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Abstract

Background

Atrial fibrillation (AF) has been linked to left atrial (LA) enlargement. Whereas most studies

focused on 2D-based estimation of static LA volume (LAV), we used a fully-automatic con-

volutional neural network (CNN) for time-resolved (CINE) volumetry of the whole LA on car-

diac MRI (cMRI). Aim was to investigate associations between functional parameters from

fully-automated, 3D-based analysis of the LA and current classification schemes in AF.

Methods

We retrospectively analyzed consecutive AF patients who underwent cMRI on 1.5T systems

including a stack of oblique-axial CINE series covering the whole LA. The LA was automati-

cally segmented by a validated CNN. In the resulting volume-time curves, maximum, mini-

mum and LAV before atrial contraction were automatically identified. Active, passive and

total LA emptying fractions (LAEF) were calculated and compared to clinical classifications

(AF Burden score (AFBS), increased stroke risk (CHA2DS2VASc�2), AF type (paroxysmal/

persistent), EHRA score, and AF risk factors). Moreover, multivariable linear regression

models (mLRM) were used to identify associations with AF risk factors.

Results

Overall, 102 patients (age 61±9 years, 17% female) were analyzed. Active LAEF (LAEF_ac-

tive) decreased significantly with an increase of AFBS (minimal: 44.0%, mild: 36.2%,

moderate: 31.7%, severe: 20.8%, p<0.003) which was primarily caused by an increase of

minimum LAV. Likewise, LAEF_active was lower in patients with increased stroke risk

(30.7% vs. 38.9%, p = 0.002). AF type and EHRA score did not show significant differences

between groups. In mLRM, a decrease of LAEF_active was associated with higher age (per
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year: -0.3%, p = 0.02), higher AFBS (per category: -4.2%, p<0.03) and heart failure (-12.1%,

p<0.04).

Conclusions

Fully-automatic morphometry of the whole LA derived from cMRI showed significant rela-

tionships between LAEF_active with increased stroke risk and severity of AFBS. Further-

more, higher age, higher AFBS and presence of heart failure were independent predictors

of reduced LAEF_active, indicating its potential usefulness as an imaging biomarker.

Introduction

Atrial fibrillation (AF) is the most common arrhythmic heart disease affecting about 1% of the

general population and more than 12 million people in the US are expected to have AF by 2030

[1, 2]. This is of clinical importance due to the association of AF with an increased stroke risk,

reduction of quality of life and cognitive decline [3–5]. Several risk factors are associated with

the development of AF, including age, AF type, AF Burden and cardiovascular (CV) risk factors

such as arterial hypertension (HT), diabetes mellitus, and heart failure (HF) [6]. Furthermore,

secondary conditions like hyperthyroidism or lifestyle factors may precipitate AF [7, 8].

Multiple studies have shown that remodeling of the left atrium (LA) with AF leads to its

enlargement [9–11]. However, LA enlargement might not present in some specific AF etiolo-

gies [12, 13]. In consequence, current guidelines recommend the assessment of LA size for AF

patients, commonly based on the static dimension in parasternal long axis, LA volume (LAV),

or indexed LAV (LAVi) [14]. Volumetric parameters are mainly calculated from 2-dimen-

sional data using volumetric approximations such as the area-length method. Besides static

LAV assessment, LA function is another important parameter for its characterization. It can

be measured from time-resolved (CINE) imaging as strain or LA emptying fractions (LAEF)

[15]. The latter was first established based on echocardiography. Recently, preserved LAEF

was reported to predict the outcome after HF using cardiac MRI (cMRI) [16]. Moreover, LA

function was identified as predictor of CV events and the outcome after myocardial infarction

[17, 18]. However, LAEF assessment can be time consuming and requires specific knowledge

to preprocess the imaging data.

Artificial intelligence (AI) and specifically deep learning (DL) have proven to support per-

forming LA segmentations on single time point of the cardiac cycle or on post-contrast cMRI

with excellent results [19, 20]. DL-based segmentation of the whole LA over the cardiac cycle

based on CINE cMRI has also been validated recently for biplane and 3D-based assessment

[21]. But this technique has not been applied in a patient cohort to investigate associations

with clinical parameters.

The aims of this study were twofold. First, to assess the application of a fully-automatic

approach to quantify LA functional parameters based on cMRI in a cohort of AF patients. Sec-

ond, to investigate its associations with established and novel clinical classification schemes of

AF and CV risk factors.

