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Abstract
Regulatory watershed mitigation programs typically emphasize widespread adoption

of best management practices (BMPs) to meet total maximum daily load (TMDL)

goals. To comply with the Chesapeake Bay TMDL, jurisdictions must develop water-

shed implementation plans (WIPs) to determine the number and type of BMPs to

implement. However, the spatial resolution of the bay-level model used to determine

these load reduction goals is so coarse that the regulatory plan cannot consider hetero-

geneity in local conditions, which affects BMP effectiveness. Using the Topo-SWAT

modification of the Soil and Water Assessment Tool (SWAT), we simulated two BMP

adoption scenarios in the Spring Creek watershed in central Pennsylvania to deter-

mine if leveraging fine-scale spatial heterogeneity to place BMPs could achieve the

same (or better) nutrient and sediment reduction at a lower cost than the state-level

WIP BMP adoption recommendations. Topo-SWAT was initialized with detailed land

use and management practice information, systematically calibrated, and validated

against 12 yr of observed data. After determining individual BMP cost effectiveness,

results were ranked to design a cost-effective BMP adoption scenario that achieved

equal or greater load reduction as the WIP scenario for 74% of the cost using eight

management-based BMPs: no-till, manure injection, cover cropping, riparian buffers,

land retirement, manure application timing, wetland restoration, and nitrogen man-

agement (15% less N input). Because watersheds of this size typically represent the

smallest modeling unit in the Chesapeake Bay Model, results demonstrate the poten-

tial to use watershed models with finer inference scales to improve recommendations

for BMP implementation under the Chesapeake Bay TMDL.

Abbreviations: BMP, best management practice; CSA, critical source

area; HRU, hydrological response unit; SWAT, Soil and Water Assessment

Tool; TMDL, total maximum daily load; VSA, variable source area; WIP,

watershed implementation plan.
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1 INTRODUCTION

An efficient and cost-effective watershed management plan

is of fundamental importance to the sustainable intensifi-

cation of agricultural watersheds. Best management prac-

tices (BMPs) to lessen the impacts of agricultural activities
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on water quality are typically core elements of watershed

management plans (Ahmadi, Arabi, Fontane, & Engel, 2015;

Arabi, Frankenberger, Engel, & Arnold, 2008). Common

BMPs used to mitigate water quality concerns include soil

and water conservation, nutrient management, and ripar-

ian management practices. Design, implementation, place-

ment, and maintenance of BMPs drive pollutant reduction

efficiency (Ahmadi et al., 2015; Easton, Walter, & Steen-

huis, 2008b; Giri, Nejadhashemi, Woznicki, & Zhang, 2014)

because the water quality benefits of similarly implemented

BMPs can vary considerably with the hydrological and geo-

chemical variations that are found within and between water-

sheds (Arabi et al., 2008; Ghebremichael, Veith, & Ham-

lett, 2013; Veith, Wolfe, & Heatwole, 2003, 2004, 2010).

Variability in BMP effectiveness is often due to landscape

differences that lead to differences in hydrologic and bio-

geochemical responses. Examples of such variability include

runoff mitigation practices (e.g., no-till) that are effective in

soils where infiltration excess runoff predominates but less

effective where landscape controls promote saturation excess

runoff; cover crops that address sediment-bound phospho-

rus (P) loss in some settings but exacerbate dissolved P loss

in areas where erosion is not a primary concern; and tar-

geting of critical source areas that account for a majority of

a watershed’s P loss despite representing a minority of the

watershed area (Bechmann, Kleinman, Sharpley, & Sapor-

ito, 2005; Buda, Kleinman, Srinivasan, Bryant, & Feyereisen,

2009; Kleinman et al., 2011). However, watershed implemen-

tation plans (WIPs) designed through top-down decision mak-

ing over large areas inherently overlook fine-resolution spatial

details, including site-specific conditions that affect perfor-

mance and the social acceptance of certain practices.

Agriculture is a significant contributor of nutrient and sedi-

ment loads to the Chesapeake Bay, which is the largest estuary

in the United States and is threatened by these pollutants. The

2010 Chesapeake Bay total maximum daily load (TMDL)

established bay-level nitrogen (N), P, and sediment reduction

targets of 25, 24, and 20%, respectively, to be met by 2025

(https://www.epa.gov/chesapeake-bay-tmdl/chesapeake-bay-

tmdl-fact-sheet). In response, each of the seven state-level

jurisdictions within the Chesapeake Bay’s 166,000-km2

watershed has developed a series of WIPs, using the Chesa-

peake Bay Watershed Model to confirm that implementation

strategies will meet interim and long-term goals for reducing

N, P, and sediment loads (USEPA, 2010). As of 2017, the

midpoint year between the 2010 establishment of the TMDL

and the 2025 target for full implementation of planned

mitigation practices, progress was mixed, with Pennsylvania

falling short of meeting N and P load reduction requirements

in the Susquehanna River basin. Consequently, Pennsylvania

was required to improve mitigation efforts in the agricultural

and stormwater source sectors (USEPA, 2019). The adaptive

management approach of the TMDL requires a new round

of WIPs to be developed by each jurisdiction and evaluated

Core Ideas
• Locally relevant assessments of BMP impacts are

needed for the Chesapeake Bay.

• Topo-SWAT enabled evaluation of water quality

benefits for two BMP scenarios.

• A cost-effective scenario was developed from

state-level adoption recommendations.

• The cost-effective scenario promoted effective

spatial adoption of eight low-cost BMPs.

• The cost-effective scenario outperformed the

state-level one for 74% of the cost.

by the Chesapeake Bay Watershed Model to ensure success

(Chesapeake Bay Program, 2018a, 2018b). Once approved

by the USEPA, jurisdictions use the WIPs to guide mitigation

programs that, for agriculture, emphasize the BMPs that were

included in the approved WIPs (CCMP, 2019; USEPA, 1997,

2004).

Simulation modeling is required to anticipate the outcome

of implementing alternative watershed mitigation strategies

and assess the effectiveness of agricultural BMPs. The Chesa-

peake Bay Watershed Model, whose extent covers the entire

166,000-km2 Chesapeake Bay watershed, uses a relatively

coarse spatial resolution, with the smallest level of detail

being the land-river segments (an average area of 171 km2).

