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Abstract: Aquaporins (AQPs) are integral membrane proteins, which play an important role in water
homeostasis in the uterus. According to the literature, the expression of aquaporins in reproductive
structures depends on the local hormonal milieu. The current study investigated the effect of selected
PKA kinase inhibitor H89 and MAPK kinase inhibitor PD98059, on the expression of AQP1, 2, 5,
and 7, and steroid hormones (E2), progesterone (P4), and arachidonic acid (AA) in the porcine
endometrium on days 18–20 and 2–4 of the estrous cycle (the follicular phase where estrogen and
follicle-stimulating hormone (FSH) are secreted increasingly in preparation for estrus and the luteal
phase where the ovarian follicles begin the process of luteinization with the formation of the corpus
luteum and progesterone secretion, respectively). The luminal epithelial cells were incubated in vitro
in the presence of the aforementioned factors. The expression of mRNA was determined by the
quantitative real-time PCR technique. In general, in Experiment 1, steroid hormones significantly
increased expression of AQP1, 2, and 5 while arachidonic acid increased expression of AQP2 and
AQP7. On the other hand, MAPK kinase inhibitor significantly decreased the expression of AQP1
and 5. In Experiment 2, E2, P4, or AA combined with kinase inhibitors differentially affected on
AQPs expression. E2 in combination with PKA inhibitor significantly decreased expression of AQP1
but E2 or P4 combined with this inhibitor increased the expression of AQP5 and 7. On the contrary,
E2 with PD98059 significantly increased AQP5 and AQP7 expression. Progesterone in combination
with MAPK kinase inhibitor significantly downregulated the expression of AQP5 and upregulated
AQP7. Arachidonic acid mixed with H89 or PD98059 caused a decrease in the expression of AQP5
and an increase of AQP7. The obtained results indicate that estradiol, progesterone, and arachidonic
acid through PKA and MAPK signaling pathways regulate the expression of AQP1 and AQP5 in the
porcine luminal epithelial cells in the periovulatory period.

Keywords: aquaporins; gene expression; uterus; estrous cycle; pig

1. Introduction

The endometrium undergoes diverse cell proliferation, growth, and apoptosis cycles,
as a function of the estrous cycle and pregnancy. Sex hormones, mainly progesterone (P4)
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and estrogen (E2), are the key factors regulating these changes [1]. The uterine endometrium
of swine is comprised of luminal epithelial, glandular epithelial, and stromal cells. These
cells perceive and respond to their microenvironment, e.g., histotrophic, which is required
for the growth and development of the conceptus and the receptivity of the uterus to
implantation, forming the basis of endometrial homeostasis.

Aquaporins (AQPs) are considered to be important regulators of water homeostasis
for normal uterus function, participating in water movement at an intraluminal, interstitial,
and capillary level during the estrous cycle, implantation period, and parturition, creating
the proper fluid microenvironment in the uterus [2–4]. Since their discovery in the uterus
of mammals, they have been intensively studied, using molecular and pharmacological
methods [5–7]. To date, eleven AQPs were found in the uterus (Table 1). The past few
years have also seen a renewed interest in AQPs in different pathologies in the female
reproductive system [8]. While it is known that some of the uterine AQP genes and proteins
are regulated by E2 and/or P4 or other factors, [9–11] much remains to be learned about
how different AQPs can be specifically regulated.

Several studies have been published on phosphorylation-dependent regulation of
mammalian aquaporins [12–15]. A recent review of the literature on this subject has
revealed phosphorylation as a ubiquitous mechanism in aquaporin regulation by both
regulatory processes [16]. It has now been proposed that signaling pathways play a crucial
role in the regulation of fluid homeostasis in the uterus. Researchers draw our attention to
AMP-dependent protein (PKA) and mitogen-activated protein kinases (MAPK) [17–19].
PKA plays a role in the transcriptional control of genes, maintenance and control of several
metabolic processes, and DNA replication [20,21]. N-[2-(p-bromocinnamylamino) ethyl]-5-
isoquinolinesulfonamide (H89) is frequently used to block signaling pathways in studies
concerning cellular regulation [22]. In turn, the MAPK signal transduction pathway plays
an essential role in the transduction of extracellular stimulating signals and induction of
cellular responses, such as proliferation, transformation, differentiation, and apoptosis.
The MAPK signal transduction pathway combines extracellular signal-regulated kinase
(ERK) [23]. PD98059 prevents the phosphorylation and activation of MEK1 and MEK2 by
upstream activators such as c-Raf, and then inhibits the ERK pathway [24].

