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ABSTRACT

RNA secondary structure prediction is widely used
for developing hypotheses about the structures of
RNA sequences, and structure can provide insight
about RNA function. The accuracy of structure pre-
diction is known to be improved using experimen-
tal mapping data that provide information about the
pairing status of single nucleotides, and these data
can now be acquired for whole transcriptomes us-
ing high-throughput sequencing. Prior methods for
using these experimental data focused on predicting
structures for sequences assuming that they popu-
late a single structure. Most RNAs populate multiple
structures, however, where the ensemble of strands
populates structures with different sets of canonical
base pairs. The focus on modeling single structures
has been a bottleneck for accurately modeling RNA
structure. In this work, we introduce Rsample, an al-
gorithm for using experimental data to predict more
than one RNA structure for sequences that populate
multiple structures at equilibrium. We demonstrate,
using SHAPE mapping data, that we can accurately
model RNA sequences that populate multiple struc-
tures, including the relative probabilities of those
structures. This program is freely available as part
of the RNAstructure software package.

INTRODUCTION

RNA has many important roles in the cell besides being a
simple carrier of genetic information (1). RNA sequences
are an essential part of translation through tRNA and
rRNAs (2), they play a role in regulating gene expression
through microRNAs (miRNA) and small interfering RNAs
(siRNAs) (3), and in RNA processing through small nuclear

RNAs (snRNA) (4). In addition, many RNAs require con-
formational change in response to a stimulus to function,
including riboswitches, ribozymes and protein-complexed
RNAs (5–7). Knowledge of RNA structure is key in un-
derstanding the intermolecular interactions of small RNAs
with their mRNA targets, as well as in understanding RNA-
protein interactions. In addition, changes to RNA structure
as a result of sequence variants can lead to human disease
(8).

RNA structure can be mapped experimentally at the level
of individual nucleotides using enzymatic or chemical meth-
ods (9,10). Many insights regarding RNA structure have re-
sulted because new mapping methods have been developed,
and because of new methods that quantify the extent of
reactivity to agents (11–13). One newer chemical mapping
method is SHAPE, which covalently modifies the sugar 2′
oxygen of nucleotides that are in flexible regions of the struc-
ture (14). Recent work focused on acquiring these experi-
mental mapping data for entire transcriptomes (15–17) and
also on acquiring these data in vivo (18–20). While these and
other chemical mapping data provide information about the
likelihood that a nucleotide is base paired, they do not di-
rectly provide the structure of the RNA. To model the struc-
ture, the mapping data have been used to restrain secondary
structure prediction. These structural models provide im-
portant insights into RNA structure and function.

Several methods are available to model structures using
mapping data (21–27). A common weakness, however, is
that the leading methods for using mapping data assume
a single conformation for the RNA (21,28,29). However,
many sequences, including mRNA, riboswitches, and long-
non-coding RNA (30), are expected to populate a variety
of structures in vivo. Other computational methods have at-
tempted to model multiple structures at equilibrium using
SHAPE data (31,32). These approaches assume that the ex-
tent of reactivity at a given nucleotide indicates the fraction
of molecules in which that nucleotide is unpaired at equi-
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librium (31–33). Experiments show a variety of reactivities
depending on local structure, however, and nucleotides that
are base paired in ribosomal RNA can be extensively reac-
tive (34). Thus these approaches might misinterpret a con-
siderable fraction of the experimental data. Given the cur-
rent lack of tools to model sequences that populate mul-
tiple conformations using experimental restraints, analysis
of transcriptome-wide structure has often focused on direct
observations about reactivity data, rather than relying on
models of the structures (18,20). This lack of computational
tools is a bottleneck to using transcriptome-wide data to
learn about the details of RNA structure and how it changes
in response to physiological challenges.

Here, we introduce the algorithm Rsample (for restrained
sample), which models RNA secondary structure using
thermodynamics guided by structure mapping data. Rsam-
ple addresses two limitations in prior methods. First, it ex-
plicitly considers that multiple copies of the same sequence
can simultaneously fold to different structures. Second, it
focuses on the agreement between experimental mapping
data and estimated mapping data by sampling RNA struc-
ture models, rather than interpreting data in the absence
of structure models. This technique provides a principled
approach for integrating thermodynamic prediction with
mapping data.