As jurisdictions in the Chesapeake Bay watershed refine their

WIPs, the intent is that this unprecedented investment in mit-

igation activities will promote practices that are best suited

to local conditions and are most cost effective in meeting the

water quality goals of the TMDL. The application of finer-

resolution models to areas within the Chesapeake Bay water-

shed has the potential to complement and inform strategies

developed with the Chesapeake Bay Watershed Model, even

though application of these models is substantially more time

and data intensive to implement.

Nonuniform spatial arrangement of runoff generation pro-

cesses, or variable source area (VSA) hydrology, becomes

a primary driver of surface runoff generation and nutrient

loss throughout the uplands of the Chesapeake Bay water-

shed (Easton et al., 2008a). The Topo-SWAT model, ini-

tially termed SWAT-VSA by Easton et al. (2008a), is a mod-

ification of the Soil and Water Assessment Tool (SWAT)

(Arnold, Srinivasan, Muttiah, & Williams, 1998; Neitsch,

Arnold, Kiniry, & Williams, 2011) that is well suited for land-

scapes exhibiting VSA hydrology. In particular, the Topo-

SWAT model with the built-in topographic wetness index

(Beven & Kirkby, 1979) has been shown beneficial in iden-

tifying critical source areas due to its ability to capture spa-

tial differences in recharge–infiltration and runoff generation

throughout the basin (Amin, Veith, Collick, Karsten, & Buda,

https://www.epa.gov/chesapeake-bay-tmdl/chesapeake-bay-tmdl-fact-sheet
https://www.epa.gov/chesapeake-bay-tmdl/chesapeake-bay-tmdl-fact-sheet
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2017; Collick et al., 2015; White et al., 2011; Winchell et al.,

2015; Woodbury, Shoemaker, Easton, & Cowan, 2014). Vari-

ous studies have demonstrated that watershed planning efforts

to reduce nutrient loadings can be improved by using topo-

graphic wetness classes to target BMPs to critical source areas

of nutrients like N and P (Ghebremichael, Veith, & Watzin,

2010; Yang & Weersink, 2004).

Estimating the cost effectiveness of BMPs, or the amount

of load reduction for each monetary unit (US$) spent on BMP

implementation, can be very helpful in designing an efficient

watershed management plan. Cost effectiveness calculation in

kilograms per dollar facilitates estimation of the amounts of

BMP implementation and money needed to reach a TMDL

target or other planning goal. A number of studies have esti-

mated various scenarios to minimize targeted pollution loads

at minimum cost (Ahmadi et al., 2015; Gitau, Veith, Gburek,

& Jarrett, 2006; Kieser & Associates, 2008; Liu et al., 2014;

Panagopoulos, Makropoulos, & Mimikou, 2012; Rabotyagov

et al., 2010; Veith, Wolfe, & Heatwole, 2004) using strate-

gies and BMP sets most appropriate to their study regions and

objectives.

We hypothesized that leveraging the fine-resolution tem-

poral and spatial capabilities of Topo-SWAT would enable us

to more meaningfully implement the agricultural BMPs spec-

ified within the WIP for a given bay-modeled land–river seg-

ment. That is, for a given watershed represented in the Chesa-

peake Bay Model by a single land–river segment, we hypoth-

esized we could use a fine-resolution simulation scenario in

Topo-SWAT to apply that watershed’s WIP-specified BMPs

in a manner that would provide a more cost-effective, locally

customized management plan while still meeting the Chesa-

peake Bay TMDL goals. Specific objectives were (i) to eval-

uate the nutrient water quality benefits of the TMDL-derived

regulatory WIP scenario using finer-resolution BMP imple-

mentation modeling than possible with the Chesapeake Bay

Model; (ii) to estimate the individual cost effectiveness of sug-

gested agricultural BMPs for reducing nutrient and sediment

loads; and (iii) to create a more locally relevant, cost-effective

scenario than the TMDL-derived regulatory WIP scenario.

2 MATERIALS AND METHODS

2.1 Study watershed

Spring Creek watershed (40◦40′–40◦59′ N, 77◦38′–78◦00′

W; Hydrologic Unit Code 02050204), located in Centre

County, Pennsylvania, in the northeastern United States

(Figure 1), drains a surface area of 370 km2 and a ground-

water area of 450 km2 into Bald Eagle Creek (USGS

gauge no. 01547200) near Milesburg. Prominent northeast–

southwest steep-sided narrow Appalachian ridges and val-

leys are the major topographical features. Spring Creek

watershed represents a typical karst geology within the

Chesapeake Bay watershed (Brooks et al., 2011; Buda &

DeWalle, 2009; Fulton, Koerkle, McAuley, Hoffman, &

Zarr, 2005; Piechnik, Goslee, Veith, Bishop, & Brooks,

2012). Perched and losing streams are regularly seen in

the karst valleys, especially in headwater regions dur-

ing dry periods (O’Driscoll & DeWalle, 2006). The soils

in the watershed were mainly derived from sandstone

(Vanderlip), limestone (Opequon and Hagerstown), shale

(Weikert), and interbedded carbonate and sandstone (Mor-

rison) (https://www.springcreekwatershedatlas.org/). Climate

is temperate with hot, humid summers and cold winters;

monthly temperatures generally average 3.9–21.1◦C. For the

1985–2014 time period, average annual precipitation was

1058 mm, average annual relative humidity was 77.5%, and

average annual wind speed was 27.9 km h−1 (PSC, 2015).

Although urban areas have increased in density, overall land-

use categories have remained reasonably steady during last

decade at 34% agriculture, 21% developed, 43% forest, and

2% water and barren area. Agricultural land use consists of

corn (Zea mays L., 33%), soybean [Glycine max (L.) Merr.,

12%], other small grains (8%), alfalfa (Medicago sativa L.,

7%), and hay and pasture (40%) (USDA, 2015).