In our recent study, we demonstrated the endometrial and myometrial expression of
AQP1, 5, and 9 during different phases of the estrous cycle and pregnancy, which indicates
that steroid hormones, arachidonic acid (AA), oxytocin (OT), forskolin (FSK), and cyclic
adenosine monophosphate (cAMP) participate in controlling the distribution of AQP1 and
5 in the uterus [11,25–27]. Thus, following our previous results, the aim of this study was
to (1) examine the gene expression of AQP1, 2, 5, and 7 in the porcine uterine epithelial
cells during the periovulatory period; (2) determine the effect of E2, P4, and AA on the
expression of studied AQPs in these cells; (3) find out whether the examined factors affect
the PKA and MAPK signaling pathways during the periovulatory period.

Table 1. Expression of aquaporin isoforms in uterus tissues.

Aquaporin
Isoforms Species Luminal

Epithelium
Glandular
Epithelium Stroma Endothelium Myometrium Articles

AQP1

Pig + + [25–30]

Queen + + + [31]

Mouse + + + + [9,32]

Rat + + [33]

AQP2

Pig + [30]

Queen + + [31]

Mouse + + + [9]

Human + + [34]
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Table 1. Cont.

Aquaporin
Isoforms Species Luminal

Epithelium
Glandular
Epithelium Stroma Endothelium Myometrium Articles

AQP3

Pig + [30]

Queen + + + [31]

Mouse + + [35]

AQP4
Pig + [30]

Mouse + [9]

AQP5

Pig + + + [25–30]

Mouse + + + + [9,32]

Rat + + [33]

AQP6 Pig + [30]

AQP7
Pig + [30]

Mouse + + [36]

AQP8
Pig + [30]

Queen + + [31]

AQP9
Pig + [28–30]

Rat + + [33]

AQP10 Pig + [30]

AQP11 Pig + [30]

2. Materials and Methods
2.1. Experimental Animals and Tissue Collection

All experiments were performed following the principles and procedures of the
Animal Ethics Committee (number 32/2012), University of Warmia and Mazury in Olsztyn,
Poland. Twenty crossbred gilts (Large White × Polish Landrace) of similar age, weight,
and genetic background from one commercial herd were used. Gilts that exhibited two
stages at the follicular phase (days 18–20; n = 10) and early luteal phase (days 2–4; n = 10) of
the estrous cycle were chosen to collect uterus tissue for two in vitro experiments. The gilts
were daily observed for estrus behavior in the presence of a boar. The day of onset of
the second estrus was marked as day 0 of the estrous cycle. The phase of the estrous
cycle was also confirmed based on the characteristic morphology of the ovaries [37]. After
slaughter, the pig reproductive tracts were put into ice-cold PBS with an antibiotic mix and
transported immediately to the laboratory.

2.2. Isolation of Uterine Luminal Epithelial Cells

The endometrial tissue was separated from the myometrium and digested using 0.2%
dispase (Sigma-Aldrich, St. Louis, MO, USA) in Hank’s balanced salt solution (pH 7.4;
Sigma-Aldrich, St. Louis, MO, USA) at room temperature for 60 min with continuous stir-
ring (37 ◦C). After this time, undigested tissue was removed by filtration through a 200 µm
mesh filter. The collected supernatant was mixed with M199 medium (Sigma-Aldrich,
St. Louis, MO, USA) with 5% bovine serum albumin (BSA; Sigma-Aldrich, St. Louis, MO,
USA) and centrifuged (15 ◦C, 1100 rpm, 10 min).

