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Elemental analyses reveal distinct 
mineralization patterns in radular 
teeth of various molluscan taxa
Wencke Krings1,2,3*, Jan‑Ole Brütt1,2 & Stanislav N. Gorb3

The molluscan phylum is the second specious animal group with its taxa feeding on a variety of food 
sources. This is enabled by the radula, a chitinous membrane with embedded teeth, one important 
autapomorphy. Between species, radulae can vary in their morphology, mechanical, and chemical 
properties. With regard to chemical composition, some taxa (Polyplacophora and Patellogastropoda) 
were studied extensively in the past decades, due to their specificity to incorporate high proportions 
of iron, calcium, and silicon. There is, however, a huge lack of knowledge about radular composition 
in other taxa. The work presented aims at shedding light on the chemistry by performing energy‑
dispersive X‑ray spectroscopy analyses on 24 molluscan species, thereof two Polyplacophora, two 
Cephalopoda, and 20 Gastropoda, which was never done before in such a comprehensiveness. The 
elements and their proportions were documented for 1448 individual, mature teeth and hypotheses 
about potential biomineralization types were proposed. The presented work additionally comprises 
a detailed record on past studies about the chemical composition of molluscan teeth, which is an 
important basis for further investigation of the radular chemistry. The found disparity in elements 
detected, in their distribution and proportions highlights the diversity of evolutionary solutions, as it 
depicts multiple biomineralization types present within Mollusca.

The radula is the molluscan autapomorphy for food gathering and processing. Overall, its general shape reflects 
the deep molluscan phylogeny, whereas the fine morphology and chemical composition seem to be usually 
species-specific, serving as taxonomic character. All parameters are also, however, considered as adaptations to 
different ingesta types (food type, minerals, the substrate where the food is collected from, etc.) related to the 
ecological niche of particular species.

In most molluscan classes, the radula consists of a membrane with rows of embedded teeth, which form, 
together with underlain odontophoral cartilages, surrounding muscles, alary processus, and in some taxa also the 
jaw, the feeding apparatus, i.e. the buccal mass. The radula itself is continuously regrown by secretion of over- and 
underlain epithelia situated in the ’radular sac’, before it is maturated in the ‘maturation zone’ and finally enters 
the ‘working zone’, where teeth interact with the ingesta [e.g.1–3].

Past studies related the radular morphology and general buccal mass anatomy with the ingesta preferred 
[e.g.4–13], supplemented by phenotypic plasticity studies addressing the morphological answers to shifts in the 
diet [e.g.14–18]. However, the radular tooth shape is not always a good indicator for trophic  specializations19, since 
morphology seems to be more phylogenetically fixated and rather less adaptive in some  cases12. Additionally, 
experimental approaches revealed that not all teeth necessarily interact with the ingesta, but still contribute to 
the overall radular function by e.g. reinforcing the spanned  radula20,21, which indicates that tooth function and 
the identification of potential trophic adaptations is more complex than it has been thought before.

The mechanical properties (e.g. stiffness and hardness) of the radular teeth material can be considered as 
adaptive to certain ingesta types. This is well investigated for the dominant lateral teeth of Polyplacophora and 
patelliform gastropods, which are of high stiffness and hardness as adaptations to feeding on algae covering 
 rocks22–28. For these taxa, the mechanical parameters have their origin in the architecture of the organic compo-
nents (matrix of alpha chitin with associated proteins) as e.g. fiber orientation or density, the distinct folding or 
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bonding conditions of the chitin, and the amount/distribution of the inorganic components (iron, silicon, and 
calcium) [e.g.23,25,27–32; for reviews  see33–36].

This direct relationship between ingesta and tooth mechanical properties was recently also described for 
closely related paludomid gastropods from Lake Tanganyika; here species feed either on algae covering sand, 
mud, rock, or multiple  surfaces12,37–40. The origins of the differences in hardness and stiffness remained, however, 
enigmatic, as radular teeth are completely understudied with regard to their structural organization and chemical 
composition outside the polyplacophoran or limpet realm. Only very few past studies focused on the radular 
composition in non-patelliform gastropods [e.g.41–43],  cephalopods43, or  scaphopods43–45.

We thus aim here on shedding some light on the chemical composition of radular teeth. We performed 
elemental analyses using energy disperse x-ray spectroscopy (EDX, EDS), overall on 1448 mature teeth of 24 
species, thereof two Polyplacophora, two Cephalopoda, and 20 Gastropoda species. For the gastropods, we have 
chosen representative taxa from the Vetigastropoda, Neritimorpha, Heterobranchia, Caenogastropoda, and one 
Patellogastropoda for comparison. For the Caenogastropoda, we included six paludomid species from Lake 
Tanganyika, which were previously studied extensively with regard to the radular tooth mechanical proper-
ties, because one goal was the determination of the origin of heterogeneities. The elements incorporated in the 
mature teeth were identified, documented, and compared between the species studied. The aim of this project 
is the identification of similarities and differences in tooth mineralization between the molluscan taxa, which 
was never done before for such an elevated quantity of taxa. The results are compared and interpreted against 
the background of previous studies on the chemical composition of radular teeth and functional adaptations of 
different radulae.

Results
Radular morphology and types. Overall, the here analysed radulae are highly distinct in morphology, 
size, and quantity of tooth rows (see Table 1 and Supplementary Figs. 1–24 for each species). However, these 
differences are rather interspecific, as the selected specimens, which were of similar body size for each species, 
show only little intraspecific variability in the radular parameters studied here.

Based on the arrangement and quantity of certain tooth shapes, the radulae of the studied species could 
be assigned to the following published radular type categories (see Table 1): those of the Polyplacophora and 
Patellogastropoda to the docoglossan, those of the Cephalopoda to the homodont, those of the Vetigastropoda 
and Neritimorpha to the rhipidoglossan (special type ‘neritinomorph’ for Vittina turrita), those of the Caeno-
gastropoda to the taenioglossan or stenoglossan, and those of the Heterobranchia Doris pseudoargus and Cornu 
aspersum to the isodont type. Radulae of Onchidoris bilamellata, Aeolidia papillosa, and Polycera papillosa could 
not be assigned to existing categories due to their diverging morphologies. The categories usually reflect phylog-
eny, except for the docoglossan type, which was detected in Polyplacophora and Gastropoda (Patellogastropoda). 
Within Heterobranchia, specifically Nudibranchia (O. bilamellata, A. papillosa, P. quadrilineata, D. pseudoargus), 
we detect a rather large diversity of radular shapes and thus different types. In addition, radular formulae, based 
on the quantity and arrangement of teeth with a specific shape, were determined. These do not consistently 
reflect phylogeny, except for Polyplacophora, Cephalopoda, and each of the two large Caenogastropoda groups 
(Buccinoidea and Paludomidae), since selected radulae are rather diverging in their interspecific morphology.

