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Abstract

Background: Dengue is endemic to the rural province of Kamphaeng Phet, Northern Thailand. A decade of prospective
cohort studies has provided important insights into the dengue viruses and their generated disease. However, as elsewhere,
spatial dynamics of the pathogen remain poorly understood. In particular, the spatial scale of transmission and the scale of
clustering are poorly characterized. This information is critical for effective deployment of spatially targeted interventions
and for understanding the mechanisms that drive the dispersal of the virus.

Methodology/Principal Findings: We geocoded the home locations of 4,768 confirmed dengue cases admitted to the main
hospital in Kamphaeng Phet province between 1994 and 2008. We used the phi clustering statistic to characterize short-
term spatial dependence between cases. Further, to see if clustering of cases led to similar temporal patterns of disease
across villages, we calculated the correlation in the long-term epidemic curves between communities. We found that cases
were 2.9 times (95% confidence interval 2.7–3.2) more likely to live in the same village and be infected within the same
month than expected given the underlying spatial and temporal distribution of cases. This fell to 1.4 times (1.2–1.7) for
individuals living in villages 1 km apart. Significant clustering was observed up to 5 km. We found a steadily decreasing
trend in the correlation in epidemics curves by distance: communities separated by up to 5 km had a mean correlation of
0.28 falling to 0.16 for communities separated between 20 km and 25 km. A potential explanation for these patterns is a
role for human movement in spreading the pathogen between communities. Gravity style models, which attempt to
capture population movement, outperformed competing models in describing the observed correlations.

Conclusions: There exists significant short-term clustering of cases within individual villages. Effective spatially and
temporally targeted interventions deployed within villages may target ongoing transmission and reduce infection risk.
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Introduction

Dengue remains a major public health concern throughout

global tropical and subtropical regions. An estimated 390 million

people are infected by the mosquito-borne virus each year, of

which 96 million develop symptomatic disease [1]. Thailand, like

most countries in Southeast Asia, has experienced endemic dengue

circulation of all four serotypes for decades [2,3]. An effective

dengue vaccine remains elusive and intervention measures will

continue to rely on mosquito control for the foreseeable future.

These efforts include the detection and removal of potential

oviposition sites, the spraying of insecticides, and potentially the

future releases of Wolbachia-infected mosquitoes that have been

shown to reduce the mosquitoes’ ability to transmit dengue [4].

Effective use of these measures requires a good understanding of

the spatial distribution of cases. Of particular use is an

understanding of where other cases are likely to be found on

detection of an index case. Characterizing the spatial dependence

between dengue cases can also provide insight into potential

mechanisms of disease spread.

The home locations of individuals hospitalized with dengue in

Bangkok have been shown to exhibit significant spatial depen-

dence at distances of around a kilometer [5]. Such spatial structure

suggests focal transmission events are driving viral dispersal in this
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large, super-urban population. The situation in rural areas, which

make up the majority of the country, may be markedly different.

Phylogenetic studies have shown widespread genetic and serotype

diversity across the rural Thai province of Kamphaeng Phet with

some clustering of lineages within villages [6,7]. In addition, cluster

studies in the same region detected infected individuals within 15

days of an index case at distances of 100 m within villages [8,9].

However, the extent at which spatial dependence is observed in

these areas is not known. Unlike continuously inhabited urban

centers such as Bangkok, rural communities in Thailand tend to be

separated by wide expanses of uninhabited farmland or forests. The

distance between neighboring rural communities is typically far

beyond the short flight range of the main dengue vector, Aedes
aegypti [10]. For sustained transmission to occur between rural

communities, movement of infected individuals is likely necessary. If

human movement between neighboring communities were key to

DENV dispersal in this region, we would expect short-term spatial

dependence between cases occurring at between-community scales.