2.3. Cell Culture

From the supernatant, erythrocytes were removed by pipetting the precipitate with
red blood cell lysis (Sigma-Aldrich, St. Louis, MO, USA) by 20 s and then mixed with
M119 without phenol red with 5% BSA. The cell washes and centrifugation were repeated
two times. Luminal epithelial (LE) cells released after this digestion were pelleted by



Cells 2021, 10, 832 4 of 16

centrifugation. The cell suspension was washed with Medium 199 without phenol red
(Sigma-Aldrich, St. Louis, MO, USA) and counted. The next LE cells seeded onto the
12-wells plate (1 million cells in 1 mL medium) in M199 without phenol red medium supple-
mented with 2% BSA (Sigma-Aldrich, St. Louis, MO, USA), 10% dextran/charcoal-stripped
FBS (Sigma-Aldrich, St. Louis, MO, USA), and antibiotics (Sigma-Aldrich, St. Louis, MO,
USA). After 20 h preincubation, unattached cells were removed, and attached cells were
supplemented with fresh medium. The LE cells were cultured approximately for 72 h
when monolayers were estimated to be approximately 90% confluent. The culture medium
was changed every two days. Depending on the type of experiment, LE cells were cultured
separately in a twelve-well plate with factors E2, P4, AA, and kinases inhibitors H89 and
PD98059 (Experiments 1, 2) at 37 ◦C in a humidified atmosphere of 95% air: 5% CO2.
The doses of the agents were selected based on the following articles: estradiol 10−9 M,
progesterone 10−6 M, arachidonic acid 10−5 M [27], H89—inhibitor of PKA [38,39], and
PD98059—inhibitor of MAPK [23].

Experiment 1:

LE cells were further incubated for 24 h with the control medium (M199 supplemented
with 1% steroid-free FBS and antibiotics) and medium (M199 supplemented with 1%
steroid-free FBS and antibiotics) with E2, P4, AA, H89 (1 µmol, 10 µmol), PD98059 (1 µmol,
10 µmol), and incubated for 24 h.

Experiment 2:

LE cells were treated with control medium (M199 supplemented with 1% steroid-free
FBS and antibiotics) and medium (M199 supplemented with 1% steroid-free FBS and antibi-
otics) with mixed factors: E2 + H89 (1 µmol, 10 µmol), P4 + H89 1 µmol, P4 + H89—10 µmol,
AA + H89—1 µmol, AA + H89—10 µmol and E2 + PD98059—1 µmol, E2 + PD98059—
10 µmol, P4 + PD98059 (1 µmol, 10 µmol), AA + PD98059 (1 µmol, 10 µmol) and incubated
for 24 h.

All treatments were performed in triplicate in two separate experiments. After 24 h of
culture, LE cells were washed with PBS, treated with TRI Reagent® (Sigma-Aldrich) for
RNA extraction.

2.4. RNA Isolation

Total RNA was extracted, using the total RNA TRI Reagent® (Sigma-Aldrich, St. Louis,
MO, USA) according to the manufacturer’s protocol, from luminal epithelium cells. Total
RNA quality and quantity were determined with spectrophotometry (Infinite® 200 PRO
NanoQuant, Tecan, Switzerland).

2.5. cDNA Synthesis and Quantitative Real-Time Polymerase Chain Reaction Analysis

