depleted (i.e. SRPBM after RNase R
treatment>SRPBM prior to treatment). Among these nonde-
pleted candidates, ACValidator was able to construct contigs
spanning the circRNA junction for >75% of them for the RNase
R-treated samples and 47–57% of them for the nontreated sam-
ples using the medium-stringency criteria and both the window
sizes (Table 3; Supplementary Data, Table S3 and Fig. S2). This
increased verification rate for the treated samples is expected
since RNase R treatment enriches for circRNAs and hence a
higher number of back-splice junction supporting reads was ob-
served. Furthermore, higher numbers of validated circRNAs
were detected using lower stringency cut-offs for alignment
overlap between contigs and junction sequences. As observed
in the simulation datasets, the different window sizes did not
notably affect the number of verifications among these experi-
mental datasets (Table 3). Figure 4 shows an example of a
circRNA [2, 25] that was validated by ACValidator in an MG-
treated and nontreated pair (reads from this sample that align
to the reference are shown in Supplementary Data, Fig. S3).

In order to further evaluate the utility of our approach, we
next compared the results from each individual tool to those
from ACValidator. For this analysis, we used the top 100 most
highly expressed candidates from among those we considered as
true positives for these experimental datasets (called by at least
three of six tools, in both treated and nontreated samples, and
SRPBM after RNase R treatment>SRPBM before treatment;
Supplementary Data, Table S3). Among the in-house treated MG
samples, we observed that except for CIRCexplorer and
Mapsplice, ACValidator was able to in silico validate a higher
number of circRNAs, using the medium stringency (MS) criteria
(20 bp overlap on either side of circRNA junction), than was
detected individually by the other tools (Table 4). Among the SRA
samples, however, our approach validated a fewer number of
circRNAs than were detected by the individual tools except find_-
circ. Thus, results may vary depending on which individual tool
is used for circRNA detection. Notably, the goal of ACValidator is
to narrow down a list of potential high-confidence circRNAs and
not for comprehensive and de novo detection of circRNAs.

Experimental validation of identified circRNAs

We performed experimental validations for six highly expressed
circRNA candidates (average SRPBM> 650) that were in silico val-
idated by ACValidator and that were detected by all six tools in
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each sample. Since we were interested in validating the pres-
ence of the circRNA and not their abundance, we performed
PCR validations on these selected candidates. Each of our
treated- and nontreated pair is generated from the same donor
and hence, we ran validations on the non-RNase R-treated
cDNA from each donor. For three of the candidates, ACValidator
results were experimentally validated (Supplementary Data,
Fig. S4A). For the candidate circRNA at chr10:116 879 948–
116 931 050, ACValidator validated the circRNA junction in two

of three samples, while chr9:113 734 352–113 735 838,
chr5:38 523 520–38 530 768, and chr8:37 623 043–37 623 873 were
validated in all three samples using all stringency cut-offs. For
the remaining two candidates, we observed evidence of valida-
tion but because differently sized PCR products were generated,
we could not determine the exact product size although it is
possible that multiple circRNA species may be present.
Additional PCR validations were performed on four circRNAs
candidates demonstrating medium expression (average
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Figure 3: ACValidator performance across different overlap stringency thresholds in simulated datasets. Sensitivity measurements based on the top 2% of true-positive

candidates were evaluated across four different overlap stringency thresholds (60, 40, 20, and 10 bp), as well as two different window sizes (300 and 600 bp). HS, high

stringency; LS, low stringency; VLS, very low stringency.

Figure 4: Integrated Genomics Viewer (IGV) screen shot of a circRNA candidate (chr11:117 023 156–117 034 608) Assembled contigs generated by ACValidator on RNase

R-treated (top panel) and nontreated (bottom panel) human MG samples, aligned to the corresponding pseudo-reference. This circRNA was detected in both the treated

and nontreated samples by at least three of the six existing circRNA prediction algorithms, and was not depleted following RNase R treatment. The circRNA junction of

interest is at 300 bp, and pink bars that span over this junction represent the contigs that validate the junction (colored segments at the ends of contigs represent soft-

clipped bases; arrows indicate the generated contigs that overlap with the circRNA junction). Reads from these samples aligned to the reference are shown in

Supplementary Figure 3.

