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Abstract

Identifying structural measures that capture early brain development and are sensitive to individual differences in behavior
is a priority in developmental neuroscience, with potential implications for our understanding of both typical and atypical
populations. T1-weighted/T2-weighted (T1w/T2w) ratio mapping, which previously has been linked to myelination,
represents an interesting candidate measure in this respect, as an accessible measure from standard magnetic resonance
imaging (MRI) sequences. Yet, its value as an early infancy measure remains largely unexplored. Here, we compared
T1w/T2w ratio in 5-month-old infants at familial risk (n = 27) for autism spectrum disorder (ASD) to those without elevated
autism risk (n = 16). We found lower T1w/T2w ratio in infants at high risk for ASD within widely distributed regions,
spanning both white and gray matter. In regions differing between groups, higher T1w/T2w ratio was robustly associated
with higher age at scan (range: ∼ 4–6.5 months), implying sensitivity to maturation at short developmental timescales.
Further, higher T1w/T2w ratio within these regions was associated with higher scores on measures of concurrent
developmental level. These findings suggest that T1w/T2w ratio is a developmentally sensitive measure that should be
explored further in future studies of both typical and atypical infant populations.
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Introduction
Identifying new ways of capturing structural brain development
in early infancy is an important task for developmental neu-
roscience, which could inform our understanding of norma-
tive processes as well as individual differences (Almli et al.
2007; Knickmeyer et al. 2008). At the extreme, this variability
may extend to atypical neurodevelopmental outcomes such as
autism spectrum disorder (ASD), a heritable early onset condi-
tion defined by difficulties in social communication and interac-
tion along with repetitive, restrictive behavior patterns, altered
sensory processing and circumscribed interests (DSM-5 2013).
Recent studies indicate hyper-expansion of the cortex in infants
later diagnosed with ASD (Hazlett et al. 2011, 2017), as well as
elevated levels of extra-axial cerebrospinal fluid (Shen et al.
2013, 2018).

Regarding white matter (WM), existing neuroimaging studies
of ASD suggest atypical microstructural development, but the
timing of onset, the nature, locality, level, and direction of this
putative atypicality is still unclear (Courchesne et al. 2001; Cheng
et al. 2010; Hazlett et al. 2011; Shukla et al. 2011; Weinstein et al.
2011; Walker et al. 2012). Animal models of ASD and postmortem
analyses of the brains from individuals with ASD have revealed
insufficient oligodendrocyte function and reduced myelination
(Kennedy et al. 2016; Phan et al. 2020). Moreover, genes affecting
oligodendrocyte function, proliferation of neural stem cells, and
neuronal differentiation such as Tcf4, Olig2, and Sox2 have been
linked to ASD (Parikshak et al. 2013; Moen et al. 2017). The
involvement of genes affecting WM development and myeli-
nation motivates the assessment of these brain measures in
relation to behavioral development in general, and in infants at
risk for ASD in particular.

The earliest evidence of alterations of WM microstructure in
ASD has been reported in a diffusion tensor imaging (DTI) study
of infants at 6 months of age who later were diagnosed with
ASD (Wolff et al., 2012). This longitudinal sibling study reported a
higher WM integrity at 6 months, a lower rate of growth from 6 to
24 months, and a subsequent lower WM integrity by 24 months
of age, in the subgroup who received an ASD diagnosis. These
findings were useful first steps but the study did not include a
normative reference group (not at risk for ASD), thus it is unclear
how WM development underpins the maturation of social and
nonsocial skills across the spectrum of infants with and without
risk factors for ASD.

It has been suggested that the ratio of T1-weighted (T1w)
and T2-weighted (T2w) signal intensities (T1w/T2w ratio) could
represent an indirect measure of myelination (Glasser and van
Essen 2011). Myelination is a core aspect of WM development
that starts prenatally and unfolds rapidly in the first 2 years
of life, and which has a critical role in supporting neural and
behavioral functions. Myelination continues at a slower rate
during childhood and adolescence until it plateaus in the third
decade of life (Lebel et al. 2008; Dubois et al. 2014; Reynolds
et al. 2019). Atypical maturation of WM microstructure has been
linked to miscommunication between brain regions and to neu-
rodevelopmental psychiatric conditions such as ASD (Weinstein
et al. 2011; Wolff et al. 2012; Irimia et al. 2017; Bouziane et al.
2018; Dimond et al. 2019).