Materials and methods

Study population

The study was approved by the local ethics committee (Ethikkommission Nordwest- und Zen-

tralschweiz (EKNZ)) and complied with the Declaration of Helsinki. Patients gave written
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informed consent. We considered 181 consecutive patients with CINE MRI from our prospec-

tive AF cohort (SWISS AF PVI, Clinical Trial registry) retrospectively. Exclusion criteria were

any prior LA ablation and AF during the cMRI. In addition, we performed a comprehensive

analysis on all patients, excluding only patients with prior LA ablation. From study records, we

extracted CV risk factors (HF, HT, diabetes, renal failure) and left ventricular ejection fraction

(LVEF, based on echocardiography).

Image acquisition

cMRI scans were performed on 1.5T MRI systems (Siemens Avanto or Espree, Siemens

Healthineers, Germany). Retrospectively ECG-gated, balanced steady-state free precision

CINE sequences in oblique-axial orientation (planning was based on a 4CH scout) were

acquired covering the whole LA in up to 12 axial stacks during breathhold (TE: 1.1–1.2ms, flip

angle: 58–64˚, in-plane resolution: 192x156mm, spatial resolution: 1.8–2.0 x 1.8–2.0mm, slice

thickness: 6mm, no section gap) with 25 frames per cardiac cycle. No further long- or short-

axis views were included in the study protocol.

Convolutional neural network

The network was described and validated in detail elsewhere [21]. It was built to segment the

LA using the area-length method (2D) and on multiple oblique-axial CINE sequences in 4CH

orientation (3D); the latter was used in this study. Briefly, manual segmentations were per-

formed by M.P. and S.K. using the oblique-axial CINE stack covering the whole LA in 50 cases

(Segment v2.2 R6435, Medviso, Sweden) [22]. These time-resolved segmentations were

exported as binary masks, each with 25 images / time points, resulting in 1,250 volumes. These

segmentations served as the training dataset for a deep convolutional neural network (CNN),

based on a U-Net architecture [23]. An anisotropic, slightly altered version of the original 3D

U-Net was implemented for the segmentation of the LA with three resolution layers formed by

two pooling and upsampling layers [24]. After training and validation, the resulting network

was used to predict the segmentation for all cases. An example case with segmentation at fidu-

cial time points is shown in Fig 1.

LA functional assessment from whole cardiac cycle

LA volume was calculated from the segmented 3D dataset by the sum of all identified LA vox-

els. This was performed for every time point of the cardiac cycle to create the volume-time

curve for the LA (Fig 1). LAV_max and LAV_min were automatically identified. Additional

fiducial points were the volume before atrial contraction (LAV_preA) which is defined as the

time point just before the atrial contraction assists in emptying the LA [25]. Furthermore, the

minimal volume between LAV_max and LAV_preA (LAV_min2) was identified automati-

cally, primarily in order to guide the custom-written computational code (in MATLAB, Math-

Works, USA) to perform automatic detection of fiducial points. If all fiducial points were

identified, the patient was included in the main analysis. Based on available fiducial points, the

total (LAEF_total), active (LAEF_active) and passive LAEF (LAEF_passive) were automatically

calculated (Fig 1) [25, 26]:

LAEFtotalð%Þ ¼ ðLAVmax � LAVminÞ � LAVmax �100

LAEFactiveð%Þ ¼ ðLAVpreA � LAVminÞ � LAVpreA �100
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LAEFpassiveð%Þ ¼ ðLAVmax � LAVpreAÞ � LAVmax �100

Patients without the fiducial point of LAV_preA due to AF during MRI acquisition were

included in the comprehensive analysis. In addition to the absolute volumes, we calculated the

respective indexed LAV using the Body Surface Area (BSA) according to the Mosteller formula

resulting in maximum (LAVi_max), minimum indexed LA volume (LAVi_min), indexed vol-

ume before atrial contraction (LAVi_preA), and indexed minimum volume between LAV_-

max and LAV_preA (LAVi_min2).

An overview of the entire automatic workflow pipeline can be found in Fig 2.

Classification of atrial fibrillation

Standard classification of AF was performed based on the presentation, duration and sponta-

neous termination of the AF episodes resulting in the class of paroxysmal, and persistent AF

[14]. In the recently proposed “4S-AF” scheme, the stroke risk (based on the CHA2DS2VASc

score), symptom severity (EHRA symptom score), and severity of AF Burden were proposed

for the structured characterization of AF [14]. Stroke risk was stratified for low-risk

(CHA2DS2VASc�1) and increased risk (CHA2DS2VASc�2). Classification of the EHRA

score was performed as follows: class 1 (no symptoms), class 2 (mild symptoms), class 3 (severe

symptoms), class 4 (disabling symptoms). The severity of AF was characterized based on the

established classification of paroxysmal and persistent AF and additionally, using an estab-

lished, symptomatic burden-based classification (AF Burden score (AFBS)). AFBS is a struc-

tured clinical assessment to evaluate frequency and duration of AF episodes as well as number

of electrical cardioversions [27]. The sum of the frequency [daily (5 points), two or more days

Fig 1. LA segmentation performed by the CNN. A) Example case of LA segmentation performed by the CNN on oblique-axial CINE images.