We tested Rsample for accuracy at predicting structure
and populations of individual conformation using SHAPE
mapping data. For sequences that fold into multiple con-
formations, our equilibrium predictions are generally ac-
curate within a factor of about 2kT, where k is the Boltz-
mann constant, T is the absolute temperature (310 K), and
kT represents the conformations that would be accessi-
ble to an RNA because of thermal fluctuations. We also
benchmarked Rsample for sequences that populate a single
structure, and its performance was similar to other meth-
ods that can use SHAPE data: RME (29), RNAprob (28),
RNAprobing (31), RNAsc (32) and RNAstructure Fold
(21).

MATERIALS AND METHODS

Algorithm

An overview of Rsample is shown in Figure 1a. The pro-
cedure uses two partition function calculations to model
structure (23,35). A partition function calculates the prob-
ability of a structure using estimates of folding thermody-
namics and can also calculate the base pairing probability
for each possible base pair. The first partition function cal-
culation (Step 1) establishes how well the various structures
predicted by the pure thermodynamic model (i.e. without
any restraints from experiments) estimate the experimental
reactivities for each nucleotide in the sequence. The second
partition (Step 4) function re-estimates the probabilities of
structures to better match the experimental data by intro-
ducing restraints at the nucleotide level.

Steps 1 and 2 generate an ensemble of structures using
a thermodynamic model for RNA folding (24). The parti-
tion function (step 1) and stochastic sampling (36) (step 2)
generate a set of 10 000 (possibly non-unique) structures,
where the probability of sampling a structure is the Boltz-
mann probability of the structure occurring at equilibrium.

Ding and Lawrence (36) found that two independent 1000
conformation samples of an 1187 nt long sequence had an
almost identical probabilities of nucleotides being paired. In
addition, we found that using more than 10 000 conforma-
tions (from step 2) did not change the predicted normalized
reactivities by >0.01, and had no effect on predicted struc-
tures. Therefore a sample of 10 000 structures was used for
stochastic sampling.

In step 3, the SHAPE reactivity for each nucleotide is esti-
mated based on the structure ensemble (Rcalc). Reactivity
estimates are generated for each nucleotide in each struc-
ture as described below, and the experimentally observed
reactivity is assumed to be a population-weighted average of
the reactivity of each structure. The fact that the observed
reactivity is a population-weighted average obfuscates the
reactivity for any given unique structure present in a mix-
ture of different structures; for example, no single structure
from the folding ensemble of the flavin mononucleotide-
binding (FMN) riboswitch (Figure 1B) is consistent with
the experimental reactivity pattern observed. To assign an
estimated reactivity for a nucleotide, the distributions of
SHAPE reactivities observed for structured RNAs (Figure
1C) is called upon. Prior work demonstrated that in addi-
tion to paired nucleotides, unpaired nucleotides can be un-
reactive to SHAPE (34), probably because base-base inter-
actions (hydrogen bonds and stacks) can limit the motion of
unpaired nucleotides in loops. We use three reactivity distri-
butions: reactivities for those nucleotides that are unpaired
(Figure 1C, blue), those at helix ends (Figure 1C, green), and
those in helix interiors (Figure 1C, brown). A nucleotide
in a structure receives a reactivity from the proper reactiv-
ity distribution drawn at random, but weighted by the dis-
tribution. The total estimated reactivity for a nucleotide is
the arithmetic mean for that nucleotide across all sampled
structures.

In step 4, in order to revise the structure predictions so
that the estimated SHAPE reactivity better matches the ex-
perimentally observed reactivity, the estimated SHAPE re-
activities are used to calculate a pseudo-free-energy change:

�Gbonus, i = C × ln
(

Rexpi + O f f set
Rcalci + O f f set

)
(1)

where Rexpi and Rcalci are experimentally measured reac-
tivities and estimated reactivities, respectively, of nucleotide
i. C and O f f set are parameters that have been optimized by
finding the most accurately predicted structures over many
values of parameters. C has units of energy (kcal/mol) and
is used to establish the relationship between free energy and
reactivities. The parameter O f f set is unitless and it is intro-
duced to accommodate the fact that normalized reactivities
can be equal or less than zero.