2.2 Model descriptions

2.2.1 The Chesapeake Bay model

The watershed component of the Chesapeake Bay Model was

developed to simulate runoff from landscapes upstream of the

bay and the associated transport and fate of in-stream nutri-

ents and sediment that contribute to Chesapeake Bay water

quality degradation (CCMP, 2019). Different versions of the

model have been operational for more than two decades. Here,

we used Phase (5.3) information, which simulates a thou-

sand model segments within the Chesapeake Bay watershed,

with an average segment size of 171 km2 and a 21-yr simula-

tion period. Land-use categories within the Chesapeake Bay

Model include 13 types of cropland, two types of woodland,

three types of pasture, and four types of urban land (CCMP,

2019). The model tracks nutrient inputs in manures, fertil-

izers, and atmospheric deposition on an annual time series,

based on a mass balance of county-level Agricultural Census

data such as animal populations, crop yields, area planted, and

fertilizer sales.

2.2.2 The Topo-SWAT model

The SWAT model (Arnold et al., 1998; Neitsch et al., 2011)

simulates the impact of changes in land use and management

and climate on hydrology and water quality within a water-

shed (Jeong et al., 2013; Kaini, Artita, & Nicklow, 2012;

Veith, Van Liew, Bosch, & Arnold, 2010). Topo-SWAT, a

modified version of the SWAT model that incorporates the

https://www.springcreekwatershedatlas.org/
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F I G U R E 1 Spring Creek watershed, Centre County, Pennsylvania, USA, showing major subbasins and USGS gauging stations:

M = Milesburg, A = Axemann, and H = Houserville. Source: USGS and the Chesapeake Bay Program website (http://www.chesapeakebay.net)

topographic wetness index into the input data, can effectively

simulate hydrologically active areas, as well as crop growth

and agricultural management at the scale of individual fields

when detailed data are provided. Topo-SWAT is therefore

capable of capturing temporal and spatial variations in dif-

ferent physicochemical processes resulting from geophysi-

cal, management-related, and climatic differences throughout

an agricultural watershed. For the Spring Creek watershed,

Amin et al. (2017, 2018) demonstrated the ability of the Topo-

SWAT model to successfully represent karst hydrologic pro-

cesses and simulate the effects of different conservation dairy

cropping scenarios on water and nutrient balances.

2.2.3 Spring Creek baseline setup and
validation

Ground-truthed baseline conditions were represented in

Topo-SWAT, as described by Amin et al. (2017), by incorpo-

rating all actual spatial and temporal field-level details of crop

type, crop rotation, and agricultural management practices for

each spatially distinct land-use polygon (i.e., individual agri-

cultural field or set of contiguous, identically managed fields).

Each spatially distinct land-use polygon was further divided

by soils, and then into 10 topographic wetness index classes.

The intersected results of these layers (land use, soils, topo-

graphic index class) form the spatially explicit layer of hydro-

logical response units (HRUs) for the watershed. The HRUs in

the wetter topographic index classes indicate the VSAs within

the watershed. The HRUs in this project (i.e., Topo-SWAT’s

smallest spatial unit) are, thus, smaller than an individual agri-

cultural field (up to several ha), whereas the Chesapeake Bay

Model operates on land–river segments (each several hundred

km2). Therefore, the Chesapeake Bay Model inputs for the

Spring Creek land–river segment supplied, to the extent possi-

ble, the inputs and model parameters for the Topo-SWAT sim-

ulations. However, additional details needed for Topo-SWAT

were derived from local information to accurately inform the

model’s spatial and temporal representation of current agri-

cultural management throughout the watershed. These addi-

tional details were found to be consistent, as a whole, with

the Chesapeake Bay Model details. In particular, crop types

and crop rotations were derived from the cropland data lay-

ers of 2008–2014 (USDA, 2015). Farmers’ practices in har-

vested forage management, such as depth of cut and amount

left on field, plus other information on agricultural opera-

tions, such as tillage, manure or fertilizer application, cover

crop, sowing, harvesting and killing or end of growing sea-

son, were collected from the Local Agronomy Guide of Penn-

sylvania, the USDA National Agricultural Statistics Service

(https://www.nass.usda.gov/), stakeholder meetings, and local

extension agents.

The Topo-SWAT model was calibrated and validated for

hydrology and water quality at a daily time scale using

http://www.chesapeakebay.net
https://www.nass.usda.gov/
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daily stream flow and bimonthly water quality monitoring

data collected at the three USGS gauges obtained from the

USGS website (http://waterdata.usgs.gov/pa/nwis/rt), CCMP

(2019), and SCWA (2013). A detailed description of input

data, model parameters, model assessment, and results of

calibration (2002–2007) and validation (2008–2013) of this

model can be found in Amin et al. (2017). Values of model

performance indicators (R2, Nash–Sutcliffe efficiencies, and

percentage bias) are supplied in the supplemental materials.

2.3 Development and simulation of scenarios

2.3.1 Watershed Implementation Plan
(WIP-2025) scenario

The Chesapeake Bay Program Office provided details and

assistance in interpreting the WIP information for the Spring

Creek watershed. Accordingly, an updated WIP-2025 sce-

nario for Spring Creek watershed was developed by short-

listing the official BMP list from the watershed’s WIP plan

based on expert opinion on local agroecology, locally known

information on land use and natural resources, available data

and communication with the local farmers, and appropri-

ateness for simulation in the nonpoint source, agriculturally

focused Topo-SWAT model. The Topo-SWAT WIP-2025 sce-

nario followed the general WIP guidelines of ranking, design,

and implementation hectares for eight BMP categories that

are relevant to the Spring Creek watershed and are simulated

well in SWAT (Table 1).

The spatially distributed results of nutrient and sediment

loss in the baseline Topo-SWAT scenario were used to iden-

tify agriculturally related critical source areas (CSAs), where

highly concentrated nutrient source areas and localized hydro-

logic transport areas (VSAs) coincided in the watershed

(Amin et al., 2017). Then, in the Topo-SWAT WIP-2025 sce-

nario, BMPs were placed spatially and temporally according

to feasibility within the rotation and to vulnerability of the

land use to nutrient loss. The land-use-altering BMPs were

placed first on appropriate land until either no more land was

available or the WIP guidelines for implementation quantity

of each BMP were met, whichever came first. For example,

a 30-m strip on each side of the stream was recommended

for the buffer strip based on the WIP guidelines. About 54%

area (732 ha) of the recommended buffer strip was already

either grassed or forested (USDA, 2015), so the rest of the area

(623 ha) was converted to grass or forest in the simulation.