Further, we would expect that patterns of population flows would

correlate with the spatio-temporal location of infections. It has

previously been shown that individuals tend to move to larger and

closer communities [11–13]. Such population flows can be captured

using gravity models that incorporate the size of populations and the

distance between them. Similar approaches have previously been

used in phylogenetic analyses to describe dengue viral flow in

Vietnam [14–16].

Appropriate data necessary to describe the spatio-temporal

patterns of dengue virus require, 1) a long time series, 2)

availability of address data for patients, and proper diagnostics

to confirm DENV infection. We used a unique dataset that meets

all of these criteria: the geocoded home addresses of 4,768

individuals who were admitted to the provincial hospital in

Kamphaeng Phet, Thailand over a fourteen-year period (1994–

2008). The objective of our study was to characterize the short-

term spatial dependence between dengue cases, to quantify the

correlation in the long-term epidemics experienced by different

communities and to explore the ability of human movement

models to describe the observed correlations.

Materials and Methods

Ethics statement
Data were collected from existing records without personal

data. The research components of this project received approval

from the Ethical Research Committee of Faculty of Public Health,

Mahidol University and U.S. Army Medical Research Materiel

Command (USAMC-AFRIMS Scientific Review Committee)

review and approval.

Study area and data collection
Kamphaeng Phet is a largely rural province in northern Thailand

with an area of 8,600 km2 (Figure 1) [17]. It had a population of

797,000 people in the 2010 census, mainly residing in villages. The

largest town in the province is the capital (Mueang Kamphaeng

Phet) with 30,000 inhabitants. The landscape is dominated by

rolling hills with large portions of the province covered by forests.

Since 1994, the Armed Forces Research Institute of Medical

Sciences (AFRIMS) has conducted dengue surveillance at Kam-

phaeng Phet Provincial Hospital (KPPPH). KPPH is the largest

hospital in Kamphaeng Phet, located in the capital, and such

receives referral cases as well as walk-in patients of all ages from

throughout the province. For each suspected dengue case, DENV

infection is confirmed using semi-nested RT-PCR and IgM/IgG

ELISA. In addition, home address information is collected on each

Figure 1. Spatial and temporal distribution of cases that
presented at KPPH (1994–2008). (A) Map of case locations. The
red circles mark the village clusters with at least 40 cases. (B) Total
number of cases per month.
doi:10.1371/journal.pntd.0003138.g001

Author Summary

Transmission of dengue virus has long been studied in
Kamphaeng Phet, Northern Thailand, but how cases are
related in time and space is still unclear, as is the role of
human movement in generating these patterns. Because
of these knowledge gaps, public health officials cannot
make educated decisions on how to target vector control
interventions and mechanisms of virus dispersal are not
known. We mapped the homes of dengue cases admitted
to the main hospital in the province capital from 1994–
2008 and quantified the spatial correlation between them.
We found an almost three times greater chance that cases
from the same month came from the same village than
expected, given the overall distribution of cases. Some
clustering was also observed between cases in neighbor-
ing villages with the overall epidemics experienced by
neighboring communities also more correlated than
epidemics in villages farther apart. The short-term cluster-
ing observed within individual villages implies that
effective spatially targeted interventions deployed within
villages may reduce infection risk. As the distance between
neighboring communities exceeds the typical flight range
of the dengue vector, these findings also suggest a
potential role for human movement in driving the wider
spread of the virus.
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patient. We geocoded the home address down to the village level for

each individual using detailed base maps of the region. Individuals

from the same village were given the same coordinates (Table 1).