Segmentations are shown at the time point of maximum volume (LAV_max, top), volume before atrial contraction (LAV_preA, center) and minimum

volume (LAV_min, bottom). B) Schematic volume-time curve to demonstrate the respective fiducial points for minimum LA Volume (LAV_min),

maximum LA Volume (LAV_max), volume before atrial contraction (LAV_preA) and local minimum between LAV_max and LAV_preA

(LAV_min2). C) volume-time curve of the case shown in (A) with all fiducial points identified.

https://doi.org/10.1371/journal.pone.0272011.g001
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Fig 2. Overview of automatic workflow. The automated pipeline for image processing is shown in the dashed rectangle at the top: a stack of

oblique axial CINE MRI series in 4CH orientation was processed by the convolutional neural network (CNN) for segmentation of the left atrium

(LA). Based on the resulting time-resolved 3D model and LA volume-time curve, the characteristic time points were identified. The resulting

functional LA parameters (LA emptying fractions (LAEF)) were available fully-automatic. Those parameters were investigated further in relation to

stroke risk (CHA2DS2VASc), atrial fibrillation (AF) Burden (AF Burden Score) and other established AF risk factors.

https://doi.org/10.1371/journal.pone.0272011.g002

PLOS ONE Automated functional analysis of left atrium in 3D

PLOS ONE | https://doi.org/10.1371/journal.pone.0272011 August 15, 2022 5 / 19

https://doi.org/10.1371/journal.pone.0272011.g002
https://doi.org/10.1371/journal.pone.0272011


a week (4), once a week (3 points), monthly (2 points), <4 times per year (1 point)], the dura-

tion of the event [minutes (1 point), hours (2 points), most of the day (3), all day (4 points)],

and the number of electrical cardioversions [1 (1 point), 2 (2 points), 3 (3 points), >3 (4

points)] was calculated and grouped as minimal (1–3 points), mild (4–6), moderate (7–9), and

severe (�10) AF Burden.

Statistical analysis

Baseline characteristics of patients are presented as the count and percentage for categorical

variables. For comparison of the continuous variables, Shapiro test for normality was per-

formed, followed by either t-test (two groups) or one way ANOVA (more than two groups) in

case of normal distribution. If data was not normally distributed, we performed Kruskal Wallis

test. If there were more than two groups, posthoc Bonferroni correction was performed. Con-

tinuous variables were reported as mean ± standard deviation (SD) for normal distribution or

median ± interquartile range (IQR) for non-normal distribution. Discrete variables were com-

pared using Fisher’s exact test.

We used a multivariable linear regression model (mLRM) in a step-wise forward

approach, corrected for age, BMI and sex, to investigate the relationship of functional LA

parameters with following clinical parameters: AF type, AFBS, EHRA score, CHA2DS2VASc,

diagnosis of HT, diabetes, HF, renal failure, and LVEF. Parameters with p-value < 0.1

were considered for the next step in the forward approach. Results of the univariable linear

regression models (uLRM) are included in the Supplemental Material. Statistical analyses

were performed using SPSS (IBM, USA) and a p-value < 0.05 was considered statistically

significant.

Results

Study cohort

We finally analyzed 102 patients with automatically calculated LAEF_total, LAEF_active and

LAEF_passive. The segmentation algorithm failed in three patients, in nine patients not all

fiducial points could be identified due to multiple extra-systoles during MRI acquisition (Fig

3). The baseline characteristics can be found in Table 1.

Association of functional parameters with stroke risk based on

CHA2DS2VASc

The three functional parameters LAEF_total, LAEF_active, and LAEF_passive were all signifi-

cantly lower for increased stroke risk (CHA2DS2VASc�2; p<0.001, p = 0.002 and p<0.001,

respectively; Fig 4, Table 2). This was based upon significant increases in minimum LAV

parameters (LAV_min, LAV_preA, LAVi_min, LAVi_preA). A detailed CHA2DS2VASc com-

parison for all categories can be found in the S1 Table.