Histioteuthis spec. possesses the shortest radula (< 1 mm), Patella vulgata the longest one (37 mm). Faunus 
ater, Haliotis tuberculata, V. turrita, and Littorina littorea show radulae that are of 10–23 mm length, all other spe-
cies of 1.4–10 mm. Areas of radulae in Buccinum undatum, V. turrita, C. aspersum, and P. vulgata are rather large 
(14–35  mm2). The largest one was detected for H. tuberculata (59  mm2) and the smallest for H. spec. (0.39  mm2). 
Most species have less than 100 tooth rows, with A. papillosa possessing the smallest quantity (9 rows). The 
radulae of Rochia conus, Lavigeria nassa, H. tuberculata, Spekia zonata, F. ater, C. aspersum, Reymondia horei, 
and P. vulgata contain 100–200 rows. V. turrita’s radula possesses 149–151 rows, whereas L. littorea’s one has the 
highest number of rows (280–281). Length, area, and tooth row number do not seem to relate to the phylogeny 
as closer related species (e.g. the Paludomidae: L. nassa, L. grandis, R. horei, S. zonata, and C. johstoni) show 
large differences in these parameters.

Ingesta. Overall, the preferred ingesta types (see Table 1) vary greatly within classes, especially within Veti-
gastropoda, Caenogastropoda, and Heterobranchia, and convergent adaptations to similar trophic categories 
are present. The two studied Polyplacophora species (Acanthochitona fascicularis and Lepidochitona cinerea), 
the Patellogastropoda Patella vulgata, the Vetigastropoda Rochia conus, the Caenogastropoda Lavigeria grandis, 
L. nassa, Reymondia horei, and Spekia zonata can be regarded as solid ingesta feeders. Neritimorpha Vittina 
turrita and Caenogastropoda Littorina littorea seem to forage on solid, but also medium hardness ingesta, the 
Vetigastropoda Haliotis tuberculata and the Heterobranchia Onchidoris bilamellata, Polycera quadrilineata, and 
Doris pseudoargus on ingesta of medium stiffness and hardness. The Caenogastropoda Cleopatra johnstoni and 
the Heterobranchia Aeolidia papillosa were the only species foraging on softer ingesta. The Cephalopoda Histio‑
teuthis spec. and Loligo vulgaris, the Caenogastropoda Paramelania damoni, Faunus ater, Anentome helena, and 
Buccinum undatum, as well as the Heterobranchia Cornu aspersum seem to forage on the widest range of food 
types (soft to solid).

Elements detected. Overall, the presence of many elements is rather puzzling and does not follow, in 
each case, the phylogeny (see Figs. 1 and 2; Supplementary Figs. 1–27; Supplementary Table 3 for mean, SD, 
sum of means, and N): S was detected in the radula of each studied species. Mg, Ca, Na, and P in most, but in 
Cornu aspersum no Mg, Na, and P and in Cleopatra johnstoni no Ca was found. Cl was determined for radulae 
of Acanthochitona fascicularis, both Cephalopoda, Vittina turrita, all Caenogastropoda, Onchidoris bilamellata, 
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Class Subclass Species

Specimens Ecology Radula

N of 
specimens 
studied with 
EDX + SEM

Collection 
number

Source or 
locality of 
collection

Date of 
collection or 
fixation

Food or 
substrate

Reference for 
ecology

Ingesta 
category

Radular
type Radular formula

Specimen 
no

Length, 
µm

Width, 
µm Area, µm2

N of 
tooth 
rows

Poly-
pla-
coph-
ora

Chitonida

Lepidochitona 
cinerea
(Linnaeus, 
1767)

3 + 1 ZMH
154653

North Sea, 
at Husum, 
Germany

Autumn 
2019

Algae 
from solid 
substrate

46 Solid Docogloss 1 + DT + 1 + C  
+ 1 + DT + 1

1 3375 375 1,265,625 39

2 3269 369 1,206,261 39

3 3109 354 1,100,586 39

Chitonida

Acanthochitona 
fascicularis
(Linnaeus, 
1767)

2 + 1 ZMH 122789 North Sea, at 
Roscoff, France 2018, 2019

Algae 
from solid 
substrate

47 Solid Docogloss 1 + DT + 1 + C  
+ 1 + DT + 1

1 7630 890 6,790,700 55

2 7527 872 6,566,587 54

3 7559 880 6,652,595 55

Ceph-
alop-
oda

Oegop-
sida

Histioteuthis 
spec.
d’Orbigny [in 
Férussac & 
d’Orbigny], 
1841

2 ZMH
11623/999

NE Atlantic, 
46°29′24’’N
027°14′18’’W
-250 m

12.06.1982

Fish, 
crustacea, 
Cepha-
lopoda

48 Soft to 
solid Homodont 2 + 1 + C + 1 + 2

1 868 464 402,752 36

2 857 459 393,363 36

Myopsida Loligo vulgaris 
Lamarck, 1798 2 + 1 ZMH 12279 Indonesia Spring

2021

Fish, 
crustacea, 
Cepha-
lopoda

49 Soft to 
solid Homodont 2 + 1 + C + 1 + 2

1 6430 1480 9,516,400 45

2 6531 1485 9,698,535 46

3 6315 1369 8,645,235 45

Gas-
trop-
oda

Patel-
logas-
tropoda

Patella vulgata 
Linnaeus, 1758 2 + 1 ZMH 122790 North Sea, at 

Roscoff, France 30.09.2020

Algae from 
rocks, 
macro 
algae

50 Solid Docogloss 3 + DT + 2 + 0  
+ 2 + DT + 3

1 36,634 949 34,765,666 195

2 36,862 962 35,461,244 197

3 35,925 958 34,416,150 197

Vetigas-
tropoda

Rochia conus
(Gmelin, 1791) 2 + 1 ZMH

154624 Pet shop Summer
2019

Algae/ 
plants from 
corals and 
rocks

www. seali 
febase. ca Solid Rhipidogloss ∞ + 5 + C + 5 + ∞

1 6070 980 5,948,600 102

2 6054 978 5,920,812 101

3 6103 968 5,907,704 102

Haliotis 
tuberculata Lin-
naeus, 1758

2 + 1 ZMH 122791 Pet shop Summer
2021 Macro algae 51 Medium Rhipidogloss ∞ + DT + 2 + C  

+ 2 + DT + ∞

1 15,945 3690 58,837,050 114

2 15,763 3598 56,715,274 113

3 15,899 3304 52,530,296 113

Neriti-
morpha

Vittina turrita
(Gmelin, 1791) 2 + 1 ZMH

154753 Pet shop Summer 
2020

solid sub-
strates, but 
also porous 
ingesta

52 Medium 
to solid

Rhipidogloss, 
neritino-
morph

40 + 1 + 1 + C  
+ 1 + 1 + 40

1 17,350 1210 20,993,500 150

2 17,364 1205 20,923,620 151

3 18,023 1305 23,520,015 149

Cae-
nogas-
tropoda

Lavigeria 
grandis
(Smith, 1881)

2 + 1 ZMH
150020/999

Zambia
08°43′25’’S
31°09′00’’E

30.11.2017 Algae from 
rocks

53–56 Solid Taeniogloss 2 + 1 + C + 1 + 2

1 8120 900 7,308,000 85

2 8109 886 7,184,574 83

3 7906 749 5,921,594 85

Lavigeria nassa
(Woodward, 
1859)