The intensity of T1w is positively and T2w is negatively asso-
ciated with myelin-related contrast (Koenig 1991; Miot-Noirault
et al. 1997). Thus, in principle, the T1w/T2w ratio enhances
the sensitivity to myelin signal (Glasser and van Essen 2011).
Calibration methods have also been developed for scaling the

T1w and T2w intensities to adjust for differences across scan-
ners and protocols, and make the across-subject comparisons
more robust (Ganzetti et al. 2014).

Since T1w and T2w scans are the most common scanning
sequences, T1w/T2w ratio mapping is an accessible approach,
with no need for additional sequences or longer acquisition time
(Hagiwara et al. 2018; Vandewouw et al. 2019). Although the
correlation between T1w/T2w ratio and myelin water fraction
has been reported to be poor in some studies (Arshad et al.
2017; Uddin et al. 2018, 2019), it has frequently been referred
to as a proxy of myelin content (Shafee et al. 2015; Hagiwara
et al. 2018). The technique has been related to myelination in
both neonatal and pediatric brain imaging studies earlier (Lee
et al. 2015; Soun et al. 2017; Vandewouw et al. 2019). Yet, to our
knowledge, no study has investigated the potential of T1w/T2w
ratio mapping to capture risk for neurodevelopmental condi-
tions, or its ability to study individual differences in concurrent
behavioral development in infancy.

Against this background, we assessed T1w/T2w ratio in
5-month-old infants to compare infants at high familial risk
for ASD and those at low ASD risk. While this approach does
not inform us about specificity with regards to ASD diagnoses,
it can identify processes that are altered in infants at elevated
risk for neurodevelopmental conditions. Nearly 50% of infants
at high familial risk develop ASD or related neurodevelopmental
problems like ADHD symptoms, motor atypicalities, language
difficulties, etc. (Ozonoff et al. 2014). We also asked whether
the T1w/T2w ratio was related to social and nonsocial behavior
in the infants, and assessed its expectedly positive correlation
with chronological age (Lee et al. 2015).

Materials and Methods
Participants

The sample was a magnetic resonance imaging (MRI) scanned
subsample of the larger study, namely Early Autism Sweden
(EASE), which follows infants from 5 months to 6 years of age
using a comprehensive protocol (Falck-Ytter et al. 2018; Nyström
et al. 2018, 2019; Thorup et al. 2018). In total, 46 five-month-
old infants were successfully scanned during natural sleep at
Astrid Lindgren Children’s Karolinska University Hospital in
Stockholm, Sweden. The EASE project is still ongoing, and the
participating infants are not yet old enough for assessing ASD
outcome status. Instead, the groups were stratified based on
genetic risk for ASD. High-risk (HR) infants who had an older full
sibling with clinical diagnosis of ASD (n = 29, f/m = 12/17) were
recruited via the study’s website, announcements and recruit-
ments from clinical department. The diagnosis of the older
sibling was confirmed through an interview with parents (by
clinical psychologist) and inspection of obtained child psychi-
atric or pediatric records (more than 70% of all assessments
included the ADOS (Lord et al. 2000) and/or the Autism Diag-
nostic Interview-Revised (ADI-R; Rutter, 2003)). As a normative
reference, low risk (LR) infants (n = 17, f/m = 11/6) with no fam-
ily history of ASD (recruited from via the Swedish population
register) were also included. The study was approved by the
Regional Ethical Board in Stockholm and conducted in accor-
dance with the 1964 Declaration of Helsinki. The parents signed
a written informed consent. Exclusion criteria were preterm
birth (gestational age (GA) at birth <37 weeks) and confirmed or
suspected medical problems, including visual/auditory impair-
ment. In addition, requirements for MRI scanning had to be
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fulfilled, such as absence of metallic implants in the child or the
accompanying parent.

Behavioral Measures

Mullen Scales of Early Learning (MSEL) (Mullen 1995): The Mullen
is a standardized measure of cognitive functioning for infants
and preschool children from birth through 68 months, and was
assessed by a trained experimenter. The Mullen assesses skills
and abilities in five areas: gross motor, visual reception, fine
motor, receptive language, and expressive language. This mea-
sure also yields a composite score, reflecting the overall devel-
opmental level. To assess the MSEL takes about 15 min for
5-month-old infants.

Vineland Adaptive Behavior Scales- II (VABS) (Sparrow et al.
2005): The VABS is a standardized parent interview consisting of
297 items providing a general assessment of personal and social
functioning of individuals from birth to adulthood. Up to the
age of 6 years, the VABS assesses adaptive behavior in each of
four domains of functioning: communication, daily living skills,
socialization, and motor. Given the young age of the infants, we
focused on the subscales for Communication, Socialization, and
Motor, since the Daily Living Skills domain at 5 months of age is
of limited usability. The VABS usually takes about 10 to15 min to
administer for parents with 5 months old infants.