Association of functional parameters with severity of atrial fibrillation

burden

LAEF_total and LAEF_active significantly decreased with increase of AFBS (p = 0.002 and

p = 0.003, respectively) (Table 3). For LAEF_total, a posthoc test revealed significant differ-

ences between AF Burden categories 1 vs. 3 (p = 0.007), 1 vs. 4 (p = 0.04), 2 vs. 3 (p = 0.04),

and 2 vs. 4 (p = 0.007). For LAEF_active, significant differences were found between AF Bur-

den categories 1 vs. 3 (p = 0.02), 1 vs. 4 (p = 0.01), and 2 vs. 4 (p = 0.005) (Fig 5). LAEF_passive

was not significantly different between groups. This was mainly driven by significant increases
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of LAV_min, LAVi_min and LAVi_preA when AF Burden increase (p<0.001, p<0.001,

p = 0.01, respectively), whereas the maximum LAV parameters did not show significant

differences.

Association of functional parameters with symptom severity & atrial

fibrillation type

No significant differences was observed between EHRA score or AF type (paroxysmal or per-

sistent AF) and any of the LA parameters (S2 and S3 Tables).

Fig 3. Study cohort flowchart. � We performed an additional comprehensive analysis of all patients independent from

rhythm status during MRI (total n = 151, study cohort (n = 102) and patients with AF during MRI (n = 49)). However,

assessment of active LA contraction was not possible in this cohort.

https://doi.org/10.1371/journal.pone.0272011.g003
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Table 1. Baseline data.

n = 102

Age [years] 60.8±8.9

Sex, female 18 (17.6%)

BMI [kg/m2] 26.8±4.0

BSA [m2] 2.02±0.21

Type AF

Paroxysmal 73 (71.6%)

Persistent 29 (28.4%)

CV risk factors

Arterial hypertension 55 (53.9%)

Heart failure 7 (6.9%)

Diabetes 7 (6.9%)

Renal failure 8 (7.8%)

Myocardial infarction 3 (2.9%)

Stroke 7 (6.9%)

Smoking status

Never 41 (40.2%)

Active 11 (10.8%)

Former 50 (49.0%)

CHA2DS2VASc

0 23 (22.5%)

1 31 (30.4%)

2 29 (28.4%)

3 11 (10.8%)

4 6 (5.9%)

5 1 (1.0%)

6 0

CHA2DS2VASc

Low stroke risk (CHA2DS2VASc� 1) 55 (53.9%)

Increased stroke risk (CHA2DS2VASc� 2) 47 (46.1%)

EHRA score

I 8 (8%)

II 57 (56%)

III 30 (29%)

IV 1 (1%)

AF Burden score (AFBS)

1 8 (7.8%)

2 65 (63.7%)

3 23 (22.5%)

4 5 (4.9%)

LA parameters

LAV_max [ml] 102.5±34.2

LAV_min [ml] 54.3±28.8

LAV_preA [ml] 80.8±30.9

LAV_min2 [ml] 76.3±30.5

LAVi_max [ml/m2] 50.9 ± 16.1

LAVi_min [ml/m2] 27.0 ± 14.3

LAVi_preA [ml/m2] 40.1±14.7

(Continued)
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Prediction of functional left atrial parameters

Multivariable linear regression models were computed for total, active and passive LAEF in

relation to the classification of AF based (stroke risk (CHA2DS2VASc score), symptom severity

Table 1. (Continued)

n = 102

LAVi_min2 [ml/m2] 37.9±14.8

LAEF_total [%] 48.6±12.1

LAEF_active [%] 35.2±12.2

LAEF_passive [%] 21.7±7.9

LVEF [%] 57.4±8.0

https://doi.org/10.1371/journal.pone.0272011.t001

Fig 4. LA functional parameters and stroke risk based on CHA2DS2VASc. LAEF_total, LAEF_active and LAEF_passive in relation to low and

increased stroke risk (based on CHA2DS2VASc score of� 1 or� 2). All three parameters were significantly lower in the group with increased stroke

risk based on the CHA2DS2VASc. LAEF–left atrial emptying fraction.

https://doi.org/10.1371/journal.pone.0272011.g004
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(EHRA score), severity of AF Burden (type of AF and AFBS)) and CV risk factors. The results

from univariable LRM can be found in the S4–S6 Tables.

Total, active and passive LAEF and AF risk factors. The mLRM was corrected for age,

sex, BMI and showed that LAEF_total decreased per year of age by -0.49% (95%CI: -0.71,

-0.27, p<0.001), in the presence of HF by -14.23% (95%CI: -23.82, -4.64, p = 0.004) and diag-

nosis of HT by -5.51% (95%CI: -9.80, -1.23), p = 0.01) (Table 4); excluded parameters can be

found in the S7–S9 Tables.