2 + 1 ZMH
119369/999

Zambia
08°29′23 ‘’S
30°28′46’’E

09.09.2016 Algae from 
rocks

53,54,57–59; 
personal
comment 
from collec-
tor (Heinz 
Büscher)

Solid Taeniogloss 2 + 1 + C + 1 + 2

1 5160 430 2,218,800 112

2 5136 426 2,187,936 112

3 5004 435 2,176,740 110

Paramelania 
damoni
(Smith, 1881)

2 + 1 ZMH
150023/999

Zambia 08°34 
‘09 ‘’S 31°45 
‘02 ‘’E

05.05.2018
Algae from 
rocks and 
sand

53–56,58–62 Soft to 
solid Taeniogloss 2 + 1 + C + 1 + 2

1 2060 388 799,280 98

2 2054 376 772,304 97

3 1786 – – –

Cleopatra 
johnstoni
Smith, 1893

2 + 1 ZMB
220.102b

Zambia 
09°20′866’S 
28°43′886’E

19.12.2000
Algae from 
sand and 
mud

Unpublished 
work, personal 
comment
from collector 
(Matthias 
Glaubrecht)

Soft Taeniogloss 2 + 1 + C + 1 + 2

1 2082 349 726,618 70

2 2076 347 720,372 71

3 – 326 – –

Reymondia 
horei
(Smith, 1880)

2 + 1 ZMB
220.147

Tanzania 
Kigoma 26.02.1995 Algae from 

rocks

53–56,61,62;
personal
comment from 
collectors 
(Heinz Büscher 
and Matthias 
Glaubrecht)

Solid Taeniogloss 2 + 1 + C + 1 + 2

1 9240 820 7,576,800 176

2 9342 831 7,763,202 178

3 9108 803 7,313,724 176

Spekia zonata
(Woodward, 
1859)

2 + 1 ZMB
220.077

Zambia 08°45 
‘547 ‘’S 31°05 
‘825 ‘’E

12.02.2000 Algae from 
rocks

53–56,58,60–63;
personal 
comment from 
collectors 
(Heinz Büscher 
and Matthias 
Glaubrecht)

Solid Taeniogloss 2 + 1 + C + 1 + 2

1 5660 560 3,169,600 138

2 5680 571 3,243,280 139

3 5589 577 3,224,853 138

Faunus ater
(Linnaeus, 
1758)

2 + 1 ZMH
154630 Pet shop Summer

2019

? found 
on soft 
and solid 
substrate

64,65 Soft to 
solid ? Taeniogloss 2 + 1 + C + 1 + 2

1 11,480 510 5,854,800 170

2 11,502 505 5,808,510 169

3 11,899 489 5,818,611 170

Littorina 
littorea
(Linnaeus, 
1758)

2 + 1 ZMH
154633

North Sea, 
at Husum, 
Germany

Autumn 
2019

Algae, fleshy 
macro algae, 
also from 
rocks

66–69 Medium 
to solid Taeniogloss 2 + 1 + C + 1 + 2

1 23,180 370 8,576,600 280

2 23,195 376 8,721,320 281

3 – 384 – –

Paludomussi‑
amensis
Blanford, 1903

2 + 1 ZMB
220.234

Thailand, Kan-
chanaburi,
14°26,3’N
98°51,0’E

08.02.2001 Not known ? ? Taeniogloss 2 + 1 + C + 1 + 2 1,2,3 – – – –

Anentome 
helena
(von dem 
Busch, 1847)

2 + 1 ZMH 122792 Pet shop Summer
2019

Gastropoda, 
fish eggs, 
shrimps, 
carrion

70,71 Soft to 
solid Stenogloss 1 + C + 1

1 2097 244 511,668 61

2 2102 241 506,582 60

3 2189 261 571,329 61

Buccinum 
undatum
Linnaeus, 1758

2 + 1 ZMH 122793
Biologische 
Anstalt Helgo-
land, Germany

May 2021

Polychaeta, 
fish eggs, 
bivalves, 
carrion, etc

72 Soft to 
solid Stenogloss 1 + C + 1

1 9660 1420 13,717,200 59

2 9641 1396 13,458,836 60

3 9701 1486 14,415,686 64

Continued

http://www.sealifebase.ca
http://www.sealifebase.ca
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Table 1.  Systematic position of the taxa studied, list of specimens with collection number, locality and date 
of collection or fixation. The ingesta preferred, if known, and the ingesta categories assigned in this study are 
listed. Radular parameters, i.e. type, formula, length, width, area, and quantity of tooth rows, are documented 
for each specimen. C, central tooth; DC, dominant central tooth; DT, dominant lateral tooth or lateral tooth II; 
TM, thickened membrane, potentially reduced central tooth.

Class Subclass Species

Specimens Ecology Radula

N of 
specimens 
studied with 
EDX + SEM

Collection 
number

Source or 
locality of 
collection

Date of 
collection or 
fixation

Food or 
substrate

Reference for 
ecology

Ingesta 
category

Radular
type Radular formula

Specimen 
no

Length, 
µm

Width, 
µm Area, µm2

N of 
tooth 
rows

Hetero-
branchia

Onchidoris 
bilamellata
(Linnaeus, 
1767)

2 + 1 ZMH 122794
Biologische 
Anstalt Helgo-
land, Germany

May 2021 Soft parts of 
barnacles

4,73 Medium – 1 + DT + TM  
+ DT + 1

1 2060 447 920,820 34

2 2081 461 959,341 34

3 – 474 – –

Aeolidia 
papillosa
(Linnaeus, 
1761)

2 + 1 ZMH 122795
Biologische 
Anstalt Helgo-
land, Germany

May 2021 Sea 
anemone

74–76 Soft – DC

1 1460 410 598,600 9

2 1471 420 617,820 9

3 1507 429 646,503 10

Polyceraquadri‑
lineata
(Müller, 1776)

2 + 1 ZMH 122796
Biologische 
Anstalt Helgo-
land, Germany

May 2021 Encrusted 
Bryozoa

77 Medium – 1 + 1 + TM  
+ 1 + 1

1 2075 726 1,506,450 12

2 2082 731 1,521,942 12

3 – – – –

Doris pseu‑
doargus
Rapp, 1827

2 + 1 ZMH 122797
Biologische 
Anstalt Helgo-
land, Germany

May 2021 Porifera 78,79 Medium Isodont ∞ + ∞ + C  
+ ∞ + ∞

1 2350 2520 5,922,000 26

2 2461 2580 6,349,380 28

3 – – – –

Cornu 
aspersum
(Müller, 1774)

2 + 1 ZMH
150.005 Pet shop 2018 Various 

plant types

www. cabi. 
org/ isc/
data-
sheet/26,821

Soft to 
solid Isodont ∞ + ∞ + C  

+ ∞ + ∞

1 8000 3000 24,000,000 171

2 8123 3004 24,401,492 180

3 8206 3208 26,324,848 179

Figure 1.  Elemental proportions of the species’ radular teeth, summarized for taxa (Patellogastropoda, 
Polyplacophora, Vetigastropoda, Caenogastropoda, Cephalopoda, Heterobranchia, Neritimorpha) to ease 
comparison in the radular mineral content.

http://www.cabi.org/isc/
http://www.cabi.org/isc/
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and Aeolidia papillosa. F was detected in A. fascicularis, Patella vulgata, both Vetigastropoda, Littorina littorea, 
O. bilamellata, and Doris pseudoargus. Si was found in Lepidochitona cinerea, both Cephalopoda, P. vulgata, 
both Vetigastropoda, V. turrita, all Caenogastropoda except C. johnstoni and Buccinum undatum, and in Cornu 
aspersum. Cu was determined for radulae of both Cephalopod species and Reymondia horei. K was found in 
both Polyplacophora, P. vulgata, Paramelania damoni, C. johnstoni, R. horei, Paludomus siamensis, L. littorea, 
and O. bilamellata.