Image Acquisition

Structural T1w and T2w scans were collected from the same
scanning session from all participants during natural sleep
using a 3 T Philips Ingenia scanner with an eight-channel
coil. MRI scanning was scheduled to match the infant’s
sleep routine. Motion and head movement was limited using
foam cushions. Neonate ear plugs and MRI-compatible noise-
canceling headphones were also used to reduce the scanner
noise. Parents were allowed to stay inside the scanner room if
they preferred. An MRI-trained nurse performed the scanning
and monitored the infants throughout the scanning sessions.
In total, 73 infants were invited for scanning. Among those, 46
infants had successful scanning, 16 did not fall asleep, two were
not scanned due to the parents’ request, and the scanning was
stopped for nine infants who woke up during scanning and did
not fall asleep again immediately.

T1w images were obtained by a 3D Turbo Field Echo (TFE)
sequence with TR = 8.199 ms, TE = 3.2 ms, field of view of
192 mm2, matrix size of 192 × 192, and 160 slices with 1 mm
slice thickness. T2w scans were acquired by a spin echo
sequence, with TR = 7000 ms, TE = 300 ms, field of view of
192 mm2, and 160 slices with 1 mm slice thickness. T1w
and T2w scans were visually inspected for artifacts blind to
the risk groups. Out of 46 scans, three were excluded due to
poor quality of images. Thus, a total number of 43 infants
(16 LR, f/m = 10/6, mean ± SD age at scan = 164.7 ± 15.7 days,
mean ± SD GA at birth = 40.4 ± 1.6 weeks; and 27 HR, f/m = 12/15,
mean ± SD age at scan = 157.4 ± 17.3 days, mean ± SD GA at
birth = 39.4 ± 1.3 weeks) had both T1w and T2w scans and were
included in the analysis.

Image Processing and Group Comparisons

Both T1w and T2w images for all infants were first used to con-
struct age-specific multimodal templates using the Advanced
Normalization Tools (ANTs) multivariate template construction

tool (https://www.ncbi.nlm.nih.gov/pubmed/20851191). This
method resulted in two templates (i.e., T1w and T2w templates)
as well as the transformation matrices from individual images
to templates. Sample slices of both T1w and T2w templates are
shown in Figure 1a and b.

To compute the T1w/T2w ratio maps, the T2w images
were first coregistered to the corresponding T1w images
using antsRegistrationSyNQuick with six degrees of freedom.
Next the T1w images and the coregistered T2w images were
bias-corrected. The preprocessed images were then visually
inspected blinded for group status, as a quality control. However,
no preprocessed images were excluded due to poor data quality.
To normalize the intensity histogram of the T1w and T2w
images, we performed the external calibration method proposed
by Ganzetti et al. (2014). To implement this, two masks covering
the eyeballs and temporal muscles (shown in Fig. 1c) were
selected on the T1w template and then transformed back to the
individual space. The average intensities from these two masks
were computed for all subjects. Using the formula proposed by
Ganzetti et al. (2014) the intensity of T1w and T2w images were
linearly scaled to calculate the calibrated T1w and T2w images.
The calibrated T1w images were then divided by the calibrated
T2w images to compute the T1w/T2w ratio maps.

In order to run a voxel-wise analysis to compare the T1w/T2w
ratio maps of LR and HR groups, the T1w/T2w ratio maps were
transformed to our age-specific T1w template using the same
transformations matrices for all T1w images. The images were
then smoothed by a 3 mm Gaussian kernel and fed into the
FSL-Randomise tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Rando
mise, (Winkler et al. 2014)). Age at scan and sex were included
as covariates in the group comparisons. FSL-Randomise was per-
formed with 10 000 permutations and the results were corrected
with the family-wise error (FWE <0.01) using the threshold-free
cluster enhancement (TFCE) method (Smith and Nichols 2009).

To anatomically localize the significant regions, the Mon-
treal Neurological Institute (MNI)-T1w-template was nonlin-
early transformed to our age-specific T1w template. The same
transformation matrix was used to map the Johns Hopkins
University (JHU) white-matter tractography atlas as well as the
Harvard-Oxford cortical atlas to our age-specific template. The
significant regions were then labeled according to their overlaps
with atlas labels (Supplementary Table). Note that due to the
use of adult brain atlas, the anatomical localization at this early
age is not precise and these results need to be interpreted with
caution.