Next, cropland conversion into hay or pasture with no nutrient

application was preferentially performed on the cropland most

vulnerable to runoff and nutrient loss until the WIP suggested

implementation quantity was met. After placing the buffer and

other land-use-altering BMPs, the management-related BMPs

were applied similarly.

2.3.2 Calculating watershed-specific best
management practice efficiencies for Spring
Creek with Topo-SWAT

The Chesapeake Bay Model uses efficiency based on expert

opinion and literature reviews to estimate BMP performance,

whereas SWAT primarily simulates BMPs through modifi-

cation of management processes. To calculate the efficiency

of individual BMPs, individualized scenarios were created in

Topo-SWAT in which all study BMPs were singularly applied

to all feasible times and places of the baseline scenario. All

the scenarios were run for a 10-yr period. Average N, P, and

sediment reduction percentages for the watershed were then

calculated from the differences between the BMP and base-

line scenario results.

2.3.3 Cost-effective scenario

Recognizing that final installation costs may vary widely

among localities and that some farmers adopt BMPs even

without incentive, the final implementation costs per BMP

were based on the averages of various literature values.

Reported costs ranged from $6.7 to $8.1 ha−1 yr−1 for con-

servation till or no-till (Kurkalova, Kling, & Zhao, 2006),

−$74 to $34 ha−1 yr−1 (averaging $6.9 ha−1 yr−1) for

nutrient management plans (USEPA, 2003a), and $10 to

$100 ha−1 yr−1 for cover crops (Mannering, Griffith, & John-

son, 2000; USEPA, 2003b). Land-use alteration from row

crop to permanent grass was estimated to cost $247 ha−1 yr−1

in establishment cost and $250 ha−1 yr−1 in land retirement

(Wittenberg & Harsh, 2006). Applying manure via injec-

tion can cost 6% more than broadcasting followed by tillage

incorporation, and 28% more than broadcast application with-

out incorporation (Hadrich, Harrigan, & Wolf, 2010). Thus,

manure injection costs were calculated at $7.5 ha−1 yr−1 when

replacing broadcast application with incorporation, and at

$29 ha−1 yr−1 when replacing broadcast application without

incorporation. Providing sufficient manure storage for farms

in this watershed to hold their fall manure application until

spring was estimated to cost $0.6 to 0.7 Mg−1 or, on average,

$30 ha−1 yr−1 (NRCS, 2015).

Nitrogen has been identified as the priority nutrient need-

ing to be addressed to achieve the TMDL goals for this

karst watershed as well as for the Chesapeake Bay (Chesa-

peake Bay Program, 2019; SCWA, 2013). Thus, to eval-

uate the lower cost alternative, a cost-effective ranking of

BMPs was performed based on the amount of N load reduc-

tion for each monetary unit ($) spent on BMP implemen-

tation. Suitable land for implementation of each BMP was

identified based on the availability of BMP-feasible land

within each given year of the various cropping rotations. For

example, 1980 ha (33% of total cropland) was available to

http://waterdata.usgs.gov/pa/nwis/rt
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T A B L E 1 Description of the best management practices (BMPs) as they were represented in Spring Creek watershed, Centre County,

Pennsylvania, using a Topo-SWAT model with field-level management data

BMP category Description
No-till No tillage was used on any crop in the multicrop, multiyear rotation, and all crops were planted using

no-till methods.

Manure injection Liquid manure was injected at shallow soil depth. About 90% manure was placed below the top 10-mm

soil layer. A custom-made mixing device in the Soil and Water Assessment Tool (SWAT) (mixing

efficiency = 15%, mixing depth = 100 mm, and random roughness = 10 mm) was added to correctly

simulate the manure injection.

Spring manure Manure was applied in the spring instead of fall season.

Cover crop A winter wheat crop was sown at least 2 wk prior to the average frost date without nutrient amendments

and was not harvested.

15% less N input 15% less nitrogen was applied. Nitrogen application rates are often set at, or possibly above, estimated

crop requirements to ensure adequate nitrogen availability.

Land retirement Low-lying croplands were converted to hay or pasture without nutrient amendments.

Permanent grass Croplands were converted to permanent warm-season grasses without nutrient amendments.

Wetland restoration Agricultural land was reclaimed or converted into wetlands, including forested and nonforested wetlands

and emergent marsh.

Buffer strip A 30-m grassed or forested strip was implemented on each side of the stream. All croplands near hay in

the buffer strip area were converted to hay without nutrient, and all croplands near forest were

converted to forest.

convert into no-till practices in the watershed in any given

year.

A selection of the top most cost-effective BMPs was then

sequentially added to the Topo-SWAT baseline scenario based

on their cost effectiveness rank, as well as the percentage

of appropriate land for each BMP that was available, within

the top 10% most nutrient-prone agricultural hectares of the

watershed, and then within increasingly less nutrient-prone

agricultural hectares by 10% segments. With each addition of

land or BMP, the Topo-SWAT simulation was rerun and eval-

uated. This iterative process was continued until the results of

the Topo-SWAT cost-effective simulation, as compared with

the baseline simulation, for N loadings at the Spring Creek

watershed outlet showed percentage reductions equal to or

greater than those of the bay-level TMDL goal. The total BMP

implementation cost for the watershed was then estimated.

Because the BMP rankings, relative differences in cost effec-

tiveness, and implemented areas for this process all vary by

watershed and by cost effectiveness goal, the solution for this

study will be detailed further in the results section.

3 RESULTS AND DISCUSSION

3.1 Topo-SWAT model performance for
baseline scenario

The ground-truthed baseline Topo-SWAT scenario described

hydrologic processes in the watershed reasonably well.