Elemental proportions. Summarizing all radulae studied (for mean, SD, and N see Supplementary 
Table 1), we detect that Fe is present in the highest proportions, followed by Si, Ca, P, F, Na, Mg, S, Cl, Cu, and 
finally K. Of the 1448 areas studied, most of them contained Ca, followed by P, Mg, S, Cl, Na, Si, F, Fe, Cu, and 
finally K.

Overall, the highest content of all analysed elements (sum, in atomic %, of the means of F, Na, Mg, Si, P, S, 
Cl, K, Ca, Fe, and Cu; see Supplementary Table 2 for values) was detected for the studied Patellogastropoda. 
This is followed by the Polyplacophora, Heterobranchia, Caenogastropoda, Cephalopoda, Vetigastropoda, and 
finally the Neritimorpha.

Composition‑ and biomineralization‑types. Overall, we detect that multiple composition- and 
biomineralization types are present within each individual species and also within individual teeth (see Fig. 2). 
Within Polyplacophora and Patellogastropoda we detected strong indications for the presence of the composi-
tion type I (containing Fe), II (Mg, Ca), III (Ca, P, Cl, F), IV (Si), OB (Na, S, K). In Cephalopoda, the types II, 
III, IV, V (Cu), and OB occur. In Vetigastropoda and Neritimorpha, the types II, III, IV, and OB were detected, 
in Vittina turrita—additionally the type I. In Caenogastropoda and Heterobranchia, the radular composition 
greatly varies between taxa. Overall, in Caenogastropoda, all composition types were found. However, in each 
species, the types II, III, and OB were always present, whereas Fe was only determined in Reymondia horei and 
Littorina littorea, Cu — in R. horei, and K — in Paramelania damoni, Cleopatra johnstoni, R. horei, Faunus ater, 
and L. littorea. C. johnstoni is the only species that seems to lack Ca. In Heterobranchia, the types II and OB 
were found in each species. The type III (apatite) is present in Onchidoris bilamellata, Aeolidia papillosa, Polycera 
quadrilineata, and Doris pseudoargus, but not in Cornu aspersum, as P, Cl, and F were not determined in this 
species. Si was only detected in C. aspersum and K in O. bilamellata.

Ingesta versus radular morphology and elemental proportions. Morphology. The longest radu-
lae were detected in species foraging on medium to solid ingesta, followed by solid-, medium-, soft-to-solid-, 
and finally soft-feeders with the shortest radulae (see Table 2 and Supplementary Figs. 28–30). The largest radu-
lar area was calculated for medium-, medium-to-solid-, soft-to-solid-, solid-, and finally for the soft-feeders 

Figure 2.  Elements detected, the mean atomic percent (represented by different colours), and assigned ingesta 
category (soft, medium, solid, soft to solid, medium to solid) for each species, sorted to the major molluscan 
groups (Polyplacophora, Cephalopoda, Gastropoda: Patellogastropoda, Vetigastropoda, Caenogastropoda, 
Neritimorpha, Heterobranchia). Elements are sorted to the defined composition-types (I, II, III, IV, V, OB).
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with the smallest area. Species foraging on medium-to-solid ingesta possess the highest quantity of tooth rows, 
followed by solid-, soft-to-solid-, medium-, and finally with the least quantity of tooth rows the soft-feeders.

All elements. In general, we detect that radulae of species foraging on solid ingesta possess the highest pro-
portions of all studied elements, followed by species foraging on medium, medium-to-solid, soft-to-solid, and 
finally species feeding on soft ingesta.

Composition‑type I. The highest Fe-proportions (means) were detected in the exclusively solid-, followed by 
the medium-to-solid-feeders. No Fe was detected for all other ingesta types.

Composition‑type II and III. The highest proportions of Mg were detected in species foraging on medium 
ingesta, followed by solid-, soft-, medium-to-solid-, and finally soft-to-solid-feeders. Ca was detected in the 
highest proportions in the medium-, followed by the soft-, solid-, soft-to-solid-, and medium-to-solid-feeders. 
P was mainly found in species feeding on medium ingesta, followed by soft-to-solid-, solid-, medium-to-solid-, 
and finally soft-feeders. Cl was detected in the highest proportions in medium-feeders, followed by species feed-
ing on soft-to-solid, soft, solid, and finally medium-to-solid ingesta. The highest proportions of F were found in 
radulae of medium-, followed by solid-, and finally medium-to-solid-feeders. In soft and soft-to-solid-feeders, 
no F was found.

Table 2.  Proportions of elements, radular length, area, quantity of tooth rows for the species foraging on 
certain ingesta types. N, quantity of teeth that contain the element, or quantity of radulae studied.

Parameter

Ingesta type

Soft Soft to solid Medium Medium to solid Solid

Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N

Propor-
tions of all 
elements, 
atomic %

1.88 2.80 64/64 2.99 2.40 348/348 5.58 6.24 164/164 3.97 2.39 122/122 6.33 12.50 688/688

Radular 
length, µm 1964.00 241.55 5 5901.28 3945.67 20 7704.29 6710.08 9 20,128.88 2923.74 5 7911.95 8319.09 24

Radular 
area, µm2 702,397 45,924 5 7,406,442 7,723,878 19 25,206,904 26,887,891 9 15,106,455 6,172,958 5 6,144,306 8,488,474 24

N of tooth 
rows 59 24 5 92 53 20 62 43 9 241 38 5 97 53 24

Fe-pro-
portion, 
atomic %

0.00 0.00 0/64 0.00 0.00 0/348 0.00 0.00 0/164 0.34 0.15 62/122 13.69 10.17 120/688

Mg-
proportion, 
atomic %

0.34 0.24 41/64 0.15 0.11 237/348 0.68 0.43 114/164 0.28 0.27 85/122 0.42 0.62 426/688

Ca-
proportion, 
atomic %

3.11 2.49 12/64 1.22 1.27 317/348 3.15 3.22 150/164 1.12 1.03 118/122 1.84 1.80 561/688

P-pro-
portion, 
atomic %

0.69 0.95 22/64 1.29 1.12 264/348 1.91 2.06 132/164 0.63 0.62 112/122 1.11 1.64 405/688

Cl-pro-
portion, 
atomic %

0.26 0.43 27/64 0.42 0.41 256/348 0.98 0.27 6/164 0.16 0.18 66/122 0.21 0.15 248/688

F-pro-
portion, 
atomic %

0.00 0.00 0/64 0.00 0.00 0/348 0.65 0.74 136/164 0.28 0.24 44/122 0.38 0.48 156/688