The corrected mLRM for LAEF_active showed a decrease per year of age by -0.32% (95%

CI: -0.58, -0.05, p = 0.02), for each increase in AFBS category by -4.20% (95%CI: -7.88, -0.53,

p = 0.026) and in the presence of HF by -12.12% (95% CI: -23.61, -0.63, p = 0.039) (Table 4).

The significance of CHA2DS2VASc, quality of life, renal failure, HT and LVEF in the uLRM

vanished in the multivariable approach (see Supplemental Material).

In contrast, the model for LAEF_passive only included a decrease by -0.27% (95%CI: -0.45,

-0.09), p = 0.003) per year of age and an increase by 0.29% (95%CI: 0.06, 0.53), p = 0.014) per

each percent of LVEF (Table 4). The effects of CHA2DS2VASc, HF and HT in the univariable

models did not prevail in the multivariable model.

Table 2. Functional associations with low and increased stroke risk based on CHA2DS2VASc.

CHA2DS2VASc based stroke risk

Stroke risk [patients] Low (CHA2DS2VASc� 1) [55] Increased (CHA2DS2VASc� 2) [47] p value

LAV_max [ml], mean ± SD 99.3 ± 34.6 106.4 ± 33.6 0.30

LAV_min [ml], median ± IQR 42.9 ± 22.7 57.2 ± 34.7 0.004

LAV_preA [ml], median ± IQR 70.7 ± 33.2 83.0 ± 30.6 0.01

LAV_min2 [ml], median ± IQR 64.7 ± 28.8 81.4 ± 32.2 0.003

LAVi_max [ml/m2], mean ± SD 48.2 ± 14.4 54.1 ± 17.4 0.06

LAVi_min [ml/m2], median ± IQR 22.8 ± 9.1 31.9 ± 17.5 0.002

LAVi_preA [ml/m2], median ± IQR 35.5 ± 12.2 43.6 ± 16.7 0.005

LAVi_min2 [ml/m2], median ± IQR 32.1 ± 12.8 40.7 ± 17.7 0.001

LAEF_total [%], median ± IQR 54.4 ± 11.4 45.8 ± 13.2 <0.001

LAEF_active [%], median ± IQR 37.8 ± 11.7 30.5 ± 15.6 0.002

LAEF_passive [%], median ± IQR 24.5 ± 9.1 18.5 ± 7.3 <0.001

LAEF–Left atrial emptying fraction, LAV–Left atrial volume, LAVi–Left atrial volume index

https://doi.org/10.1371/journal.pone.0272011.t002

Table 3. Functional associations with AF Burden score.

AF Burden score [patients] 1 [8] 2 [65] 3 [23] 4 [5] p value

LAV_max [ml], median ± IQR 84.5 ± 35.6 103.5 ± 38.8 97.8 ± 44.6 117.9 ± 24.4 0.36

LAV_min [ml], mean ± SD 37.9 ± 14.3 52.3 ± 20.4 56.4 ± 24.9 99.3 ± 85.6 <0.001

LAV_preA [ml], median ± IQR 69.2 ± 32.9 79.5 ± 32.3 76.3 ± 47.7 98.8 ± 42.9 0.42

LAV_min2 [ml], median ± IQR 60.9 ± 32.8 74.9 ± 33.0 69.3 ± 43.3 96.8 ± 46.4 0.45

LAVi_max [ml/m2], median ± IQR 41.1 ± 10.7 50.9 ± 19.6 45.2 ± 22.0 55.8 ± 22.8 0.20

LAVi_min [ml/m2], mean ± SD 18.9 ± 5.9 25.7 ± 9.6 28.5 ± 12.5 51.1 ± 42.7 <0.001

LAVi_preA [ml/m2], mean ± SD 33.3 ± 6.2 39.4 ± 11.8 40.4 ± 12.5 59.6 ± 42.0 0.01

LAVi_min2 [ml/m2], mean ± SD 31.0 ± 7.2 37.0 ± 11.4 38.8 ± 12.4 58.1 ± 43.2 0.009

LAEF_total [%], mean ± SD 57.2 ± 10.3 49.8 ± 10.3 44.5 ± 10.9 34.9 ± 24.6 0.002

LAEF_active [%], mean ± SD 44.0 ± 11.0 36.2 ± 11.0 31.7 ± 11.8 20.8 ± 17.5 0.003

LAEF_passive [%], mean ± SD 24.2 ± 5.6 22.3 ± 7.8 18.7 ± 5.9 20.3 ± 15.4 0.19

LAEF–Left atrial emptying fraction, LAV–Left atrial volume, LAVi–Left atrial volume index

https://doi.org/10.1371/journal.pone.0272011.t003
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We note that the classical differentiation between paroxysmal and persistent AF (AF type)

and EHRA score did not have an impact on any parameter for both uLRM or mLRM.