Statistical Approach for Brain-Behavior Associations

The T1w/T2w ratio measure averaged across voxels showing
differences between LR and HR group (Fig. 2a) was first tested for
associations with age at scan. Next, we tested for associations
with the VABS and MSEL behavioral scales, using a hierarchical
linear regression, with age at scan and sex entered in the first
step and the behavioral scales entered in the second. To follow
up this initial overall model, we used partial correlation (correct-
ing for age at scan and sex) on the individual scales. Finally, we
checked the possible moderating effect of group in any signifi-
cant correlations using a univariate general linear model. Here,
the behavior measure was the dependent variable, while group,
sex, age at scan, T1w/T2w ratio, and the group∗ T1w/T2w ratio
interaction were entered in the model as independent model
terms.

https://www.ncbi.nlm.nih.gov/pubmed/20851191
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab069#supplementary-data
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Figure 1. The age-specific templates used in this study. (a) T1w template, (b) T2w template. (c) the eyeball and temporal masks (shown by green and purple, respectively)
overlaid on the age-specific T1w template.

Results
Voxel-wise analysis of the T1w/T2w ratio maps (corrected for
age at scan and sex) showed widespread significant differences
between the LR and HR infants, with the LR group consis-
tently having higher T1w/T2w ratio than the HR group (Fig. 2a).
Figure 2b, c illustrates the main WM and GM regions associated
with these differences (see Methods and Supplementary Table).

In the total sample, the T1w/T2w ratio (averaged across the
voxels which showed significant group differences; Fig. 2a) was
positively associated with age at scan (Pearson r = 0.40, P = 0.008;
Fig. 3), but was not associated with GA at birth (r = 0.13, P > 0.25;
GA was not available for five subjects, hence n = 38). For these
two correlations, we did not control for sex as it was equally
distributed within the total sample and T1w/T2w ratio did not
differ between female and male infants (f/m = 22/21, P > 0.25).

Next, we evaluated the potential effect of group in the
above associations using a univariate general linear model
with T1w/T2w as the dependent variable, group as fixed factor
and age and sex as covariates. We found that group and age
at scan were significant (group: F (1,42) = 5.20, P = 0.03; age: F
(1,42) = 4.54, P = 0.04), while sex did not reveal significant effect
(P = 0.09; we also checked whether the group × age interaction
was significant; it was not (P > 0.25)).

The behavioral measures at 5 months of age including MSEL
early learning composite score (experimenter-rated) as well
as parent-rated VABS communication, VABS socialization, and
VABS motor skills did not differ significantly between LR and HR
groups (all P ≥ 0.10; Table 1).

To investigate brain-behavior associations, we performed a
hierarchical linear regression with the average T1w/T2w ratio
from voxels with significant group differences (Fig. 2a) as the

dependent variable, age at scan and sex entered as predictors
in step 1 and all (MSEL and VABS) behavioral scales entered
at step 2. There was a significant increase in model fit from
model 1 to model 2 (F change (4,33) = 3.344, P = 0.021, Model
1 adjusted R2 = 0.123, Model 2 adjusted R2 = 0.300). Model fit
changed significantly also when also including risk group in
Step 1 (P = 0.043). Further, the increase in model fit was sig-
nificant also when entering either MSEL and the VABS scales
separately in step 2. In neither of these models, there were
any specific scales with significant unique contribution (except
in the model with only MSEL, i.e., just one added predictor).
This suggests that the behavioral scales collectively capture
variability in T1w/T2w ratio that goes beyond that captured by
sex and age, but that most of this additional variance is shared
between multiple predictors. Indeed, zero order correlations
between the behavioural predictors were all significant (Pear-
son correlations range: 0.350–0.611) with the exception of VABS
socialization and VABS communication which did not reach
statistical significance (r = 0.297, P = 0.06). Figure 4 shows the
correlations between the T1w/T2w ratio and the four predictors
entered in Step 2 in the above model.