Si-pro-
portion, 
atomic %

0.00 0.00 0/64 0.22 0.20 116/348 0.74 0.58 24/164 0.50 0.46 120/122 7.39 10.40 83/688

Cu-
proportion, 
atomic %

0.00 0.00 0/64 0.19 0.12 94/348 0.00 0.00 0/164 0.00 0.00 0/122 0.33 0.17 52/688

S-pro-
portion, 
atomic %

0.62 1.05 40/
64 0.36 0.25 241/348 0.22 0.20 69/164 0.32 0.20 104/122 0.38 0.52 349/688

Na-
proportion, 
atomic %

0.38 0.28 58/64 0.22 0.22 174/348 0.22 0.31 69/164 0.14 0.12 64/122 0.66 0.70 230/688

K-pro-
portion, 
atomic %

0.02 0.01 14/64 0.08 0.08 24/348 0.09 0.08 10/164 0.09 0.08 6/122 0.39 0.40 40/688
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Composition‑type IV. The highest Si-content was detected in solid-, followed by medium-, medium-to-solid-, 
and finally soft-to-solid-feeders. No Si was found in species feeding on soft ingesta.

Composition‑type V. The highest Cu proportions were detected in the solid-feeder Reymondia horei and less in 
the cephalopods foraging on soft-to-solid ingesta. All other radulae seem to lack Cu.

OB. S was detected in the highest proportions in species feeding on soft, followed by solid, soft-to-solid, 
medium-to-solid, and finally medium ingesta. The highest Na-proportions were detected in solid-, followed by 
the soft-, soft-to-solid-, medium-, and finally medium-to-solid-feeders. K was detected in the highest propor-
tions in solid-, followed by medium-, medium-to-solid-, soft-to-solid-, and finally soft-feeders.

Correlations between parameters. In some cases we could detect correlations (please see Supplementary 
Tables 4–16 for correlation coefficients). In general, radular area highly correlates with radular length and radu-
lar width. Additionally, in most cases, proportions of all elements highly correlate with each individual element.

For individual elemental proportions, we here only highlight some, but the picture is rather puzzling. When 
all species are pooled together (see Supplementary Table 4) Ca and Cl, F and Ca, Fe and Ca, P and Ca, P and Cl, 
Si and Ca, Si and Fe correlate highly. For all soft ingesta feeders pooled together (see Supplementary Table 5) 
Mg and Na, K and P, Ca and P, Cl and P, Cl and K, Cl and Ca highly correlate. For all soft-to-solid ingesta feeders 
pooled together (see Supplementary Table 6) K and P, K and S, Ca and K, Cl and P, Cl and K highly correlate. For 
all medium ingesta feeders pooled together (see Supplementary Table 7) S and Si, K and Mg, Ca and P, F and P, F 
and Ca, Cl and S highly correlate. For all medium-to-solid ingesta feeders pooled together (see Supplementary 
Table 8) Si and Na, Si and Mg, K and Na, Ca and P, Ca and K, F and P, F and K, F and Ca, Cl and P, Cl and Ca 
highly correlate. For all solid ingesta feeders pooled together (see Supplementary Table 9) Si and Mg, P and Si, 
S and Si, K and P, Ca and P, Cl and P correlate highly.

When the species studied are sorted by their taxonomic group we find, for most parameters no high correla-
tions. However, for Caenogastropoda (see Supplementary Table 10) K and Si, F and P, F and K, F and Ca, Cl and 
P highly correlate. In Cephalopoda (see Supplementary Table 11) Cl and Ca correlate highly. In Heterobranchia 
(see Supplementary Table 12) K and Mg, Ca and P, F and P, Cl and Na are highly correlated. In Neritimorpha 
(see Supplementary Table 13) Si and Na, Si and Mg, Ca and P, Cl and P, Cl and Ca are highly correlated. In Patel-
logastropoda (see Supplementary Table 14) Si and Mg, P and Mg, S and P, K and Na, K and P, K and S, Ca and 
Mg, Ca and P highly correlate. In Polyplacophora (see Supplementary Table 15) P and Na, S and Mg, K and P, 
Fe and Si, F and K, Cl and Na are highly correlated. In Vetigastropoda (see Supplementary Table 16) S and Na 
highly correlate.

PCA on the individual parameters (elemental proportions, radular length, radular width, radular area, tooth 
rows) for all species pooled together detected no clustering (see Supplementary Fig. 31 A with highlighted sys-
tematic groups and B with highlighted ingesta categories).

Discussion
A detailed list of previous studies aimed at determining the chemical composition of the molluscan radula is 
provided in Supplementary Table 17. Most of the previous research has been done on the Polyplacophora with 
the focus exclusively on the dominant lateral teeth [for reviews  see33–36,80], except for one study on Lepidochitona 
cinerea determining the elemental composition of all tooth  types32. Many of these analyses focused on the Fe 
biomineralization and the phase transformations during maturation [e.g.23,29,81–89]. Overall, in previous studies 
F, Na, Mg, Si, P, S, Cl, K, Ca, Fe, and Cu was detected in the dominant lateral teeth (= lateral teeth II) of Polypla-
cophora. For Lepidochitona cinerea, in our previous paper, we did not detect Cl, F, and Cu and in Acanthochitona 
fascicularis — no Si and Cu.

The following Fe proportions of mature dominant lateral teeth were previously determined in Polyplacophora: 
for A. fascicularis — 59.2% 90, 62%85,91 or few  percent92 were detected. For Plaxiphora — 86.6%90, 17–27%85, or 
26.7%93; for Cryptochiton — 51.8%81 or 69%29; for Ischnochiton — 62%85; for Onithochiton — 66%85 or 0.2%93; 
for Cryptoplax — ~ 90 weight % in the cap, ~ 30 weight % in the core, junction zone, and  basis83; and for Chi‑
ton — 97%94 were detected. For mature L. cinerea, we  previously32 found Fe proportions of maximal 32% (atomic 
ratio, atomic %) and for A. fascicularis — maximal 29% in the dominant lateral teeth.

For Polyplacophora, P was previously  reported81,83,85,93,95 in form of iron  phosphate86,96,97 or apatitic calcium 
 phosphate92,93,95,98–100. F related to  Ca100,101 was also previously reported for the dominant lateral teeth of chitons. 
In Acanthopleura85,92 and Onithochiton85, Ca was abundant to maximal ~ 30 atomic % and P to maximal ~ 20 
atomic %. For Lepidochitona cinerea, we detected Ca in proportions of maximal 8% and P to 7% and for Acan‑
thochitona fascicularis to maximal 6% and P to 9%.

Additionally,  Si83,85,98,99 and  Mg85,93 were previously detected in the dominant lateral teeth of chitons. S was 
also previously  determined83. It is associated with the tanning of the organic matrix and with the appearance of 
 proteins82. Additionally,102 detected Zi, K, F, S, Na, and Cl in radular segments of Clavarizona90, Ca, P, Mg, S, Na, 
Zi, K, Al, Cu, and Si in radulae of Acanthopleura and Plaxiphora,  and83 Mg (with max ~ 5.5 weight %), K (with 
max ~ 1.0 weight %), Na (with max ~ 2.0 weight %), Si (with max ~ 1.0 weight %), Al (with max ~ 0.5 weight %), 
and S (with max ~ 0.8 weight %) in Cryptoplax. These elements, except for Zi and Cu, which were not found, 
occurred in smaller proportions (0–5%) in both Lepidochitona cinerea and Acanthochitona fascicularis. For the 
central, lateral I, and marginal teeth we detected less minerals than in the dominant lateral teeth in both species.