�Gbonus, i is then incorporated into the partition func-
tion calculation (step 4) as a restraint. As in our prior work,
�Gbonus, i is added to the folding free energy of base pair
stacks for each nucleotide in the stack (21). Nucleotides in-
terior to helices receive this free energy change twice because
they are in two base pair stacks. Nucleotides at helix ends
receive this free energy bonus once. In this re-estimation of
the partition function, nucleotides with estimated SHAPE
reactivity that is lower or higher than that observed by
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Figure 1. Overview of Rsample and experimental data. (A) The Rsample procedure. (B) The three conformations of a designed FMN riboswitch, color
coded with SHAPE reactivity from Cordero et al. (43). The observed SHAPE reactivities are the weighted means of the reactivity of each structure.
In the natural mixture in solution, the reactivity of each structure cannot be observed. (C) Distribution of normalized SHAPE reactivities for unpaired
nucleotides, nucleotides paired at helix ends, and nucleotides paired and not at helix ends. The distributions show significant overlap and peak at a reactivity
of 0, although the distribution for unpaired nucleotides skews farther towards higher reactivities. Nucleotides at the ends of helices also have some skew
to higher reactivities than nucleotides in the interior of helices.

experiment are restrained, for the first time, with a lower
or higher propensity to base pair, respectively, than in the
first partition function calculation. Nucleotides with esti-
mated SHAPE reactivities that match the experiment re-
ceive no restraint because the thermodynamic prediction al-
ready matches the experiment for those nucleotides.

At this point in the procedure, the modeling can proceed
for either modeling multiple structures or a single structure.
If a single structure is either suggested by the presence of a
single cluster of highly similar structures or is strongly ex-
pected from other physicochemical/biological criterion, the
partition function can be used to predict the maximum ex-
pected accuracy structure (37,38) (Step 5). When multiple
structures are suggested by clusters of different structures or
more than one structure is expected, the procedure contin-
ues to steps 6, 7 and 8. Step 6 samples 1000 structures from
the Boltzmann ensemble, and this sample is then clustered
in step 7. A cluster is defined as a subset of structures with
similar base pairs. The optimal number of clusters is de-
termined automatically using the Calinski-Harabasz (CH)
index, which attempts to choose the minimum number of

structures that adequately reflects diverse folds (39). For a
given cluster, the probability of base pairing for each pair
of nucleotides is determined as the probability of the pair
appearing in a structure in the cluster. In step 8, centroid
structures are assembled to include all pairs with pairing
probability >0.5. Centroids of clusters then represent con-
formations with the population determined by the cluster
size.

Rsample is programmed in C++ and is incorporated in
our software package RNAstructure (40). Each secondary
structure prediction step (1,2,4,5,6) is implemented using
the RNAstructure class library. This partition function does
not include pseudoknots, and therefore pseudoknots are
not predicted. The computational time of Rsample is about
twice our previous method because two partition func-
tion calculations are performed. Although many RNA se-
quences are known to have pseudoknots, the number of
base pairs in pseudoknots is generally small compared to
the total number of base pairs (41). This limitation in sec-
ondary structure prediction is common (42); possible pseu-
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Table 1. List of benchmark sequences known to fold to multiple conformations

Name Length Conformational ratio Source for conformation ratio

1 HIV-1 RRE 232 50% + 50% Computed here from SHAPE data measured
for separate conformations (44)

2 Bistable Sequence 25 70 ± 5% + 30 ± 5% NMR data (47)
3 16S rRNA Four way

Junction
110 90% + 10% Estimate from Mutate-and-Map (43)

4 ADD Riboswitch, V.
Vulnificus

112 (–ADD): apoA: 32% + apoB: 68% NMR data and Estimate from
Mutate-and-Map (43,48)