Comprehensive analysis

The baseline characteristics from the comprehensive analysis of the entire cohort (n = 151

patients), including the patients in AF during MR acquisition, can be found in the Supplemen-

tal Material. Due to the 49 patients with AF during the MRI acquisition without active LA con-

traction, we could only investigate LAV_max, LAV_min, LAEF_total as well as LAVi_max

and LAVi_min in all patients. In this cohort, we observed more patients with persistent AF

and also overall higher AFBS (see S10 Table). AFBS and stroke risk based on CHA2DS2VASc

were lower in patients with lower LAV_min (p<0.001, p = 0.01; respectively), lower LAVi_-

min (p<0.001, p<0.001; respectively) and higher total LAEF (p<0.001, p<0.001; respectively);

Fig 5. LA functional parameters and AFBS. LAEF_total, LAEF_active and LAEF_passive in relation to the AFBS categories. Both LAEF_total

and LAEF_active significantly decreased with AFBS increase while LAEF_passive did not show significant differences. LAEF–left atrial emptying

fraction. AFBS–AF Burden score. Post hoc tests: � = p<0.05, �� = p<0.01.

https://doi.org/10.1371/journal.pone.0272011.g005
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S11 and S12 Tables. On opposite, LAV_max was not significantly different for AFBS and

CHA2DS2VASc-based stroke risk. We also observed that patients with persistent AF had

higher minimum and maximum volumes (both indexed and absolute) and a lower total LAEF;

S13 Table. Lastly, EHRA score did not show significant differences; S14 Table.

Discussion

In this study, we investigated LA functional parameters using a fully-automatic, 3D-based vol-

umetric assessment of the whole cardiac cycle of the LA with a comprehensive clinical AF clas-

sification scheme. The main observations of our study were:

1. The application of the previously validated, CNN-based segmentation algorithm was feasi-

ble for 3D segmentation in all except three patients. Overall, automatic detection of fiducial

points from the resulting volume-time curve was possible in 102/114 patients (92%), allow-

ing to automatically differentiate between total, active and passive LAEF.

2. We identified strong association of the LA function with AFBS and stroke risk based on

CHA2DS2VASc. In detail, LAEF_total and LAEF_active both showed a significant decline

with increasing AFBS. In addition, patients with a lower total, active and passive LAEF pre-

sented with an increased stroke risk according to the CHA2DS2VASc. For all those associa-

tions, the increase of LAV_min rather than an increase of LAV_max (for LAEF_total) or

LAV_preA (for LAEF_active) seemed to be the underlying mechanism. Results from the

entire cohort including patients in AF during the MRI and therefore without active LA con-

traction did not differ substantially from these observations.

3. Multivariable regression analyses, corrected for age, BMI and sex, revealed relationships

between total, active and passive LAEF with established AF risk factors. Especially higher

age was an independent predictor of a reduction of all three LAEF parameters in our AF

Table 4. Multivariable linear regression analyses for predicting factors.

Parameter Variable B 95% CI P value

Total LAEF (Intercept) 75.98 57.27, 94.69 <0.001

Age -0.49 -0.71, -0.27 <0.001

Male Sex 3.79 -1.62, 9.19 0.17

BMI -0.01 -0.53, 0.51 0.96

Heart failure -14.23 -23.82, -4.64 0.004

R2 adjusted: 0.32 Arterial hypertension -5.51 -9.80, -1.23 0.01

Active LAEF (Intercept) 61.82 39.43, 84.21 <0.001

Age -0.32 -0.58, -0.05 0.02

Male Sex 2.80 -3.40, 8.99 0.37

BMI 0.02 -0.55, 0.58 0.96

AF Burden -4.20 -7.88, -0.53 0.026

R2 adjusted: 0.22 Heart failure -12.12 -23.61, -0.63 0.039

Passive LAEF (Intercept) 18.10 -3.52, 39.72 0.10

Age -0.27 -0.45, -0.09 0.003

Male Sex 2.28 -2.01, 6.57 0.29

BMI 0.05 -0.34, 0.45 0.78

R2 adjusted: 0.14 LVEF 0.29 0.06, 0.53 0.014

95% CI– 95% Confidence interval, AF–Atrial fibrillation, BMI–Body mass index, LAEF–left atrial emptying fraction, LVEF–Left ventricular ejection fraction.

https://doi.org/10.1371/journal.pone.0272011.t004
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cohort. In addition, a higher AFBS was an independent predictor of reduced LAEF_active,

HT was an independent predictor of reduced LAEF_total, and HF independently predicted

reduced active and total LAEF.