Discussion
This study suggests that the T1w/T2w ratio at 5 months of
age is lower in infants at familial risk for ASD compared with
LR control infants, and that it relates to individual differences
in concurrent behavioral development. Further supporting its
developmental significance, we observed a robust association
with age at scan, even within the limited age range covered
by the study. It is in line with previous study assessing the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab069#supplementary-data


4072 Cerebral Cortex, 2021, Vol. 31, No. 9

Figure 2. Results for group comparison. (a) Significant differences of T1w/T2w ratio between the low-risk and high-risk groups (LR > HR, P value corrected at FWE <0.01).
(b) The white matter (WM) regions were superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), inferior occipito-frontal fasciculus (IFOF), anterior
thalamic radiation (ATR), corticospinal tract (CST), and cingulum (Cg). (c) The gray matter (GM) regions were frontal pole (FP), superior frontal gyrus (SFG), inferior

frontal gyrus (IFG), middle frontal gyrus (MFG), supplementary motor area (SMA), insular cortex (AIC), precentral gyrus (PrG), postcentral gyrus (PoCG), cingulate gyrus
(CgG), paracingulate gyrus (PaCG), precuneus (PCu), temporal pole (TP), and lateral occipital cortex (LOCC).

Table 1 Descriptive statistics of the behavioral measures. The n for each measure varies slightly as a function of availability of each measure

behavioral measures Group (n) Min Max Mean SD SE t (df = 41) P value

MSEL early learning
composite score

LR (16)
HR (27)

89
74

112
120

101.06
95.48

8.04
13.46

2.01
2.59

1.70 .10

VABS
communication

LR (16)
HR (26)

22
22

35
42

29.88
29.46

4.02
4.46

1.00
.87

.30 .76

VABS socialization LR (16)
HR (25)

23
17

33
36

30.00
29.80

2.71
3.92

.68

.78
.18 .86

VABS motor skills LR (16)
HR (24)

25
15

34
33

28.19
27.33

2.66
3.69

.67

.75
.79 .43

link between T1w/T2w measures and age in neonates aged
1–8 weeks (Lee et al. 2015). Follow-up analyses of the current
cohort will help clarifying if T1w/T2w ratio at 5 months predicts
long-term variability in social and nonsocial behavior.

As mentioned in the introduction, studies of the neonatal
brain (Lee et al. 2015; Soun et al. 2017) and histological analyses
of patients with multiple sclerosis (Nakamura et al. 2017; Righart
et al. 2017) suggest that the T1w/T2w ratio is an indirect measure
of myelination. However, the specific link between T1w/T2w
ratio and actual myelin content has been doubted by others
(Uddin et al. 2018, 2019) due to its poor correlation with myelin
water fraction (MacKay and Laule 2016). While the link to myeli-
nation remains undetermined at this point, our results suggest
that T1w/T2w ratio captures brain processes that are associated

with chronological age as well as with indices of social and
nonsocial development at this early age.

Previous studies have indicated a positive correlation
between myelination in infancy and later cognitive abilities
as well as concurrent links later in childhood in typical
development using other MRI techniques such as DTI and
myelin water fraction (Short et al. 2013; O’Muircheartaigh et al.
2014; Deoni et al. 2016; Dai et al. 2019). Although these MRI
techniques are highly informative, additional MRI sequences
and longer scanning time are required during scanning sessions
to provide the relevant microstructural properties. In contrast,
T1w and T2w are usually available in almost all MRI studies.
Due to the accessibility, the current MRI results can be easily
replicated in other studies of infants.
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Figure 3. Scatterplots for the correlations between the T1w/T2w ratio (averaged
across voxels showing significant differences between the low-risk and high-risk
infants; Fig. 2a) and age at scan. The black line shows the linear regression line
across all subjects together, while the blue and red lines illustrate the regressions

for low-risk and high-risk groups, respectively. R2 of the combined data and
the group-split data are shown in the figure. Groups (low risk vs high risk) are
plotted separately for descriptive reasons only; the group × age interaction was
not significant.

Some earlier studies have used DTI to examine WM
microstructural differences in ASD compared with controls
(Lebel et al. 2008; Travers et al. 2012; Walker et al. 2012; Wolff
et al. 2012). Most relevant in the current context, one study found
initial higher WM integrity followed by a slower rate of growth
from 6 to 24 months in infants later diagnosed with ASD (Wolff
et al. 2012). Similar to T1w/T2w ratio mapping that is not specific
to myelin content (Uddin et al. 2018, 2019), DTI measures may
reflect many other microstructural components of WM, such as
fiber orientation, neural packing, axonal size, and density (Laule
et al. 2007; Mädler et al. 2008). Thus, the specific contribution of
differences in myelination to the results is difficult to establish
with either T1w/T2w ratio or DTI. Notably, while the Wolff et al.
study compared infants at risk for ASD who either developed or
did not develop ASD at follow-up (no LR group was included), the
current study compared infants at risk for ASD with LR controls.