(+ADD): holo: 70% + apoA +
apoB: 30%

5 MedLoop 35 96% + 4±4% Designed sequence, Estimate from
Mutate-and-Map (43)

6 FMN Riboswitch 52 (–FMN): A: 56 ± 16% +B: 27 ±
12% + C: 17 ± 11%

Designed sequence, Estimate from
Mutate-and-Map (43)

(+FMN):A: 40 ± 8% + B: 50 ±
10% + C: 10 ± 5%

The ‘conformational ratio’ is the percent population of each known conformation. The two riboswitches have data recorded with (+) and without (–) the
conformation-changing ligand.

doknots can be identified using base pairing probability es-
timates (41).

Database of structures and reactivities

A collection of structures with measured SHAPE reactivi-
ties and known secondary structure was used to determine
distributions of unpaired nucleotides, paired nucleotides at
the end of helices, and paired nucleotides not at the terminal
positions of helices (Figure 1c), to determine model param-
eters (C and O f f set), and to test the performance of the
methods for predicting secondary structure of single con-
formation sequences (Figure 3). The 16 sequences used here
are from work of Hajdin et al (22). For the riboswitches in
these data, mapping was performed under conditions where
one structure is populated. The sequences range in length
from 34 to 2904 nucleotides for a total of 6514 nucleotides
with measured SHAPE reactivity. The full list of sequences
is given in Table S1 in the Supplementary Data.

Two sources were used for sequences known to have mul-
tiple conformations and for which SHAPE reactivities have
been measured. First, data was collected for the 5 sequences
from Cordero et al. (43) under conditions where multi-
ple structures were present. The ratio of conformations
was determined using the procedure developed to interpret
mutate-and-map experiments and compared to experimen-
tal data if available. In our calculations we use the experi-
mental data for the ratio if they are available. The second
source of data was the HIV-1 Rev response element (RRE)
sequence where the two conformations had their SHAPE
reactivities measured independently (44). We then estimated
the equal mixture of the two conformations by calculating
the mean of reactivities. The list of sequences used is given
in Table 1.

Benchmarks and measures of accuracy

The ‘No SHAPE’ control method was stochastic sampling
(36), followed by clustering (39). This represents steps 1, 6,
7 and 8 from the flowchart in Figure 1A, and it the natural
comparison for the absence of data. Benchmarking of all
methods was done using default settings.

Accuracy of prediction was determined by calculating
sensitivity and positive predictive value (PPV). Sensitivity
measures the percentage of known base pairs that occur in
the predicted structure and PPV is the percentage of pre-
dicted pairs that occurs in the known structure. A base pair
(i to j) was considered correctly predicted if the comparison
contains the pair (i to j), (i + 1 to j), (i – 1 to j), (i to j + 1) or
(i to j – 1). This is important because the accepted structures
cannot distinguish these possibilities and because thermo-
dynamic fluctuations can make it possible to sample these
alternative structures.

To test the statistical significance of benchmarks of meth-
ods for predicting single conformation, a two-tailed, paired
t-test with type I error rate set to 0.05 was performed (45).
The null hypothesis is that two methods perform with equal
accuracy on the benchmark. The p values were calculated
with Microsoft Excel 2010.

Determination of parameters C and O f f set

Rsample requires determination of two parameters, C and
O f f set (equ. 1). They were determined from the opti-
mal parameters found using a two dimensional grid search
across the 225 combinations of values of parameters start-
ing from 0.1 and ending at 1.5 and plotting the average
accuracy. The resulting two-dimensional plot of geometric
mean of sensitivity and PPV for all sequences from Sup-
plementary Table S2 is given in Supplementary Figure S2.
The maximum is a value of 82.8% at C= 0.5 kcal/mol and
O f f set= 1.1, but we note that there is a large triangular
area where the geometric mean has values of 80% or more.
The robustness of fit is tested by the jackknife method where
a set of C and O f f set parameters was derived for all sub-
sets of sequences in database where one sequence was left
out. We found that each subset produced the same set of
parameters.