In Cephalopoda, only one study on the radular chemistry exists, to the best of our knowledge. In  Octopoda43 
targeted, but did not detect Si and Fe. We here determined Na, S, Cu, Si, P, Cl, Ca, and Mg in the radula of His‑
tioteuthis spec. and Loligo vulgaris with proportions < 4%.
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Within the Gastropoda, the Patellogastropoda received the most  attention41–43,90,103–115. However, few studies 
focused on the overall radular composition, since most analyses, e.g. ashing and treatments with different acids or 
Raman spectroscopies, EDX, rather targeted the presence and crystalline shape of Fe and Si [e.g.41,103,104,106–111,114]. 
In fewer studies, other elements were of interest [e.g.42,43,90,105,112,113]. Overall, in Patellogastropoda, Na, Mg, Si, 
P, Cl, K, Ca, Fe, Cu, and S were previously found. For Patella vulgata, we here detected Na, Mg, Si, P, K, Ca, Fe, 
S, but no Cu and Cl. We additionally determined F. Similar to previous studies, we detected Si and Fe in high 
proportions in the dominant teeth (18–38%), whereas all other elements were present in smaller proportions only.

For the remaining gastropod taxa, only few analyses on the radular chemistry were conducted and usually 
the presence of elements, but not their proportions, could be determined. One of the earliest studies was done 
 by41 depicting results from Bergh, who performed complex chemical analyses of ashing and dissolving radulae 
from the Caenogastropods Charonia lampas (detecting P, Ca, and Fe), Lamellaria perspicua (detecting no Si), 
and Gibberulus gibberulus (probably detecting none of these elements, this is not clear) in different acids. Addi-
tionally,41 presented his own results on the radulae of the Caenogastropod Tonna galea and the Heterobranch 
Helix nemoralis discovering P, Ca, and Fe in both by employing the same experiment.  Sollas42 was the first, who 
studied the radular chemistry in an elevated quantity of taxa,  and43 proceeded. Overall, their protocols are rather 
complex, involving analytical chemistry methods (ashing, staining, boiling, treating with acids, and using dif-
fusion column) or physics (radula’s refractive index).  Sollas42 determined rather the presence of elements  and43 
specifically tested the occurrence of Si and Fe. For the Caenogastropoda Potamopyrgus antipodarum, Lacuna 
vincta, Murex branchialis, and Aporrhais pespelecani, the Heterobranchia Scaphander lignarius, Aplysia punctata, 
and Jorunna tomentosa,43 determined no Si and no Fe. For the Heterobranchia (Cornu aspersum),42 determined 
Si and P. She detected Si in specimens collected during winter and phosphoric acid (P) in specimens collected 
during spring.116 performed EDX analyses on five specimen of C. aspersum detecting Ca in all specimen and Si 
in one, even though specimens were also inventoried in spring depicting the inconsistency of elements embed-
ded. For the Vetigastropoda (Haliotis tuberculata),42 detected Si, Ca, and Fe.

The following species were studied  by42  and43, but for many species their results are contradictory. In the 
Caenogastropoda Littorina littorea42 detected Mg, P, Ca, and Fe,  whereas43 found no Ca and no Fe. Nucella 
lapillus and Buccinum undatum were also studied  by42, but the results are not clear from the publication,  and43 
detected no Si and no Fe in both species. For the Vetigastropoda (Emarginula fissure and Calliostoma zizyphi‑
num)42 detected P, Ca, and Fe,  whereas43 determined the absence of Fe and Si.  Then117  and26,118 were the first to 
close the existing gap in knowledge about the radular composition of Vetigastropoda.  Gray117 detected Na, Mg, 
Si, Cl, Ca, and Fe (EDX),  and26,118 Mg, Cl, Ca, and Fe (by EDX and inductively coupled plasma-optical emission 
spectrometry) in the limpet Megathura crenulata. Within Vetigastropoda, we detected Na, S, Cu, Si, P, Cl, Ca, 
and Mg; all of them in low proportions < 2%. Cu and S were not documented before, whereas Fe was detected 
in previous  studies117,118. For the Neritimorpha, only one past study addresses the mineral content detecting S, 
Cl, K, Ca, Mg, Si, and  Fe119. We additionally detected Na and P in Vittina turrita; all elements are abundant in 
very low proportions (< 4%). In the Caenogastropoda, we detected Fe, Mg, Ca, Cl, P, F, Si, Cu, S, Na, and K. Cu, 
F, Na, Si, S, and Cl were not determined before. In all species, proportions are < 6%. For the Heterobranchia, we 
detected more elements (Mg, Ca, Cl, P, F, Si, S, Na, K) than described in past  publications41–43,116. Mg, Cl, F, S, 
Na, and K were not detected before. All elements are abundant at proportions < 15%.

Overall, the above data depicts that it is rather difficult to compare the percentages measured between studies, 
because in some weight percentages and in others atomic ratios were determined. Besides, methodology, sample 
preparation, and the analysed sample itself (whole radula or individual radular parts) differs. In addition, the 
presence and abundance of elements could potentially be influenced by the food available (e.g. plants containing 
or lacking Si) or by the chemistry of the saliva. In some taxa, specifically carnivorous gastropods, the saliva is acid 
[e.g.120,121], so potentially the contact of the outermost radular teeth with the saliva leads to reduced proportions. 
Both ideas await further research.

The generally accepted hypothesis on radular mineralization evolution states that all gastropods — besides 
Patellogastropoda, Neritimorpha, and Vetigastropoda — probably lack Fe in the radula [e.g.122–124]. However, 
Fe was detected previously in gastropod species [for Tonna galea, Charonia lampas, and Helix nemoralis  see41, 
for Littorina littorea  see42] and our own analyses determined it in Reymondia horei and Littorina littorea. Thus, 
this means that iron is not lacking, rather its proportions are reduced in these gastropod lineages (see Fig. 1).

Previous studies relate the radular length to the ingesta type. Herbivorous taxa were found to possess longer 
radulae than carnivorous  ones125. Littorinid species, feeding on algae covering rocks, were found to possess longer 
radulae than species feeding from plant  surface126–130. For Patella species, it was determined that the radular 
length increases with increasing usage and  wear131 and, when algae are less abundant and the radula must thus 
be used more frequently to obtain the food necessary, its length  increases132.