Specifically, simulated and observed daily streamflow at all

three USGS gauging stations of Spring Creek watershed

(Milesburg, Axemann, and Houserville; Figure 1) matched

for the calibration period of January 2002 to December 2007

and corroboration period of January 2008 to December 2013

(Amin et al., 2017), with daily Nash–Sutcliffe efficiencies of

0.72–0.81 (scale −∞ to 1), percentage bias of 3.5 to −9.8%,

and R2 of .61–.80 (R of .78–.89). Topo-SWAT predicted that

baseflow contributed 83% of the total streamflow during the

simulation period, as compared with a baseflow contribution

of 87% from measured flow records. A visual comparison of

the hydrographs confirmed systematic similarities in timing,

duration, and peak height of the majority of storm events.

Simulated and observed distributions of water quality vari-

ables (N, P, and sediment) were comparable, with a consis-

tently negative percent bias in Topo-SWAT: −12.9% for N,

−9.1% for P, and −4.0% for sediment (Amin et al., 2017). Due

to the sparsity of observed water quality data, other model per-

formance indicators were not calculated. However, nutrient

and sediment loading rates for individual land-use types and

crop fields were also within ranges of literature values (Amin

et al., 2017, 2018). Annual total N, P, and sediment loads for

the baseline scenario were 518, 45, and 13,600 Mg yr−1 as

predicted by Topo-SWAT and 570, 42, and 12,900 Mg yr−1

as estimated by the Chesapeake Bay Model (CCMP, 2019).

3.2 Topo-SWAT simulation of WIP-2025
scenario

The “15% less N” BMP was the most widely applied BMP in

the WIP-2025 scenario, followed by cover cropping (Table 2).

The WIP-2025 scenario reduced the average annual watershed
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T A B L E 2 Watershed implementation plan (WIP)-suggested area for the study watershed plus areas, cost involvement, and load reduction, as

simulated in Topo-SWAT, of the best management practices (BMPs) incorporated in the regulatory-driven, watershed implementation plan scenario,

WIP-2025

Cumulative load reduction
WIP suggested area
for the watershed

Area of
BMP Cost Total N Total P Sediment

BMPa ha ha US$ %
Buffer strip 695 623 39,268 1.7 2.7 3.8

Land retirement 998 994 297,604 7.7 18.4 17.8

Cover crop 1,520 1,520 83,600 11.7 25.2 27.8

No-till 261 646 4,780 12.0 23.2 29.9

Permanent grass 500 315 94,311 12.5 24.5 30.8

Wetland

restoration

197 181 72,219 13.8 29.0 34.6

Manure injection 97 94 2,726 13.9 30.0 34.6

15% less N input 5,942 6,000 41,400 23.0 29.8 34.2

Total cost 635,908

aRefer to Table 1 for BMP definitions as applied in this study.

loadings of N, P, and sediment by 23, 30, and 34%, respec-

tively, as compared with the baseline scenario (Table 2). Thus,

the WIP-2025 scenario simulated in Topo-SWAT predicted

a 2% lower reduction in N than the 25% N reduction target

for the Chesapeake Bay-level TMDL but exceeded both the P

and sediment Chesapeake Bay-level TMDL targets of 24 and

20%, respectively. The WIP-2025 scenario BMPs, simulated

by Topo-SWAT, were less effective at reducing N loss than

at reducing P and sediment loss in the watershed because the

major pathways of N loss were leaching (78% of total loss)

and subsequent groundwater contribution to the streams. The

manure injection BMP used in this scenario was considerably

effective at reducing surface runoff losses of N but not sub-

surface N losses in this karst watershed.

Overall, the Topo-SWAT results are consistent with recent

historical water quality trends observed through monitor-

ing in the Spring Creek watershed: P loads in stream dis-

charge have considerably decreased over the last two to

three decades, but less so for N, based on the observed

nutrient concentration and stream flow data available at

http://waterdata.usgs.gov/pa/nwis/rt. Between 2009 and 2017,

for the whole Chesapeake Bay watershed, P load was reduced

by 21.5% against the target of 15% for this period, whereas

N load was only reduced 2.9% as compared with a target of

16% (Chesapeake Bay Program, 2019). Reduction of N load-

ing is clearly proceeding more slowly than the reduction of

P in Spring Creek and in the whole Chesapeake Bay water-

shed, and it is likely the limiting factor in jointly meeting the

bay-level N, P, and sediment TMDLs. Accordingly, the BMPs

that were more efficient in N load reduction were identified

and incorporated on a priority basis for developing a better

management plan, as shown in the sections below.

3.3 Topo-SWAT estimation of best
management practice effectiveness

Each BMP, as predicted by Topo-SWAT, showed a wide range

of impact on nutrient and sediment load reduction and crop

yield (Figures 2 and 3), which was expected due to the diver-

sity of soil types, topographic soil wetness classes, land uses,

and complex soil–water–plant relationships throughout the

watershed. Combined with broadcast manure, no-till prac-

tices reduced denitrification (4.6 kg ha−1, 8.9%), N leach-

ing (1.1 kg ha−1, 8.5%), and soil loss (0.28 Mg ha−1, 16.3%)

but increased total N runoff (1.7 kg ha−1, −7.8%) and total

P loss (3.0 kg ha−1, −38.1%) because of less manure incor-

poration into the soil. The results agree with the findings of

Garcia, Veith, Kleinman, Rotz, and Saporito (2008) and Wil-

son, Dalzell, Mulla, Dogwiler, and Porter (2014) showing that

lack of manure incorporation with no-till enhanced total P

loss (0.43 kg ha−1 in clay loam soil) but reduced soil loss.

Compared with manure incorporation, surface manure appli-

cation without tillage typically increases losses of ammonia

N through volatilization (Nathan & Malzer, 1994), and this

likely reduces manure N available for other N-loss pathways

such as leaching and denitrification (Velthof, Kuikman, &

Oenema, 2003). Decreased soil erosion under no-till limited

the sediment-bound transport of nutrients, as also reported by

Legge et al. (2013), but the absence of tillage and associated

incorporation increased surface loss of manure constituents

during subsequent storm events.