Shannon entropy

The mean Shannon entropy, S, per nucleotide can be used
to estimate the ensemble diversity in base pairing. This is
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estimated using (23,46):

S = −
∑

i, j Pi, j log
(
Pi, j

)
N

(2)

where Pi, j is the probability of the base pair between nu-
cleotides i and j, N is the sequence length, the log is base 10,
and the sum is taken over all possible canonical base pairs.

RESULTS

Modeling RNA sequences with known multiple conforma-
tions

From the literature, we assembled a database of 6 sequences
that are known from experiments to fold into two or three
structures and for which SHAPE mapping data are avail-
able (Table 1) (43,44,47,48). For two of the sequences,
the adenosine-binding riboswitch upstream of adenosine
deaminase (ADD riboswitch) and FMN riboswitch, exper-
imental mapping data are available separately for the pres-
ence or absence of ligand. These switches are each known
to fold into three total structures, with different popula-
tions depending on whether ligand is bound or not, and
the populations are known. We benchmarked Rsample, our
prior method (pseudo �G with SHAPE restraints (21)),
and stochastic sampling without SHAPE restraints ‘No
SHAPE’, which is equivalent to Rsample without using
SHAPE-directed refinement. In addition, Supplementary
Figure S3 shows the predictions of RNAprobing (31) and
RNAsc (32), which calculate partition functions and are
therefore able to generate structure samples. Two measures
were used to compare the predictions with experimental
data. First, the accuracy of structure modeling is assessed
by comparing the centroids, i.e. our structure models, to all
experimentally known structures. Second, by examining the
sizes of clusters from which the centroids were calculated,
the estimated population of each conformation is compared
to the experimentally known ratio of conformations. Table 2
and Figure 2 report the findings of these two measurements
by comparing to experimental data for Rsample, Pseudo
�G and No SHAPE, while Supplementary Table S3 and
Figure S3 report these measurements for RNAprobing and
RNAsc. Accuracy is characterized as the geometric mean
of sensitivity and positive predictive value. Sensitivity is the
fraction of known base pairs that appear in the centroid
and positive predictive value is the fraction of base pairs
in the centroid that appear in the known structure. There-
fore, when pairs are missing from a centroid, the sensitivity
is lowered; when incorrect pairs are predicted, the positive
predictive value is lowered.

We begin by considering the accuracy of structure mod-
eling different conformations. Table 2 and Supplementary
Table S3 report accuracy of centroids of the three largest
clusters (‘C1’, ‘C2’, and ‘C3’) compared to the two or three
experimentally verified conformations (in rows) for each
sequence. We consider that Rsample correctly identified a
conformation if the accuracy is higher than 80% and the
identified structure is not closer to any other known con-
formation. In the case of the FMN riboswitch, we lower the
accuracy criterion to 70% considering that it is an artificially
designed sequence (49), i.e. it is not known in biology, and

Table 2. Accuracy of stochastic sampling without SHAPE data (No
SHAPE), our prior method (Pseudo �G) (21), and Rsample (36) for pre-
dicting the structures of sequences with multiple conformations

The reported quantity is the accuracy, i.e. the geometric mean of sensitiv-
ity and positive predictive value in percent (where 100 is a perfect predic-
tion). The sizes of clusters from which centroids were derived is reported
in parentheses as the percent of the total sampled ensemble. We report up
to 3 largest clusters for clarity, and therefore the percentages do not sum
to 100%, but the sums are nearly 100%. The complete list of all clusters,
their sizes and the comparison of their centroids to the conformations of
known structure for all sequences are given in Supplementary Table S2 in
the Supplementary Data. Marked in red are correctly identified conforma-
tions.

its secondary structure has not been independently verified.
Out of the total of 20 experimentally known conformations
for the six sequences, using no SHAPE restraints identi-
fies only 13 conformations correctly, our prior method with
SHAPE restraints, ‘Pseudo �G’, identifies just 12 correctly,
but Rsample identifies a remarkable 18 conformations cor-
rectly. RNAsc (32) and RNAprobing (31) correctly identify
12 and 13 conformations respectively (Supplementary Ta-
ble S3), thus performing similarly to our prior method with
the Pseudo �G SHAPE restraints (21).