Short-term spatial dependence between cases
To characterize the short-term spatial dependence between

rural dengue cases, we used the w d1,d2ð Þ statistic on all cases

occurring outside the provincial capital [5]. This statistic estimates

the probability of two cases occurring both within distances d1 and

d2 and within a month of each other relative to the independent

probabilities of observing two cases within d1 and d2 over the

entire time series and of observing two cases within a month of

each other over the whole study area. This approach therefore

measures the interaction in time and space of cases and has

previously been used to characterize the spatial dependence of

dengue cases in Bangkok [5].

w d1,d2ð Þ~ Pr j[Vi d1,d2,t1~0,t2~30ð Þð Þ
Pr j[Vi d1,d2,:ð Þð ÞPr j[Vi

:,t1~0,t2~30ð Þð Þ

Where Vi d1,d2,t1~0,t2~30ð Þ is the set of cases that occur both

within a 30 day period and within d1 and d2 of case i; Vi d1,d2,:ð Þ is

the set of cases within d1 and d2 of case i over the entire time series

and Vi
:,t1~0,t2~30ð Þ is the set of cases that occur within a 30

day period from case i over the study area. Importantly, as

underlying spatial biases such as population density and hospital

utilization rate differences impact both the numerator and the

denominator in the same way, they do not bias our estimates of

spatial dependence. We estimate w d1,d2ð Þ as follows (see [5] for

details):

ŵw d1,d2ð Þ~
PN

i~1 Vi d1,d2,t1~0,t2~30ð Þj j
� �

: PN
i~1 Vi

:,:ð Þj j
� �

PN
i~1 Vi d1,d2,:ð Þj j

� �
: PN

i~1 Vi
:,t1~0,t2~30ð Þj j

� �

We generated bootstrapped confidence intervals for ŵw d1,d2ð Þ by

resampling the cases with replacement 500 times. Ninety-five

percent confidence intervals were calculated from the 2.5% and

97.5% quantiles from the resulting distribution. Patterns of spatial

dependence may have changed over the time period of the study.

We therefore recalculated ŵw d1,d2ð Þ using cases from annual

incremental five-year windows from between 1994 and 2008.

Correlation between village clusters
We explored whether any short-term spatial dependence

between individual cases resulted in correlation in the epidemics

experienced by different communities. In this analysis, to avoid

excessively small numbers of cases per location over the entire time

period, villages were grouped into clusters by placing a grid over the

province. The distance between each grid point was 3 km and

villages were assigned to the closest grid point. Only village clusters

with at least 40 cases over the time series were used in the analysis.

The population of each village cluster was extracted from LandScan

data [18]. LandScan uses a combination of satellite imaging and

census data to construct population estimates throughout the world.

To make the epidemic curves between locations as comparable

as possible, we down-sampled each epidemic curve (to create

‘‘down-sampled curves’’) by randomly selecting 40 cases (the

minimum number of cases at within a village cluster) with

replacement from all the cases that occurred at that location. We

calculated the Pearson correlation coefficient between all pairs of

down-sampled curves. We calculated the loess curve of the

relationship between the Euclidean distance and correlation

between village cluster pairs. We repeated the down-sampling

process 500 times and reported the mean of the resulting

distribution. In addition, 95% confidence intervals for the loess

curves were estimated from the 2.5% and 97.5% quantiles.

We compared our estimate of the expected correlation by

distance separating communities to a theoretical complete-

synchrony scenario where there was no distance effect. The

complete-synchrony distribution was generated by randomly

reassigning the location of all cases, keeping the month in which

they occurred fixed. The total number of cases within any location

over the whole time series was unchanged. The resulting

distribution is that expected under a scenario of complete

synchrony of cases over the province. The mean and confidence

intervals for the complete-synchrony distribution were calculated

by repeating the process above in generating down-sampled

curves, repeating each resampling event 500 times.

There exist alternative measures of correlation. We explored the

consistency of our findings to a different measure: the Spearman

rank correlation coefficient. In this sensitivity analysis, we

recalculated the correlation coefficients for both the observed

data and the theoretical complete-synchrony scenario.