In contrast, when combined with manure injection, no-till

reduced denitrification less (0.68 kg ha−1), reduced N runoff

more (4.7 kg ha−1), and increased P loss less (1.4 kg ha−1)

than broadcast manure application. The reported effectiveness

http://waterdata.usgs.gov/pa/nwis/rt
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F I G U R E 2 Changes in nutrient (N and P) losses, sediment (soil) loss, and crop yield (note different scales in the graph) by different

efficiency-type best management practices (BMPs) in Spring Creek watershed, Centre County, Pennsylvania. Dotted lines indicate-no change (zero)

lines, NT = no-till, BM = broadcast manure, IM = injected manure, SM = spring applied manure, CC = cover crop, NCC = no cover crop, less

N = 15% less N input (BMP descriptions in Table 1)

of no-till practices and conservation tillage varies substan-

tially. For example, Folle, Dalzell, and Mulla (2007) found

that conservation tillage reduced P loss by 15–25%, but that

P loss range expands to 10–95% in a comprehensive literature

review by Gitau, Gburek, and Jarret (2005) of northeastern US

studies. Douglas-Mankin, Daggupati, Sheshukov, and Barnes

(2013) observed soil loss reduction by 58–83% due to no-till.

The overall effectiveness of no-till management in reducing

overland pollutant losses in the Spring Creek watershed is

diminished, as compared with areas dominated by overland-

flow hydrology, because the karst hydrology is dominated by

minimal surface runoff and high infiltration (Taylor, 1997).

Subsurface injection of liquid manure also reduced N

volatilization (90%) and surface runoff-mediated nutrient

losses (6.7 kg N ha−1 and 1.05 kg P ha−1) (Figure 2). The

effectiveness of this practice is dependent on the technol-

ogy used for injection. Manure injection with conventional

tillage offered minimal environmental benefit compared with

injection with no-till (Figure 2). Because conventional tillage

after manure broadcasting incorporates manure into the soil,

injection does not provide considerable additional benefit over

broadcasting immediately before conventional tillage. Distur-

bance due to injection can slightly increase the erosion risks,

but the subsurface injection also impedes the runoff loss of

nutrients (Jahanzad, Saporito, Karsten, & Kleinman, 2019).

Average reductions of N runoff (0.1 kg ha−1, 0.5%) and P

loss (0.2 kg ha−1, 3.6%), and average increases of N leach-

ing (0.1 kg ha−1) were predicted in this study. In contrast,

manure injection was much more effective with no-till man-

agement, reducing both N runoff (7.8 kg ha−1, 36.1%) and

P loss (1.24 kg ha−1, 15.6%) and increasing crop yield (0.17

Mg ha−1). Disturbance during manure injection increased soil

loss (0.04 Mg ha−1). Decreased runoff loss enhanced nutri-

ent availability in the root zone and thus increased crop yield.

Some of the persisting N in soil was subsequently denitrified

or leached, so the manure injection resulted in more N leach-

ing (8.0%) and denitrification (8.1%) as compared with broad-

cast manure. Amin et al. (2013) observed statistically insignif-

icant changes in N leaching for manure injection under similar

weather conditions. In the Spring Creek watershed, Jahanzad

et al. (2019) compared manure injection and surface broad-

cast over 4 yr, and although P losses were variable and did not

differ in 3 yr, P accumulated over time, and when P losses in

runoff were greatest, manure injection reduced total P loss by

60% compared with surface broadcast application.

In the current study area, manure was usually applied either

in spring or fall. When combined with cover crops, broad-

cast spring manure application was found beneficial over the

broadcast fall application. Broadcast spring manure applica-

tion reduced N runoff (0.7 kg ha−1), N leaching (5.5 kg ha−1),

denitrification (18.0 kg ha−1), P loss (0.4 kg ha−1), and soil

loss (0.18 Mg ha−1) compared with fall manure application.

The crop yield was also larger (36.6%) with spring application

because the nutrients of fall-applied manure partly diminished
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F I G U R E 3 Changes in nutrient (N and P) losses, sediment (soil)

loss, and crop yield by different land-use-altering best management

practices (BMPs) in Spring Creek watershed, Centre County,

Pennsylvania. Dotted lines indicate no-change (zero) lines, LR

hay = land retirement into hay, LR pas. = land retirement into pasture,

Per. grass = permanent grass, Wet. rest. = wetland restoration (BMP

descriptions in Table 1)

before the following spring crop. The benefit of spring manure

application over fall application was 83% less for N leach-

ing and 13% less for P loss (Figure 2) when the cover crop

was incorporated because nutrients consumed by the cover

crop became unavailable for loss, and the cover crop vege-

tation reduced erosion. Cover cropping was the most effec-

tive efficiency-type BMP regardless of manure application

method (Figure 2). With manure injection, cover cropping

reduced N runoff (6.1 kg ha−1, 44.1%), N leaching (6.1 kg

ha−1, 43.7%), denitrification (22.3 kg ha−1, 39.8%), P loss

(3.1 kg ha−1, 46.1%), and soil loss (1.05 Mg ha−1, 63.2%).

Cover cropping has proven its effectiveness in controlling

nonpoint-source pollution across a wide range of watersheds.

In a midwestern watershed, Hanrahan et al. (2018) quantified

69–90% less nitrate N loss in tile drains from fields planted to

cover crops than from fields without cover crops. Further, in

a meta-analysis of 77 N leachate studies, Tonitto, David, and

Drinkwater (2006) found that nonlegume cover crops reduced

N leaching, on average, by 70% relative to bare fallow, without

negative impacts on the subsequent crop, and legume cover

crops reduced nitrate leaching by 40% relative to bare fallow.

Arabi et al. (2008) observed that cover crops reduced N, P, and

sediment loading by 14, 10, and 3%, respectively. Folle et al.

(2007) found 16% N and 29% P loss reduction by introducing

rye (Secale cereale L.) cover crop.

In the current study, adopting cover crops also increased

average crop yield by 18.9 and 17.6% under broadcast and

injected manure, respectively. A 65-study meta-analysis of

corn yield response to cover crops across the United States

found that legume cover crops increased corn yields by 30–

33% (Marcillo & Miguez, 2017). When fall-applied manure

was combined with rye cover crop in a 2-yr field study in the

Spring Creek watershed, Milliron, Karsten, and Beegle (2019)

found that corn yields following a rye cover crop were 23%

greater after injected manure than after broadcast manure.