Applicability of the approach

LA size measured as maximum diameter in parasternal long axis by echocardiography at ven-

tricular end-systole is an established parameter and was identified as predictor for AF in the

Framingham Study [28]. For LAV assessment, superiority of cMRI over echocardiography was

shown in the past while other techniques such as 3D mapping system also allow LA volumetry

[29–31]. The vast majority of cMRI studies, however, used biplanar-based calculation for volu-

metric analysis of the LA with a focus on maximum (indexed) volume [16, 17, 32, 33]. Longer

acquisition times for 3D coverage of the LA and the time-consuming manual LA segmentation

might explain the limited number of cMRI studies analyzing LA function based on 3D datasets

in the past [29, 34, 35]. Recently, there were reports of AI tools segmenting the LA on CINE

series for biplane or short axis-based assessment but not for oblique-axial orientation [36–38].

To overcome this limitation, we recently validated a CNN-based algorithm for LA segmenta-

tion over the whole cardiac cycle. This algorithm has two elements, one for biplane-based LA

segmentation and one for 3D-based LA segmentation on oblique-axial CINE series [21]; the

latter was used in this study. Volume-time curves were generated from the segmentations and

characteristic fiducial points automatically identified, which was possible in 102 patients. The

reason for failed identification of fiducial points were rhythm irregularities (numerous extra-

systoles) during image acquisition. Real-time CINE imaging could generally be an option to

overcome arrhythmias, however, these were not acquired in this study. Due to low image reso-

lution, volumetric assessment and therefore LAEF assessment could be compromised by real-

time imaging.

Overall, automatic calculation of LAEF_total, LAEF_active and LAEF_passive could be

achieved in 102 patients with sinus-rhythm during cMRI from a standard clinical protocol.

This showed applicability of our comprehensive approach and represents an example of a fully

automated, DL-supported workflow supporting a complex, cMRI-based analysis. However, in

patients with AF during MRI acquisition, assessment of LAEF_active is not possible. Instead,

our comprehensive analysis suggested that LAEF_total might serve as an alternative biomarker

in this cohort.

LA volumes and LAEF as measures for LA size and function and their

clinical implications

Single time point-based analysis of LA volume is common in clinical practice since LA

enlargement was linked to multiple CV diseases [39]. However, the potential superiority of

LAEF as a functional parameter over a static LAV alone was proposed by Hoit who linked it to

the importance of minimum LAV [39]. LAEF combines distinct measures of LAV_max,

LAV_min and/or LAV_preA in one parameter and, therefore, strengthens the advantage of

CINE analysis over single time point assessment. LAEF was already associated with silent

strokes, HF and cardiomyopathies [15, 32, 33]. In patients with diagnosis of AF, Sievers et al.

reported a mean total LAEF of 49.8% (in sinus rhythm) based on 3D assessment, respectively

[34]; these results match our findings well (48.6%). Wandelt et al. performed manual 3D seg-

mentations based on axial CINE series in an AF patient cohort. The reported mean values for

LAEF_total, LAEF_active and LAEF_passive of 47.9%, 35.6% and 19.2%, respectively, were

similar to our results (48.6%, 35.2% and 21.7%, respectively) [40].

PLOS ONE Automated functional analysis of left atrium in 3D

PLOS ONE | https://doi.org/10.1371/journal.pone.0272011 August 15, 2022 13 / 19

https://doi.org/10.1371/journal.pone.0272011


LA function and AF burden. AF Burden is an important parameter to assess and classify

AF patients [14]. In addition to the categorization in paroxysmal and persistent AF, we

included AFBS, which characterizes AF Burden in more detail by combining frequency and

duration of AF episodes as well as the number of cardioversions. These characteristics proved

to be able to predict AF recurrence after first and repeated PVI better than the classic AF char-

acterization [27]. In line with this observation, the AFBS, but not the conventional classifica-

tion in paroxysmal and persistent AF, showed a significant relationship to active and total

LAEF in this study. Accordingly, mLRM results showed a significant reduction of LAEF_active

by -4.2% with each increase of AFBS category. These results were driven by a bigger difference

of minimum volume rather than LAV_max for LAEF_total or LAV_preA for LAEF_active.