Gravity style model
Gravity models can be used to describe population flows [11–

13]. Here we used them to explore their ability to explain the

correlation in the epidemic curves between pairs of village clusters:

corr!
popa

1 popa
2

distb

where pop1 and pop2 are the populations of the two settlements

and dist is the Euclidean distance between the two settlements. By

log-transforming the equation, we can estimate the exponents a
and b through linear regression:

log corrð Þ~b0za log pop1 � pop2ð Þ{b log(dist)

We used Akaike’s Information Criterion (AIC) to compare the

performance of the gravity model to an intercept only model and a

univariate model incorporating Euclidean distance only (Table 2) [19].

All of the models were performed using the correlation coefficients

from each set of down-sampled curves (500 in all). We reported the

mean coefficient across all sets of down-sampled curves for each model.

In addition we calculated 95% confidence intervals using the 2.5% and

97.5% quantiles from the distribution of coefficient estimates.

All analyses were conducted in R 2.15.2 [20].

Results

Between 1994 and 2008, 4,768 dengue inpatients at KPPPH

were successfully geocoded (93% of all cases) (Table 1) coming

Table 1. Population characteristics.

Number of patients 5140

Mean age (years) 11.0

Hemorrhagic fever 3015 (59%)

Successfully geocoded 4768 (93%)

Population characteristics of patients admitted to Kamphaeng Phet Provincial
Hospital between 1994 and 2008.
doi:10.1371/journal.pntd.0003138.t001
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from 568 different villages (Figure 1). The provincial capital,

where KPPPH was located, had 732 cases (15% of all cases). The

mean age of cases was 11.0 years and 59% of cases suffered from

the more severe hemorrhagic form of the disease (Table 1). On

average, villages were separated by 1.4 km from their closest

neighboring village.

We characterized the short-term spatial dependence between

the home locations of the cases presenting at KPPH using the

w(d1, d2) statistic. We found that cases were 2.9 times more likely

(95% confidence interval of 2.7–3.2) to occur both within the same

community and to be infected within the same month of each

other than the independent probabilities of occurring within the

same community over the entire study period and occurring

within the same month across the entire province (Figure 2). This

fell to 1.4 times (1.2–1.7) for communities separated by between

0.5 km and 1.5 km and to 1.2 times (1.1–1.3) for communities

separated by 2.5 km 23.5 km. We observed significant spatial

dependence, albeit at low levels, at distances up to 5 km. However,

when we divided the entire time series into smaller subsets

covering five year time periods only, there was a clear trend in the

spatial extent of spatial dependence (Figure S1). Cases from the

1990s exhibit spatial dependence at larger distances than more

recent cases.

To explore whether short-term spatial dependence between

individual cases resulted in similar patterns of disease observed

between communities, we compared the correlation of the

epidemic curves between communities by the distance separating

them. We divided the villages into 24 village clusters with each

village cluster having at least 40 cases over the 14 years. The

locations of the village clusters are illustrated by the red dots in

Figure 1. The mean correlation in the monthly epidemic curves

between all village cluster pairs was 0.19, however, there existed

substantial structure in the correlation: village clusters that were

under 5 km apart had a mean correlation of 0.28 (95% confidence

interval of 0.25–0.31), whereas village clusters separated by

between 20 km and 25 km had a mean correlation of 0.16 (95%

confidence interval: 0.14–0.17) (Figure 3).

We estimated that a (theoretical) scenario of complete synchro-

ny across the entire province would result in a mean correlation of

0.32, irrespective of distance between village clusters (Figure 3).

This correlation was much less than 1.0 as there are fewer cases

than locations for many time points resulting in occasional small

peaks in the epidemic curves that were not matched across all

locations. The correlation under full synchrony and the observed

correlations looked very similar when the alternative Spearman

rank correlation coefficient was used instead (Figure S2).

We explored whether different statistical models could explain

the observed correlation between community-pairs (Table 2). We

found that univariate model incorporating only the Euclidean

distance separating communities explained only 7% of the

variance in the correlations (Table 3). Incorporating population

sizes (model 3) substantially improved the fit of the model although

the majority of the variance remained unexplained (R2 of 0.13).

Model 3 was also strongly favored by AIC [21].