6 | Sekar et al.

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaa010#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaa010#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpaa010#supplementary-data


SRPBM> 300 and <600), that were validated by ACValidator, and
that were called by at least three of six tools (Supplementary
Data, Fig. S4B). These candidates include chr5:10 415 599–
10 417 516, chr7:8 257 934–8 275 635, chr5:64 084 777–64 100 213,
and chr4:56 277 780–56 284 152. All junctions were validated
across the three untreated MG samples. PCR validations were
also performed on two circRNAs candidates demonstrating low
expression (average SRPBM< 90), that were validated by
ACValidator, and that were called by three of six tools
(Supplementary Data, Fig. S4C). These candidates include
chr15:93 540 186–93 545 547 and chr3:3 178 943–3 186 394, and
were validated across the three untreated MG samples. Sanger
sequencing was also performed on the seven circRNAs candi-
dates demonstrating medium or low expression, and although
high background was observed for a large proportion of the
reactions, three of the seven candidates were validated in at
least one sample. These include junction 6 (for samples MG_1_5
and MG_3_7), junction 8 (for samples MG_2_6 and MG_3_7), and
junction 9 (for sample MG_3_7).

Computational cost overview

We ran our evaluations on a Linux-based high-performance
computing cluster running CentOS version 7. As expected, the

computational cost of our approach directly correlates with the
number of reads in the input sample. The only rate-limiting
step in using ACValidator is read alignment to generate the
SAM file, which is performed prior to starting the workflow. The
python script following this step requires <2 min of runtime for
an input SAM file of ~8 GB, thus making our approach highly
computationally efficient.

Future directions

We present ACValidator, a novel bioinformatics workflow,
which can be used to validate circRNA candidates of interest in
silico and thus helps to identify true-positive candidates. This
workflow is applicable to non-polyA-selected RNAseq datasets
and can be used to validate circRNAs from various sample types
and diseases. When different circRNA detection algorithms
identify different circRNA candidates, ACValidator can be used
as a complementary/orthogonal strategy to narrow down spe-
cific candidates of interest and thus serve as a circRNA candi-
date prioritization tool for experimental validations or
functional studies.

When evaluated on simulated datasets, ACValidator demon-
strates improved performance when higher numbers of
circRNA supporting reads are available along with longer read

Table 3. Summary of ACValidator results on experimental datasets

Sample No. overlap with pair No. not depleted Percent validated when w ¼ insert size Percent validated when w¼ 2* insert size

HS MS LS VLS HS MS LS VLS

SRR1636985 1356 1243 73.53 78.52 79 79.57 73.45 78.84 79.57 80.13
SRR1637089 1356 1243 46.34 49.56 50.2 51.25 44.97 49.88 50.52 51.65
SRR1636986 780 594 79.46 84.68 85.35 86.03 80.81 86.36 87.21 87.71
SRR1637090 780 594 48.48 54.21 55.39 55.56 48.32 55.22 56.23 56.57
SRR444974 953 864 91.55 93.63 93.98 94.33 89.93 92.01 92.48 92.82
SRR444655 953 864 51.74 54.98 55.21 56.6 53.36 56.94 57.18 58.91
MG_1 1806 1691 72.8 77.05 77.94 78.83 71.67 77.35 78 78.71
MG_5 1806 1691 41.4 48.14 48.97 49.56 41.34 48.79 49.67 50.38
MG_2 1430 1331 71.9 76.86 77.46 78.14 69.72 76.11 76.63 77.31
MG_6 1430 1331 40.5 47.71 48.31 49.29 40.35 47.03 47.63 48.76
MG_3 1292 1148 71.95 76.74 77.53 78.48 70.38 75.87 76.83 77.7
MG_7 1,292 1148 44.08 51.48 52.26 53.4 44.51 51.39 52.18 53.57

Table 4. ACValidator and other tools’ results on top 100 candidates from experimental datasets.