Although the anatomical labeling of specific regions (Fig. 2b,c
and Supplementary Table) needs to be interpreted with caution
given the difficulty of precise anatomical localization at this
early age, it is notable that it implicated several regions that have
been previously found altered in autistic individuals compared
with neurotypical controls (Duerden et al. 2012; Haigh et al.
2020). For example, ATR, SLF, ILF, and the cingulum together with
their adjacent cortical areas have shown to be involved in socio-
communicative and emotional behavior (Cheon et al. 2011; Nair
et al. 2013; Parkinson and Wheatley 2014; Im et al. 2018).

While the current study suggests that T1w/T2w ratio map-
ping is a promising method for this age that can be used in future
studies, the current study has several limitations that should be
kept in mind. First, the small sample size entails that we had low
statistical power. Another limitation is the unbalanced sex ratio
across the two groups. While we statistically controlled for this,

this cannot entirely rule out sex as a confounder in the analysis.
Moreover, although we did not reveal any significant effect of
sex in the current study, sexual dimorphisms are present struc-
turally and functionally in human brain before birth (Wheelock
et al. 2019) and throughout the lifespan (Gilmore et al. 2007;
Koolschijn and Crone 2013; Satterthwaite et al. 2015). As some
brain areas found in the present work have previously been
found to differ between males and females (e.g., the frontal and
occipital regions) (Knickmeyer et al. 2014; Ruigrok et al. 2014;
Wheelock et al. 2019), future studies may have this potential
issue in mind. A further limitation of the study is the volume-
based registration approach for aligning the individual brains to
the template, and the use of adult brain atlases for the anatomi-
cal labeling. As noted above, this rather coarse approach entails
that division into GM vs WM and the specific localizations need
to be interpreted with caution. Further, the approach entails
that several aspects of brain development, including cortical
thickness and surface area could contribute to the observed
differences and associations. Future studies could benefit from
registration based on cortical segmented areas for GM and tract-
based approach for WM (as proposed by Vandewouw et al.
2019). Future studies should also compare T1w/T2w ratio with
other measures, in this age range and in relation with risk
for ASD, to fully understand the tissue characteristics deriving
the difference between the typical and atypical populations.
Finally, the current analysis did not correct for motion artifacts.
While the infants were physically stabilized during scanning
(see Methods), movement may still occur and we acknowledge
that this is a limitation that ideally should be addressed in
follow-up analyses.

For the brain-behavior associations, it is important to keep
in mind that the overall regression analysis did not indicate
that there were unique contributions by the separate behavioral
scales to the brain measure. Thus, from a statistical point of view,
the different behavioral scales share variance that is associated
with the brain measure, beyond the variance explained by age
and sex.

It is also important to emphasize that given the lack of
outcome data, we cannot know if the observed early differences
predict a later ASD diagnosis. That said, ASD is a heterogeneous
condition and 50% of infants with a sibling with ASD will go on
to experience a range of neurodevelopmental difficulties which
do not necessarily reach the threshold for a clinical diagnosis of
ASD (Ozonoff et al. 2014). Moreover, we now know that parent
environment can alter the outcomes of infants at risk of ASD
(Green et al. 2017), and that secondary and/or compensatory
mechanisms influence whether a diagnostic threshold is passed
(Happé and Ronald 2008). Thus, it is unlikely that there is an
inflexible relationship between the 5-months-old brain and a
later diagnosis.

Conclusions
In summary, this study is the first to use T1w/T2w ratio map-
ping in infants at risk for ASD. The results suggest that at five
months of age, infants at risk for ASD have lower T1w/T2w
ratio than control infants. Further, we found that T1w/T2w ratio
in the areas differing between groups tracked chronological
age at short timescales in infancy, and was associated with
individual differences in social and nonsocial behavioral devel-
opment. Together, these results motivate further investigation
of the T1w/T2w ratio as a promising measure of early brain
development, in typical as well as atypically samples.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab069#supplementary-data
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Figure 4. Whole sample scatterplots of the partial correlations between the average T1w/T2w ratio for voxels that differed between HR and LR groups (shown in Fig. 2a)
and (a) the MSEL early learning composite score (r = 0.320) and (b) the VABS communication scores (r = 0.301), (c) the VABS socialization scores (r = 0.354), and (d) the
VABS motor scores (r = 0.144). In keeping with the overall model (text), these correlations are corrected for the effect of age at scan and sex. We found no evidence that
any of these associations were significantly moderated by risk group (all P > 0.05; corrected for four tests).

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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