Discussion

We have used a large dataset from a long time series with

geocoded addresses to explore the spatial patterns of dengue cases in

a rural region with endemic circulation. We have shown substantial

short-term clustering of dengue cases within communities, consis-

tent with transmission chains circulating at small spatial scales. We

observed a large drop in the clustering of cases from within-

community to between community scales. Our findings suggest that

upon discovering an infected individual, there is a significant risk

that other individuals from his or her village will also be infected.

The removal of mosquitoes in that community could potentially

reduce the risk of onward transmission.

While lower than within-community estimates, significant short-

term spatial dependence was nevertheless observed at inter-

settlement scales. This observation is consistent with viral move-

ments between neighboring communities, distances greater than the

flight range of the dengue vector [10]. These findings point to a

potential role for human movement in driving the spread of the

virus. This was further supported by a clear reduction in the

correlation in the epidemic curves between communities with

increasing spatial separation between them. Gravity models are

regularly used to describe human population flows [11–13]. Here a

related formulation of gravity models that describes the correlation

in the epidemic curves between communities was found to

outperform competing models. This finding supports previous

findings from gravity models fit to phylogeographic data from

southern Vietnam [15]. Human movement has also been suggested

to play a major role in the dengue epidemic in Iquitos, Peru [22].

Spatial correlation in ecological conditions (e.g., vector density) or in

behavioral factors (e.g. the use of screens on windows) between

communities may also explain these observations. We cannot

definitively differentiate between these potential explanations here.

Further research using information on the infecting pathogen, such

Table 2. Model summary.

Model 1 log corrð Þ~b0

Model 2 log corrð Þ~b0{b log Distanceð Þ
Model 3 log corrð Þ~b0za log pop1 � pop2ð Þ{b log Distanceð Þ

Overview of the different models used to estimate the correlation in the
epidemic curves between pairs of village clusters in Kamphaeng Phet.
doi:10.1371/journal.pntd.0003138.t002

Figure 2. Short-term spatial dependence between cases. Spatial
dependence between cases occurring within the same month as
measured through w(d1, d2) where d1 and d2 is the distance range
between cases. The spatial range (d22d1) was kept constant at 1 km
when d2 was greater than 1 km. When d2 was less than 1 km, d1 was
equal to zero. Estimates are plotted at the midpoint of the spatial
ranges.
doi:10.1371/journal.pntd.0003138.g002
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as serotype or genetic information could help disentangle these

competing hypotheses.

Our findings of focal patterns of disease support the results of

previous cluster studies in the region [8,9]. In addition, a previous

study in Bangkok observed short-term spatial dependence in the

homes of hospitalized cases between 1995 and 1999 at distances

up to around 1 km [5]. Overall, we observed spatial dependence

at larger distances than in the Bangkok study although when we

looked at 5-year subsets of the data, the spatial extent of clustering

was shorter among more recent cases. Higher levels of movement

across the province as a whole suppresses spatial dependence by

promoting the global mixing of the population. Our observations

are therefore consistent with increased movement across the

province in more recent years.

Mosquito control efforts are widely used throughout Southeast

Asia and center on the use of insecticides. Insecticide fogging has

been shown to temporarily reduce the number of mosquitoes in

any location [23]. However, the ability of insecticides to reduce the

risk of dengue infection remains unclear. Insecticide effectiveness

may be limited by an inability to reduce mosquito density

sufficiently or for a long enough period to prevent transmissions

from viremic individuals. This is supported by a lack of a clear

relationship between vector density and dengue transmission risk

[24]. In addition, spraying may be too spatially restricted, allowing

mosquitoes outside spray zones to rapidly repopulate fogged

spaces. Finally spraying is sometimes only deployed in outdoor

areas whereas Aedes aegypti mosquitoes tend to be found inside

households. Estimating the impact of insecticides on dengue

infection is difficult. The majority of dengue infections are not

detected and the appropriate characteristics of control populations

for any study are unclear. Nevertheless, further studies are needed

to provide a sound evidence base for the widespread use of these

measures.