The correlation of LAEF_active reduction with AFBS increase might be explained by the fact

that a “healthier” (less remodeled) LA was able to actively pump more blood from the LA into

the left ventricle at the end of ventricular diastole, resulting in a lower minimum LA volume.

Other studies observed associations of decreased LAEF_active with non-obstructive, hypertro-

phic cardiomyopathy prior to LA enlargement and adverse effects and death in hypertensive

patients [15, 41]. Our data suggested that LAEF_total and LAEF_active might play in addition

an important role in assessment of AF patients, at least if they are in sinus rhythm during MRI.

LA function and stroke risk based on CHA2DS2VASc. Patients with AF suffer a 5-fold

increased risk of stroke caused by thrombus formations in the LA and LA appendage [11]. The

CHA2DS2VASc score as a measure of the stroke risk in AF patients showed another important

association with LA function in our study: In patients with an increased risk for stroke (based

on a CHA2DS2VASc� 2), total, active and passive LAEF were significantly lower compared

to low-risk patients (CHA2DS2VASc� 1). This indicated that a reduced LA function was asso-

ciated with an increased risk for stroke in AF patients. In fact, all 7 patients with a reported

stroke in our cohort had a CHA2DS2VASc� 2. This is in accordance with the current litera-

ture where a reduction of LAEF_total was linked to cerebrovascular events or in patients suf-

fering a stroke [33, 42]. In accordance with our observation, Leung et al. stated that LA

function could provide additional risk stratification for stroke in patient with a high CHA2DS2-

VASc score of�2 [43].

LA function and other AF risk factors. In a separate analysis, we furthermore identified

significant relationships between established AF risk factors and the three LAEF parameters

(LAEF_total, LAEF_active, LAEF_passive). In detail, the mLRM (corrected for age, BMI and

sex), revealed a statistically significant, negative correlation of age with all three LAEF parame-

ters. This is in accordance to the known importance of age as a risk factor for AF [44]. Arterial

hypertension and HF which are other known, major AF risk factors, were also independent pre-

dictors of reduced total and active LAEF [39, 41]. Opposite, LVEF was (besides age) the only

parameter to independently predictor a higher LAEF_passive. This in line with the fact that

LAEF_passive is mainly determined by LV functionality [39, 45]. Of note, LAEF_passive cannot

accurately assess the conduit function of the LA because blood can pass through the LA directly

from the pulmonary veins without changing the current LA volume [39]. In summary, age, HT,

HF and to a certain amount LVEF, are relevant, independent predictors of the LA function.

Limitations

This was a single-center, retrospectively analyzed study from a prospective cohort, therefore

generalizability of our results might be limited. AFBS is partially a subjective score, patients

without or with milder symptoms could be underrepresented.

When we planned this study, we focused on LA volumes assessment in 3D. Therefore, we

only have oblique-axial CINE series available in this cohort and could not compare our
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parameters to biplane assessment of LA function which was a tradeoff to allow for 3D image

acquisition.

The applied, previously established CNN for LA segmentation was built in-house on imag-

ing data from one vendor. While openly accessible, the transferability on imaging studies from

other institutions cannot be guaranteed.

We investigated only patients whose volume-time curves had all fiducial points available.

This restricted the generalizability of the results to patients in SR at the time of cMRI which

might have caused a bias regarding patient selection, for example this could have limited the

number of patients with persistent AF (28% of all patients). To address this limitation, we per-

formed the comprehensive analysis of the entire cohort, including patients with AF during the

acquisition. Furthermore, we investigated the risk for stroke based on the CHA2DS2VASc and

not based on the clinical event of a stroke. The CHA2DS2VASc was also not homogenously

distributed in our rather young patient cohort.

We did not perform continuous rhythm monitoring before the MRI; therefore, a reduced

LA function might as well be a result of LA stunning due to previous spontaneous termination

of AF. Furthermore, short paroxysmal episodes of AF could have happened during MRI and

could have led to a missing atrial contraction, resulting in exclusion of these patients. Finally,

an adjustment for multiple testing was not performed due to the exploratory nature of the

comparison.

Conclusions

Our study showed that the fully-automatic characterization of LA function from 3D-based

CINE cMRI is feasible in a clinical cohort of patients with diagnosis of AF. It revealed signifi-

cant associations between LA functional parameters, especially active LAEF, with increased

stroke risk (based on the CHA2DS2VASc score) and the severity of the AF Burden. This indi-

cates potential usefulness of active LAEF as an imaging biomarker, though its effect on clinical

endpoints such as recurrence of AF, hospitalization, stroke, or mortality, requires evaluation

in further studies.
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