We next consider populations of the different conforma-
tions. Figures 2 and Supplementary Figure S3 compare the
population ratios of conformations predicted by Rsample
and other methods to those measured by experiment. In
normal use, a user would not know how many conforma-
tions should be expected, so in addition to the populations
of known conformations, we report the fraction of con-
formations that were not close to known conformations.
Also, the clustering procedure can produce multiple clusters
whose centroids predict the same known secondary struc-
ture with at least 80% accuracy. We consider such clusters
to represent the same conformation, and allow a centroid to
predict one single known conformation to which it is closest
in structure. The full list of centroids, the sizes of their clus-
ters and their proximity to known conformations are given
in Table S2 in the Supplementary Data.

Figures 2 show that Rsample is able to estimate multi-
ple clusters, each of which correctly correspond to an ex-
perimentally known conformation. For example, the FMN
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Figure 2. Performance of methods for predicting the ratio of known conformations. Experimental ratios are compared to the predicted ratios for the
method without using SHAPE restraints (No SHAPE), using our original method for including restraints (Pseudo �G) (21), and the method introduced
here (Rsample). (A) The predicted centroid structures for the FMN riboswitch in the absence of ligand using Rsample. The three accepted structures are
shown in Figure 1B. The remaining plots show the models for each sequence, FMN riboswitch (–FMN; B), FMN riboswitch (+FMN, C), HIV RRA (D),
bistable sequence (E), 16S rRNA (F), ADD riboswitch (-adenine; G), ADD riboswitch (+adenine; H), and medloop (I). To illustrate the performance of
the whole predicted ensemble predicted ratio for structures that were not close to any of the known conformations (‘other’) is also given.
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riboswitch without ligand populates three experimentally
known structures at equilibrium, and Rsample is able to
reproduce these three structures. Additionally, the relative
abundance of each structure is correctly predicted. The rel-
ative abundance of two known structures is also correctly
predicted for the bistable sequence, ADD riboswitch bound
to adenosine, and MedLoop. For HIV RRA, 16S rRNA
FWJ, and the FMN riboswitch with ligand, the known
structures are populated, but the relative abundance is in-
correctly predicted. By contrast, the performance of our
prior method (21) with SHAPE restraints (Pseudo �G) to
model multiple conformations is poor. Specifically, while
our prior method is sometimes able to identify multiple
conformations, it generally predicts an ensemble consist-
ing primarily of one conformation, as evidenced in Bistable
sequence, HIV RRA, ADD Riboswitch, and FMN ri-
boswitch without ligand. This highlights the importance
of correctly modeling of the populations of multiple con-
formations. The prediction using sampling but without
SHAPE data (36) also tends to predict one dominating con-
formation, and it often also predicts structures that are not
close to any of the known conformations. This highlights
the importance of experimental mapping data for structure
prediction accuracy. The performances of RNAsc (32) and
RNAprobing (31) for identifying the ratio of conformations
are shown in Supplementary Figure S3. RNAprobing cor-
rectly predicted ratios of conformations for the Bistable se-
quence and HIV RRA. RNAprobing, however, estimated
incorrect structures for a majority of the conformational
populations for the ADD(- ligand) and FMN(- ligand) ri-
boswitches. RNAsc correctly predicted the ratios for the 16S
rRNA FWJ and ADD(+ ligand) riboswitch, but oversta-
bilized a single structure for the Bistable Sequence ADD(-
ligand) riboswitch, and Medloop.

Shannon entropy

Shannon entropy has been used in conjunction with
SHAPE data to identify regions of sequences could par-
ticipate in formation of multiple conformations or do not
participate in a specific structure, i.e. regions of sequence
that form a wide variety of base pairs in the thermodynamic
ensemble that have little functional significance (46,50,51).
Supplementary Figure S4 in the Supplementary Data com-
pares mean Shannon entropies calculated on the dataset
of sequences with multiple conformations (Table 1) using
Rsample and our earlier pseudo �G method for including
SHAPE restraints. Averaged over all sequences, Rsample
predicts higher Shannon entropy per nucleotide (0.19 ver-
sus 0.07) indicating Rsample predicts structures with more
flexible base pairing, which suggests that explicitly modeling
multiple conformations provides better estimates of struc-
tural variability. This is expected given the better modeling
of clusters using Rsample as compared to using the prior
pseudo �G model (Table 2 and Supplementary Table S2).