Application of 15% less N reduced N loss in all pathways

as expected, including N in runoff (0.3 kg ha−1, 2.1%), leach-

ing (1.2 kg ha−1, 8.3%), and denitrification (3.9 kg ha−1,

7.6%). However, total P (0.05 kg ha−1, 0.8%) and sediment

load (0.02 Mg ha−1) increased slightly. Applying 15% less

N also reduced average crop yield by 8.0–9.2%. The asso-

ciated reductions in biomass production and vegetative cov-

erage might have accounted for increases in soil erosion

and sediment-bound P transport. Indeed, Folle et al. (2007)

reported that 20% less N application in fall reduced N loss

by 20%, whereas the same N rate reduction in spring caused

only a 6.8% reduction in N loss. Notably, 34% less P applica-

tion reduced total P loss by ∼28%. Cerro et al. (2014) stated

that 20% less fertilizer application reduced N leaching by 34%

and yield by 3%.

Land-use-altering BMPs were nearly all equally effective

for reducing nutrient loss (Figure 3), as modeled in Topo-

SWAT. Land retirement as hay or pasture without nutrient



622 AMIN ET AL.

application and establishing perennial orchard grass reduced

N runoff (6.6 kg ha−1, 85.5%), N leaching (6.2 kg ha−1,

79.5%), and denitrification (26.1 kg ha−1, 77.3%). These

land-use-altering BMPs also reduced P loss by 3.4 kg ha−1

(92.7%) and soil loss by 0.53 Mg ha−1 (87.6%). The pre-

dictions are in agreement with the findings of Wilson et al.

(2014), who obtained >85% reduction of P and sediment

loss by changing land use from row crop to pasture in a

karst watershed. Restored wetland, via conversion of crop-

land to forested wetland, had much lower N leaching and

denitrification than cropland. It was unexpected that restor-

ing wetlands would increase soil loss. This finding may be

due to limitations in how SWAT was used to simulate wet-

lands. However, the scenario results were not affected by

any minor error in simulating soil loss from wetlands, since

effectiveness in soil loss reduction was not considered when

ranking the BMPs for N reduction, and since the wetland

restoration BMP was determined too costly to be used in the

Topo-SWAT cost-effective scenario for this study. Grassed

and forested buffer strips reduced both nutrient (13.9 kg N

ha−1 and 3.36 kg P ha−1) and sediment (0.82 Mg ha−1) loss

substantially.

3.4 Topo-SWAT estimation of best
management practice cost effectiveness

No-till ranked highest among the BMPs studied based on cost

effectiveness of N loss reduction (0.83 kg $−1) (Table 3).

Cost effectiveness among manure injection, cover crop, grass

buffer strip, and 15% less N input was similar (0.21–0.23 kg

$−1) and about four times less than for no-till. Similar results

were obtained by Kieser & Associates (2008) who found no-

till as the most cost-effective (1.47 kg $−1) BMP to reduce

N loss in the Paw Paw River watershed in Michigan. The

cost effectiveness ranking of the other BMPs they studied

was as follows: combination of edge-of-field filter strips and

no-till (0.45 kg $−1) > edge-of-field filter strip (0.41 kg

$−1) > rye cover crop (0.30 kg $−1) > 25% less fertilizer appli-

cation (0.08 kg $−1). The ranking of BMPs in Kansas was

no-till (1.2 kg $−1) > buffers and vegetative filters (0.91 kg

$−1) > cover crop (0.32–0.8 kg $−1), and 32% less N rate

was slightly more cost effective than avoiding fall N applica-

tion (Wortmann et al., 2011). There are ranking similarities in

those studies, but the cost effectiveness varied across farming

systems, environmental conditions, and time. Liu et al. (2014)

obtained higher cost–benefit ratio of no-till (114%) compared

with fertilizer management (96 and 89%) for reducing nutri-

ent load in a large tributary of the Three Gorges Reservoir

in China. Ahmadi et al. (2015) found fertilizer management

more effective than grassed waterways and tillage manage-

ment for nitrate load reduction in the Eagle Creek watershed,

Indiana.

In the current study, N-reduction cost effectiveness of land

retirement and wetland restoration (0.02 and 0.04 kg $−1,

respectively) was negligible due to the BMPs’ relatively large

implementation costs (Table 3). On the other hand, the low

cost effectiveness (0.03 kg $−1) of spring manure application

was attributed to its low performance in N loss reduction. Cost

effectiveness of a BMP also varies with the scale of imple-

mentation; for example, large-scale filter strip installation can

diminish its cost effectiveness (Kieser & Associates, 2008).

Similar BMP cost effectiveness rankings can be conducted for

other watersheds in the upper Chesapeake Bay region.

3.5 Topo-SWAT simulation of cost-effective
scenario

Results from the N-based cost effectiveness ranking in the pre-

vious section show that no-till was four times more cost effec-

tive than any other BMP considered in this watershed. Thus,

no-till implementation was prioritized on all appropriate land

when creating the Topo-SWAT cost-effective scenario from

the Topo-SWAT baseline. Second, the next four highest-

ranked BMPs (cover cropping, manure injection, 15% less N

input, and grass buffer), which were ranked almost equally

cost effective in reducing N, were added as a group to the

10% most nutrient-loss-prone fields within the Topo-SWAT

cost-effective scenario and evaluated. As with the Topo-

SWAT WIP-2025 scenario, the Topo-SWAT cost-effective

scenario was updated and reevaluated iteratively as the allow-

able hectares for implementation gradually were increased.

The process continued until the percentage reduction in N

at the Spring Creek watershed outlet, as simulated in Topo-

SWAT, equaled the bay-level TMDL goal for N loadings into

the bay.

Ultimately, for the Spring Creek watershed, Topo-SWAT

simulations required implementation of no-till, manure injec-

tion, cover crop, grass buffer, and 15% less N input in all suit-

able agricultural land to achieve the same level of reduction

in N loadings at the watershed outlet as the bay-level TMDL

goal (Table 4). The final Topo-SWAT cost-effectiveness sce-

nario resulted in implementing no-till and cover cropping on

three times more hectares than in the Topo-SWAT WIP-2025

scenario. However, these BMPs can help reduce denitrifica-

tion, increase soil health by retaining organic matter to slowly

degrade on the field, and enhance plant uptake of nutrients.