The study has some limitations. The mean correlation between

the epidemics experienced by pairs of communities appeared low

(mean of 0.19). However, this was only slightly less than expected if

all cases at any time point were randomly distributed throughout

the communities (mean of 0.32), resulting in synchronous

epidemics. This low level of correlation occurs because of the

small numbers of cases (all the epidemic curves were down-

sampled to only 40 cases). Even in the scenario of complete

synchrony, tiny fluctuations were regularly present in the epidemic

curve in one location and not in the curves of others, deflating

correlation. These observations illustrate the problems in using the

absolute correlation as a marker of similarity when many time

points have no cases. Nevertheless, trends in correlation over

distance and comparisons to a distribution expected under

complete synchrony remain useful. Our data consists of cases that

presented at hospital only. The majority of infections, however,

result in asymptomatic or only mildly symptomatic. The spatial

dependence between these infections may be different. We could

only geocode individuals to the village level. We could not

therefore explore spatial differences within any village. Future

work using exact home locations may allow elucidation of finer

scale spatial dependence between case homes. Finally, the

Figure 3. Correlation between epidemic curves. Box plots of the
correlation between the epidemic curves of pairs of village clusters and
the distance between them (blue). Only village clusters with at least 40
cases were used in this analysis. Loess curves of the same data with 95%
confidence intervals generated through 500 bootstrapped resamples
(red). The grey line represents the correlation under the theoretical
scenario of complete synchrony in case distribution across the whole
district (generated by randomly reassigning the dates that cases occurred
between all the cases, keeping the total number at any time point fixed).
doi:10.1371/journal.pntd.0003138.g003

Table 3. Model coefficients.

Intercept Population Distance R2(a) AIC(a)

Model 1 0.16 (0.15–0.17) - 643

Model 2 0.37 (0.29–0.45) 1.38 (1.27–1.50) 0.07 627

Model 3 0.11 (0.06–0.16) 1.22 (1.11–1.34) 1.09 (1.07–1.12) 0.13 610

Exponentiated coefficients estimates and 95% confidence intervals for the models set out in Table 2.
(a)Mean from 500 resamples.
doi:10.1371/journal.pntd.0003138.t003
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relationship between gravity models fit to population flows directly

and those fit to the correlation in epidemic curves may be complex

and setting specific. Further work using simulated data may help

provide insight into their relationship.

In conclusion, cases of dengue appear highly spatially correlated

within villages in rural Thailand; however, neighboring commu-

nities nevertheless appear to observe correlated epidemics. Human

movement patterns may be a key driver of dengue dispersal in this

region. Future studies that incorporate movement diaries or GPS

trackers would help describe population flows and allow the

development of mechanistic models for the dispersal of dengue.

Supporting Information

Figure S1 Short-term spatial dependence between cases
within 5-year windows. Spatial dependence between cases

occurring within the same month as measured through w(d1, d2)
where d1 and d2 is the distance range between cases. Individual

estimates were generated using only cases from each 5-year

window. The spatial range (d22d1) was kept constant at 1 km

when d2 was greater than 1 km. When d2 was less than 1 km, d1

was equal to zero. Estimates are plotted at the midpoint of the

spatial ranges.

(PDF)

Figure S2 Correlation between epidemic curves using
Spearman Rank coefficients. Box plots of the correlation

between the epidemic curves of pairs of village clusters and the

distance between them as measured through Spearman Rank

coefficients (blue). Loess curves of the same data with 95%

confidence intervals generated through 500 bootstrapped resam-

ples (red). The grey line represents the correlation under the

theoretical scenario of complete synchrony in case distribution

across the whole district (generated by randomly reassigning the

dates that cases occurred between all the cases, keeping the total

number at any time point fixed).

(PDF)
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