In general, we detected a similar pattern for the species studied here as the longest radulae with the highest 
quantity of tooth rows were found in species foraging on harder ingesta types (medium-to-solid, solid, medium) 
and the shortest ones in soft-substrate feeders. We, however, could not directly relate herbivory with longer 
radulae and carnivorous feeding with shorter ones. We additionally detected some relationship between radular 
length and proportions of elements (e.g. in Patella vulgata), so potentially more mineralized radulae are longer, 
because their maturation and mineralization requires more time and a longer contact to the overlain epithelia 
in the radular sac and mineralization zone. However, this does not seem to be the case for every species, as Lepi‑
dochitona cinerea and Acanthochitona fascicularis have relatively short heavily mineralized radulae. Thus, in these 
polyplacophoran species, the overlain epithelia can presumably incorporate more minerals at the same time or 
the radular replacement rate is faster in P. vulgata in contrast to the one in the Polyplacophora. Unfortunately, 
the radular replacement rate is known for few taxa: for Polyplacophorans (Acanthopleura, Plaxiphora, Patelloida, 
Mopalia), a rate of 0.36–0.80 rows per day was  determined90,133,134 and for P. vulgata, a rate of 1.5 rows/day was 
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 described135. In Caenogastropoda, for Lacuna (Littorinidae), the rate of 3 rows/day136, for three Littorina species 
(Littorinidae) — 5–6 rows/day depending on the  temperature2,135, and for Pomatias elegans— 5.02 rows/day2 was 
determined. For Heterobranchia, the rate of 2.9 rows/day in Lymnaea stagnalis 137, 5.02 rows/day in Agriolimax 
reticulatus2, 3.6 rows/day in adult Helix aspersa (= Cornu aspersum) was  detected2. For Cepaea nemoralis, the 
whole radula was found to be renewed within 30–35  days138. Thus, in general, a higher degree of mineralization 
is inversely related to the higher replacement rate (teeth that possess larger proportions of minerals are replaced 
slower). However, radular replacement seems to depend on many factors, such as water temperature, metabolic 
rates, or age of  animals135,136,139,140. Further studies on these questions are required.

In general, we detected that radulae of species, foraging on the solid ingesta, possess heavy mineralized teeth 
and species feeding on the soft ingesta show the smallest proportions. In biological materials, heterogeneities 
can have their origin in geometry, chemistry, and/or structure [for a review  see141]. In the dominant lateral 
teeth of chitons and limpets they have their origin in the distribution of the inorganic components and in the 
architecture of organic  components23,25,27–31. We have previously correlated the hardness and elasticity values in 
Lepidochitona cinerea with the iron and the calcium  proportions32, which was previously also described for limpet 
 teeth24,104,108,142 and for other  chitons23,25,29,30. For the paludomid gastropods, we previously measured elasticity 
modulus values ranging from 2 GPa at the tooth basis to 8 GPa in the cusp in solid substrate feeders, whereas soft 
substrate feeders possessed significantly softer teeth (4.6 GPa)37,38,40. In these species, we here detected inorganic 
elements in rather small proportions. We thus propose that specific cross-linking conditions of the chitin due 
to  tanning1, fiber arrangement, and  density22,23,26,28,31,88,143–145 rather cause the heterogeneities in mechanical 
properties. We previously also detected that the capability of wet teeth to rely on one another and to redistribute 
the mechanical stress increases the radula’s resistance to structural failure in paludomid  gastropods146,147. This 
altogether probably enables the feeding on harder ingesta types. Whether these mechanisms are also applicable 
for the other molluscan species, await further investigations.

Methods
Specimen studied and dissection. Mollusks were obtained from various sources (see Table 1 for details): 
individuals of Littorina littorea and Lepidochitona cinerea were collected at the North Sea in summer 2019 and 
those of Patella vulgata in autumn 2020. The gastropods Cornu aspersum, Rochia conus, Haliotis tuberculata, 
Vittina turrita, Faunus ater, and Anentome helena were bought from online pet shops. All of them were shortly 
boiled and preserved in 70% ethanol. Individuals of Aeolidia papillosa, Onchidoris bilamellata, Polycera quad‑
rilineata, and Doris pseudoargus were received from the Biologische Anstalt Helgoland in May 2021, kept in 
aquarium for 2 weeks in Hamburg, before the gastropods naturally died and then were preserved in 70% ethanol. 
Frozen specimens of Loligo vulgaris were bought from Fische Schmidt (store specialized on edible fish, Eppen-
dorfer Baum 18, 20,249 Hamburg) for the dissection course of the Universität Hamburg, radulae were directly 
extracted from defrozen squids and preserved in 70% ethanol. Samples of Lavigeria grandis, L. nassa, Paramela‑
nia damoni, Cleopatra johnstoni, Reymondia horei, Spekia zonata, Paludomus siamensis, Buccinum undatum, 
Acanthochitona fascicularis, Histioteuthis sp. were extracted from already preserved (70% ethanol) specimens, 
some of them already inventoried in museum collections (Zoologisches Museum Hamburg, ZMH; Museum für 
Naturkunde Berlin, ZMB).

Species identification was reviewed by employing the relevant literature, the nomenclature and systematic 
position were checked using molluscabase.org. Not previously inventoried specimens were incorporated in the 
malacological collection of the ZMH, which is now part of the Leibniz-Institut für die Analyse des Biodiver-
sitätswandels (LIB).

Overall, data from 72 adult specimens were analysed for this study. For each species, three adult specimens 
were selected, except for Histioteuthis spec. with two. We have chosen specimens of similar size per species, 
since the relationship between specimens’ length and radular size is puzzling. Some previous studies relate both 
 parameters148 and others rather see a loose relationship or could not relate them for every  species125,149. Addi-
tionally, the specimens chosen for each species were collected at the same time since seasonal dependencies in 
radular length were previously  reported18. All data presented here is new, except for the elemental composition 
and radular morphology of Lepidochitona cinerea, which was taken  from32. In this previous study, we analysed the 
ontogeny of the elemental composition and the mechanical parameters hardness and elasticity in three specimens 
of L. cinerea. For the present study, we included only the data from the working zone (the mature part) for the 
purpose of comparison between species.

Habitus images were either taken employing the Keyence Digital Microscope VHX-5000 (KEYENCE, Neu-
Isenburg, Germany) or by using an iPad Pro (11 zoll; Apple Inc., Cupertino, USA) equipped with a 12-megapixel 
wide angle lens. Each specimen was dissected, the radula was carefully extracted by tweezers and then manually 
freed from surrounding tissue.

Scanning electron microscopy (SEM). For images of the whole radula or the radular working zone, rad-
ulae (three per species, except for Histioteuthis spec. with two) were cleaned in an ultrasonic bath for 2–20 s and 
afterwards arranged on scanning electron microscopy (SEM) sample holders (see Supplementary Figs. 1–24). 
All radulae were first documented with the Keyence Digital Microscope VHX-5000 or VHX-7000 (KEYENCE, 
Neu-Isenburg, Germany). Here the length and width of each radula were measured and the quantity of tooth 
rows counted. From the length and width, the radular area was calculated. Two radulae per species were then 
visualized uncoated employing the Tabletop Microscope TM 4000 Plus (Hitachi, Tokyo, Japan) for more detailed 
images and one radula per species was coated and documented with the Zeiss LEO 1525 (One Zeiss Drive, 
Thornwood, USA) to receive images with a very high resolution (except for images of L. cinerea, they were taken 
 from150, and of H. spec., as their radulae were documented uncoated and afterwards used for the EDX). Based 
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on the morphology and arrangement of teeth, which were also categorized (e.g. central tooth, lateral tooth I, 
lateral tooth II, marginal tooth, inner teeth, outer teeth, etc.) according to their shape, size, and position on 
the membrane, radulae were assigned to different radular types (e.g. docogloss, isodont, rhipidogloss, etc.), if 
a suitable category could be determined from literature [e.g.5,151–154]. Then, the radulae, which were previously 
documented uncoated (two per species), were rewetted with 70% ethanol and loosened from the SEM sample 
holder and used for elemental analysis.