Both simulation scenarios essentially met the bay-level

TMDL goals for N, P, and sediment using only a portion of

the BMPs suggestion on the WIP guidelines for the water-

shed. The Topo-SWAT cost-effective scenario we identified

reduced N and P loads almost equally (25 and 26%, respec-

tively) and sediment by 34%, whereas the Topo-SWAT WIP-

2025 scenario reduced N and P by 23 and 30%, respec-

tively, and sediment by 34%. Both scenarios reduced N loss
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T A B L E 3 Estimated watershed average cost effectiveness of the best management practices (BMPs) in reducing nutrient and sediment loads in

Spring Creek watershed

Load reduction

N loss P loss Soil loss
BMP
application cost

N loss reduction
per unit cost

BMPa kg ha−1 yr−1 kg ha−1 yr−1 Mg ha−1 yr−1 US$ ha−1 yr−1 kg US$−1
N-based
BMP rank

No-till 6.2 −1.62 0.31 7.4 0.83 1

Manure injection 6.8 1.24 0.04 29 0.23 2

Cover crop 12.2 3.10 1.05 55 0.22 3

Grass buffer 13.9 3.36 0.82 63 0.22 4

15% less N input 1.4 −0.05 −0.02 6.9 0.21 5

Land retirement 12.8 3.36 0.53 299 0.04 6

Spring manure 0.8 0.35 0.00 30 0.03 7

Wetland

restoration

6.6 0.41 0.00 392 0.02 8

aRefer to Table 1 for BMP definitions as applied in this study.

T A B L E 4 Areas, cost involvement, and load reduction, as simulated in Topo-SWAT, of the best management practices (BMPs) incorporated in

the cost-effective scenario based on N as a limiting factor

Cumulative load reduction
BMP area Cost Total N Total P Sediment

BMPa ha US$ %
No-till 1,980 14,652 3 −5 4

Manure injection 6,000 174,000 11 6 6

Cover crop 4,200 231,000 22 26 34

Grass buffer 176 11,097 23 27 35

15% less N input 6,000 41,400 25 26 34

Total cost 472,149

aRefer to Table 1 for BMP definitions as applied in this study.

elsewhere in the N cycle, such as denitrification, volatiliza-

tion, and leaching. However, total implementation costs for

the Topo-SWAT cost-effective scenario were 26% less than

for the Topo-SWAT WIP-2025 scenario because the cost-

effective scenario requires the most cost-effective BMPs to

be implemented first. By design, the cost-effective scenario

spreads costs for BMP implementation throughout the water-

shed at smaller amounts per person than scenarios that incor-

porate larger-cost restoration-type BMPs.

It is important to note that BMP performance uncertainty

can be intensified in extreme climate scenarios (Woznicki &

Nejadhashemi, 2014), and possible impacts of climate change

on the processes simulated in the study need to be investi-

gated. Average ambient temperatures in the region are pro-

jected to increase by 3◦C by 2050 (Karmalkar & Bradley,

2017), and the number of heavy precipitation and extreme

runoff events is expected to increase as climate change con-

tinues to accelerate (IPCC, 2014). Agronomic management

practices may need to be altered to offset the climate change

impacts (Prasad et al., 2018).

4 CONCLUSIONS

We leveraged the fine-resolution temporal and spatial capabil-

ities of Topo-SWAT to inform localized selection and place-

ment of the agricultural BMPs that had been specified as

necessary, within the Pennsylvania WIP for Spring Creek

watershed, in order for all watersheds in Pennsylvania to

jointly meet Pennsylvania’s portion of the Chesapeake Bay

TMDL goals for N, P, and sediment. Working from a base-

line Topo-SWAT simulation that is representative of current

land management practices, WIP-suggested BMPs were indi-

vidually simulated throughout the watershed. Average annual

BMP pollution reduction efficiencies and cost-effectiveness

values were calculated. Best management practices were

ranked based on cost effectiveness in reducing N load, which

has been determined limiting factor toward fully meeting

the bay-level TMDL goals for N, P, and sediment. Individ-

ual BMP cost effectiveness for reducing nutrient and sedi-

ment loading varied, with no-till ranking the most cost effec-

tive and implementation-intensive BMPs such as wetland
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restoration ranking the least cost effective. Topo-SWAT sim-

ulations of two scenarios with the WIP-suggested BMPs

were evaluated. These scenarios were derived from the Topo-

SWAT baseline scenario based on (i) WIP implementation

guidelines for quantities of BMP hectares within Spring

Creek, and (ii) selection of the most cost-effective BMPs for

reducing N loadings to the streams. Both scenarios nearly met

or exceeded, at the watershed outlet, the bay-level TMDL tar-

get load reductions for N, P, and sediment entering the bay.

The WIP-2025 Topo-SWAT simulation implemented only

eight major categories of BMPs listed in the Spring Creek

WIP, whereas the Topo-SWAT cost-effective model imple-

mented even fewer BMPs and with 26% less cost, but on more

land. By incorporating fine-resolution spatial data and model-

ing the region’s VSA hydrology, Topo-SWAT identified high-

risk, nutrient transport areas. By additionally using local-

ized field-level management data for the agricultural crop-

ping rotations, Topo-SWAT highlighted agricultural fields

within CSAs for nutrient and sediment mitigation. Regional-

level modeling, such as the Chesapeake Bay watershed model,

can provide general BMP suggestions for land–river segment

watersheds, which are the Chesapeake Bay model’s smallest

spatial unit. The use of Topo-SWAT to simulate the land–river

segment watershed at a much finer resolution, as done in this

study, can then provide a localized selection and placement of

WIP-suggested and other BMPs that jointly achieve the same

or greater pollution reduction at a lower cost. The resulting

scenario contributes to a more locally relevant, cost-effective

scenario than the TMDL-derived regulatory WIP scenario

and, in doing so, encourages and supports local involvement

and stewardship.
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