Benchmark for single conformation sequences

In addition to examining performance for multiple confor-
mations, we tested Rsample for single conformations with
the expectation that it would perform well despite its explicit

design for modeling multiple structures. Using SHAPE data
from the literature (22), we compared Rsample with a num-
ber of methods: a control method that does not incorporate
SHAPE restraints (No SHAPE), our previous Pseudo �G
method (21), RNAsc (32), RNAprobing (31), RME (29)
and RNAprob (28). The accuracy results are given in Figure
3. The equivalent figures for sensitivity and positive predic-
tive value are given in Supplementary Figure S1 in the Sup-
plementary Data.

The results for individual sequences and the average over
all sequences demonstrate that all methods that use ex-
perimental restraints perform similarly. All methods per-
form better when SHAPE data are used. Methods that use
experimental restraints produce accuracy of around 80%.
Our prior method (Pseudo �G) leads with an accuracy of
83.8% and Rsample has essentially the same accuracy at
82.8%. A two-tailed, paired t-test showed no statistical sig-
nificance for the differences in accuracy of Rsample and the
other methods that use SHAPE (45). The stochastic sam-
pling method that uses no experimental restraints has an
accuracy of 71.2%, indicating a substantial improvement in
structure prediction accuracy of about 10 percentage points
when using SHAPE restraints compared to not using them
for this dataset. Rsample is more accurate than the control
method not using SHAPE with statistical significance (P <
0.05).

DISCUSSION

Here we present Rsample, a new algorithm that solves the
critical problem of interpreting experimental chemical map-
ping data transcriptome-wide while generating ensembles
of structures for each sequence. Prior work largely focused
on using SHAPE, enzymatic, and DMS mapping data to
improve the accuracy of structure prediction for structured
RNAs by assuming that they have a single predominant
structure in vivo. Rsample provides a new dimension in in-
terpreting these data. We focused on SHAPE data for this
manuscript, but Rsample should be generalizable to other
mapping reagents such as DMS (52) and other chemicals,
as well as enzymatic mapping data (29).

The mutate-and-map technique, and the software devel-
oped for interpreting those data, is also capable of model-
ing structural ensembles (43). In fact, many of the test cases
(Table 1) used here have ensemble populations estimated us-
ing mutate-and-map. But mutate-and-map requires experi-
mental mapping data on a large number of sequence mu-
tants, and therefore mutate-and-map is not able to model
RNA structures transcriptome-wide and in vivo mapping
by mutate-and-map would be challenging, and is not cur-
rently possible. Rsample, however, is capable of inferring
ensembles of structures using the mapping data on a single
sequence, and therefore it could be applied transcriptome-
wide and using in vivo data.

Rsample uses a principled approach to restrain struc-
ture prediction. The focus is on generating structure en-
sembles with estimated SHAPE reactivities that match the
experimentally measured reactivities. The number of dis-
tinct clusters is small for the benchmarks performed here,
requiring at most four centroid structures to adequately de-
scribe the diversity of conformations in the sequences tested



Nucleic Acids Research, 2018, Vol. 46, No. 1 321

0

20

40

60

80

100

P
re

-Q
1

Te
lo

m
er

as
e

tR
N

A

TP
P

S
A

R
S

cG
M

P

S
A

M
I

P
54

6

M
-b

ox

Ly
si

ne

G
ro

up
I-A

zo

H
C

V

G
ro

up
 I

G
ro

up
 II

16
S

 rR
N

A

23
S

 rR
N

A

A
ve

ra
ge

%
 A

cc
ur

ac
y

No SHAPE

Pseudo ΔG

RNAsc

RNAprobing

RME

RNAprob

Rsample

Figure 3. Performance of our method (Rsample) compared to other methods for predicting single conformation. The results are given as geometric mean
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RNAprobing does not handle sequences longer than 1, 000 nucleotides.