Elemental analysis (EDX). Wet radulae were arranged on glass object slides (Carl Roth, Karlsruhe, Ger-
many) with double-sided adhesive tape. They were positioned along their longitudinal axis so that the outermost 
teeth of one side were directly attached to the slide. The adjacent and more inner teeth were located above, fol-
lowed by the central teeth, the inner teeth from the other side, and finally, on top, outer teeth again. Each radula 
was then dried for three days under ambient temperature and afterwards surrounded with a small, metallic ring 
ensuring an almost parallel sample surface. Epoxy resin (RECKLI EPOXI WST, RECKLI GmbH, Herne, Ger-
many) was filled into the metallic ring and left polymerizing at room temperature for three days. This specific 
epoxy was chosen, since it does not infiltrate the teeth. Object slide and tape were then removed and, to receive 
longitudinal sections of each tooth, the embedded radulae were polished until the outer teeth were on display 
(controlled by examining the samples in the light microscope) using sandpapers of different roughness. Then 
samples were smoothed with aluminium oxide polishing powder suspension of 0.3 μm grainsize (PRESI GmbH, 
Hagen, Germany) on a polishing machine (Minitech 233/333, PRESI GmbH, Hagen, Germany). After polishing, 
the samples were cleaned from the polishing powder by an ultrasonic bath lasting five minutes. Samples were 
then coated with platinum (5 nm layer) and the elemental compositions of specific areas of the embedded teeth 
were examined employing the SEM Zeiss LEO 1525 (One Zeiss Drive, Thornwood, New York, USA) equipped 
with an Octane Silicon Drift Detector (SDD) (micro analyses system TEAM, EDAX Inc., New Jersey, USA) 
always using an acceleration voltage of 20 keV and the same settings (e.g. lens opening, working distance, etc.). 
Before measuring a sample the detector was always calibrated using cupper. We performed elemental mappings 
for test purposes, but for elements that are present in rather lower proportions, this method is not sensitive 
enough. We thus focused on the elemental analysis of small areas (10–400 μm2, depending on the tooth) trying 
to analyse the largest possible area.

The elements H (hydrogen), C (carbon), N (nitrogen), O (oxygen), Pt (platinum), Al (aluminium), Ca (cal-
cium), Na (sodium), Mg (magnesium), Si (silicon), P (phosphorus), S (sulphur), Cl (chlorine), K (potassium), F 
(fluorine), Cu (copper), and Fe (iron) were detected and their proportions measured. We used the data of atomic 
ratio (atomic %) for this study. These values were received with two positions after the decimal point, lower 
proportions were not detectable with this method and therefore they were given as 0.00. We did not analyse and 
discuss the following elements, as they are either the elemental basis of chitin (H, C, N, O), the coating (Pt), or 
the polishing powder (Al, O).

After analysing the outer teeth, each sample was again polished and smoothened until the next tooth type 
was on display; cleaning procedure and EDX analyses were again performed. These steps were repeated until all 
teeth were analysed. In this study, we present the results of the radular working zone, which is not covered by 
epithelia. Thus, all teeth are mature. Overall, we use data of 1448 analysed teeth from 49 specimens.

Statistical analyses. All statistical analyses (mean, standard deviations) and visualizations with boxplots, 
pie charts, or trend lines were performed with JMP Pro, Version 14 (SAS Institute Inc., Cary, NC, 1989–2007). 
Correlation coefficients and PCA were also conducted in JMP.

Composition‑ and biomineralization‑types. With EDX analysis, the proportions of the individual ele-
ments, present in a defined area, can be documented, whereas the specific bonding and structure of molecules 
cannot be analysed. However, from the percentile occurrence, in comparison with past studies on the radular 
chemical composition involving, we propose that the elements, detected here, are potentially part of the follow-
ing molecules or minerals. These were assigned to different composition- or biomineralization-types:

Category Type 1. Characterized by the presence of Fe. Potentially present in the form of magnetite as docu-
mented in polyplacophoran or goethite in limpets [e.g.30,31,99,109,155–159].

Category Type 2. Characterized by the presence of Mg and Ca. Elements are potentially involved in the protein 
packing, an increase in density of chitin fibres and in material stiffness as documented in limpet  teeth26.

Category Type 3. Characterized by the presence of Ca, P, Cl and/or F. These elements (Ca:P:Cl/F) occur 
approximately in these ratios to one another: 5:3:1. They are potentially part of apatite, either fluorapatite, 
 Ca5[F|(PO4)3], or chlorapatite,  Ca5[Cl|(PO4)3] as previously described for radular teeth of polyplacophorans 
[e.g.85,90,91,95,98,160–162].

Category Type 4. Characterized by the presence of Si. Potentially present in the form of silica as documented 
in limpet teeth [e.g.80,115].

Category Type 5. Characterized by the presence of Cu.

Category OB (organic bonds). The presence of Na, K, and S is often related to the protein bonding [e.g.163,164].
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Ingesta categories. The precise trophic preference of molluscan species is completely understudied. Some 
past approaches on various molluscan species determining the food preferences were based on the analysis of 
ingesta consumption, grazing activity, food choice experiments, stomach content, and faecal analyses [e.g.10,165–

177]. These studies overall show, that very various food types can be intaken by one individual species. However, 
this cannot be generalized, since some taxa are less flexible with regard to the ingesta intaken [e.g. Nudibranchia, 
 see178].

For this study, we defined ingesta categories that are rather broad, because (a) either the species’ food prefer-
ence has only been described anecdotally and (b) even if the specific food type was known, its precise mechani-
cal properties and its structural resistance to feeding is difficult to determine  [see179,180] and that is why these 
properties remain unknown. We collated the data on ingesta from the literature, if available, and assigned it to 
the following ingesta categories (please, see Table 1 for food types per species and corresponding references):

Soft Algae from sand or mud, sea anemones. 
Medium Macro algae, soft parts of barnacles, encrusted Bryozoa, or Porifera.
Solid Algae/plants from rocks and/or cora ls.
Soft to solid Fish, crustaceans, and cephalopods; algae from rocks and sand; gastropods, fish eggs, shrimps, 

and carrion;  Polychaeta, fish eggs, bivalves, carrion, etc. 
Medium to solid Algae, fleshy macro algae, also from rocks.

Systematics . The cladogram, depicting the systematic position of the species studied, was created by com-
bining data from published  phylogenies12,181–189 with data on the latest systematic  position of the species from 
molluscabase.org.

Human or animals rights. For this article no research was  conducted on live vertebrates and/or higher 
invertebrates.

Data availability
All data is provided in the supplementary material.
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