Sample CIRI_count CIRCexplorer_count findCirc_count Mapsplice_count KNIFE_count DCC_count HS_count MS_count LS_count VLS_count

SRR1636985 99 93 89 97 92 92 94 97 97 97
SRR1637089 99 92 87 97 92 92 74 78 79 79
SRR1636986 99 95 84 96 95 92 91 91 93 94
SRR1637090 95 88 57 85 95 83 71 77 78 78
SRR444974 99 97 91 97 95 95 97 98 98 98
SRR444655 99 97 76 38 95 90 84 84 84 84
MG_1 40 96 85 99 91 88 91 94 94 94
MG_5 55 93 72 98 91 80 77 83 83 83
MG_2 35 96 90 100 90 90 89 93 93 93
MG_6 50 92 68 98 90 82 75 81 81 81
MG_3 44 96 83 99 88 88 90 93 94 94
MG_7 40 94 79 99 88 85 84 88 91 91

The top 100 most highly expressed candidates were selected from the list of circRNAs called by at least three of six tools, in both treated and nontreated samples, and

having SRPBM after RNase R treatment>SRPBM before treatment.

Each <tool_name>_count column lists the number of circRNAs among the top 100 detected by the tool. Similarly, HS, MS, LS, and VLS_count columns list the number

of circRNAs among the top 100 that were validated by ACValidator using those stringency thresholds.
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lengths of the sequencing library. Thus, coverage as well as read
length are important factors contributing to the performance of
ACValidator, since a higher number of reads as well as longer
read lengths result in improved assembly. When tested on
circRNA candidates that were not depleted between RNase R-
treated and nontreated sample pairs, we observed a higher veri-
fication rate in treated samples, as expected, since those sam-
ples are enriched for circRNAs. Window size, the region from
where reads are extracted for assembly, is an important param-
eter for our approach. Through testing of two different window
sizes, one equal to and one twice the insert size, we did not ob-
serve notable differences in the number of verifications.
Additionally, we applied different stringency thresholds based
on the extent of contig alignment, but we did not observe nota-
ble differences in the number of validated candidates across the
different thresholds for highly expressed candidates.

Although our workflow provides a novel approach for in silico
verification, we are limited by a few caveats. Primarily, since
our assembly analysis relies on reads that extend across
circRNA junctions, we are limited in our ability to in silico vali-
date circRNAs whose expression may be low, especially in sam-
ples that are not enriched for circRNAs. Second, since we are
limited by the lack of a gold standard circRNA reference dataset,
we rely on simulation datasets for evaluation of our approach,
which is based on informatically predicted circRNAs detected
by various studies and deposited in circBase. Further, since we
do not know the true-positive events in our experimental data-
sets, we evaluated candidates that are not depleted by RNase R.
However, it is still not known whether RNase R treatment intro-
duces any bias in circRNA detection, especially since some
circRNAs are sensitive to RNase R [2, 11, 26, 27].

Future versions of ACValidator will include contig alignment
visualization options built into the workflow, as well as alterna-
tive strategies to generate contigs for circRNAs with lower ex-
pression levels. As circRNAs continue to gain attention as an
interesting class of noncoding RNAs, development of novel
approaches, including implementation of statistical tests to es-
timate false discovery rates in circRNA detection, is needed.
Continued progress in improving our understanding of the biol-
ogy of circRNAs will be necessary for such algorithmic develop-
ment. These findings will be crucial not only for functional
analysis, but also for the development of more accurate circRNA
detection algorithms.

Data and tool availability

All data generated through this study are accessible through the
European Genome Archive (EGA; accession EGAS00001003128).
ACValidator is freely available on our GitHub page: https://
github.com/tgen/ACValidator, along with detailed instructions
to set up and run the tool (also available as Supplementary Text
1). ACV_launcher.sh, a wrapper/launcher script, is also included
to enable verification of multiple co-ordinates.
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