(Supplementary Table S2). Our approach avoids interpret-
ing the SHAPE reactivities in the absence of structure mod-
els, which can lead to artifacts for methods that generate a
single structure. For example, a nucleotide with moderate
reactivity (e.g. a normalized reactivity of 0.75 on a scale of
0 to ∼2.5) might be unpaired, base paired, or in an ensem-
ble of structures where it is paired in some structures (with
reactivity of 0) and unpaired in other structures (with reac-
tivity of 2). Each of these scenarios, including the number
of states needed in the ensemble, is explicitly modeled by
Rsample.

The modeling of structure populations relies on the ther-
modynamic nearest neighbor model for RNA folding (53)
and the experimentally-derived restraints. Generally, the
populations modeled by Rsample match the known pop-
ulations to about a kcal/mol in free energy change. For ex-
ample, the well characterized bistable sequence is populated
at a ratio of 70–30 according to NMR (Table 2) (47), and is
modeled by Rsample to be at a ratio of 94–6. At 310 K,
this is a ��G◦ of 1.2 kcal/mol, or ∼2kT. These are rel-
atively small differences in folding free energy change, al-
though continued efforts to improve the thermodynamic
models will continue to improve the agreement with exper-
iments (54,55).

In our current implementation of Rsample, the per-
nucleotide reactivities are estimated using three possible
states: unpaired, paired at helix end, or paired at a helix
interior. The modeling is flexible, however, and any func-
tional form that depends on secondary structure could be
used. For instance, we could increase from three states to
additional states that could account for non-canonical base
pairs that have flexible structures in specific sequence con-
texts, such as G–G or A–A pairs (56,57). As we learn more

about what determines SHAPE reactivity, this functional
form can be improved. A current weakness is that the dis-
tributions for the current three possible states (Figure 1c)
are broad. For nucleotides that exist in one state in the ini-
tial ensemble, our estimate for reactivity tends towards the
mean of the distribution. That means, for example, that
high reactivity cannot be exactly matched by the model,
and Rsample tends to restrain nucleotides with high experi-
mental reactivity with less pairing tendency. Conversely, nu-
cleotides with low experimental normalized reactivity (<0)
tend to receive more propensity for being paired. Using a
more complex functional form for per-nucleotide reactiv-
ity distributions, as mentioned above, could eventually help
with this problem, as could the use of additional chemical
probes alongside SHAPE. The current functional form of
ΔGbonus, i (equation 1) is a heuristic that could also be refined
as we learn more about what determines SHAPE reactivity.

The thermodynamic model for predicting RNA structure
is central to Rsample. A single pass of refinement using the
SHAPE data is sufficient for improving the secondary struc-
ture models. We observed that multiple passes (for exam-
ple a loop in Figure 1A that connects step 6 back to step
3) degrades the accuracy performance. For example, if two
passes of refinement are performed root-mean-square de-
viation between experimental and predicted reactivity de-
creased from 0.74 to 0.72 when comparing to the default
one pass option, while the accuracy of prediction decreased
from 82.8% to 71.0% for the single conformation dataset
(see Supplementary Figure S5 in the Supplementary Data).
It appears that multiple passes over-interpret the mapping
data and take the ensemble farther from the thermody-
namic model. The prediction is corrected in step 4 by adding
restraints, allowing Rsample to perform well.
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Although the goal of Rsample was to model multiple
conformations using a principled approach, the perfor-
mance on sequences with a single structure was not neg-
atively affected (Figure 3). The difference in accuracy of
Rsample compared to any of the tested methods that use
experimental data was not statistically significant (as mea-
sured by a paired t-test). At the same time, on this dataset all
methods perform about 10% better than predictions with-
out experimental restraint data (Figure 3).

AVAILABILITY

Rsample is a component of the RNAstructure software
package, and is made available for free download using
the GNU public license at our website: http://rna.urmc.
rochester.edu/RNAstructure.html.
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