Total RNA samples were transcribed to cDNA using a TransScriba Kit (A&A Biotech-
nology, Gdansk, Poland). Real-time PCR was performed in triplicate for each sample using
a AriaMx Real-Time PCR System (Agilent Technologies) and SYBR®Green PCR Master Mix
(Life Technologies, Grand Island, NY, USA). Real-Time PCR reaction included 12.5 µL SYBR
Green PCR master mix, 1 µM forward and reverse primers each, and reverse-transcribed
cDNA (2 µL of diluted RT product) supplemented with water to a volume of 25 µL. The con-
ditions of the thermal cycling for each gene were as follows: initial denaturation for 10 min
at 95 ◦C, denaturation for 15 s at 95 ◦C, and primer annealing for 1 min at 60 ◦C. Specific
primers for AQP1, AQP2, AQP5, and AQP7 (Table 2) were designed with the PrimerQuest
Tool (Integrated DNA Technologies, Inc., Coralville, IA, USA) and their specificities were
confirmed by comparison of their sequences with the sequence of AQP1, AQP2, AQP5, and
AQP7 deposited in a database and calculation of the statistical significance of the match was
performed using the Basic Local Alignment Search Tool (BLAST). For the specificity control,
non-template controls and dissociation curve analysis of the amplified products were used
for each amplification. The specificity of the amplifications was further validated with
electrophoresis of the putative amplicons in a 2% agarose gel. Levels of gene expression
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were calculated using the ∆∆ Ct method and normalized using the geometrical means of
reference genes expression levels, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and
18S rRNA (Table 2).

Table 2. Forward and reverse primers sequences, amplicons length, and GeneBank accession numbers of genes used during
real-time PCR analysis.

Name of the Gene Primer Sequence Forward/Reverse Amplicon Length, bp Accession Number

Aquaporin 1 (Aqp1) 5′-CAGCGAGTTCAAGAAGAAG-3′

5′-GCGACACCTTCACGTTATC-3′ 161 NM_214454.1

Aquaporin 2 (Aqp2) 5′-AAACTCCACCTCCAACTCAC-3′

5′-CTCTCCGTCTCTTGCTCTTTC-3′ 107 XM_021090895.1

Aquaporin 5 (Aqp5) 5′-CTATGAGTCCGAGGAGGATT-3′

5′-GCTTCGCTGTCATCTGTT-3′ 147 NM_001110424.1

Aquaporin 7 (Aqp7) 5′-GTGCCATCATCTACTTGGTCTT-3′

5′-GTGGGCGAGACACAGATATTC-3′ 108 XM_013980184.2

Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH)

5′-GACCTCCACTACATGGTCTA-3′

5′-AAGATGGTGATGGCCTTTC-3′ 116 NM_001206359.1

18S ribosomal RNA
(18S rRNA)

5′-GGCTACCACATCCAAGGAAG-3′

5′-TCCAATGGATCCTCGCGGAA-3′ 149 AK393333.1

2.6. Statistical Analysis

Data are presented as means ± SEM from five different observations. Differences
between groups within each factor separately were analyzed by one-way ANOVA followed
by Dunnet’s post hoc test. Statistical analyses were performed using Statistica Software
(StatSoft, Hamburg, Germany). Values for p < 0.05 were considered statistically significant.

3. Results
3.1. The Effect of Estradiol, Progesterone, Arachidonic Acid, and Kinases Inhibitors (H89—PKA
Inhibitor, PD98059—MAPK Inhibitor) on Aquaporin 1, 2, 5, and 7 mRNA Expressions in the
Porcine Endometrial Luminal Epithelial Cells (Experiment 1)

The data from Experiment 1 are presented in Figure 1A,B, Figure 2A,B, Figure 3A,B
and Figure 4A,B. The summarized results of Experiment 1 are shown in Table 3. Estradiol
and P4 significantly increased and 10 µM of PD98059 decreased AQP1 mRNA expression
in the porcine uterine luminal epithelial cells on days 18–20 of the estrous cycle (Figure 1A)
(p < 0.05). On the early luteal phase (days 2–4) of the estrous cycle, P4 significantly in-
creased and PD98059 (1 µM and 10 µM) decreased expression of AQP1 mRNA in these
cells (Figure 1B) (p < 0.05). The mRNA expression of AQP2 in the porcine uterine luminal
epithelial cells on days 18–20 and days 2–4 of the estrous cycle was significantly upreg-
ulated by P4, AA (Figure 2A, p < 0.05) and E2, P4 as well as AA (Figure 2B, p < 0.05),
respectively. Progesterone significantly increased the expression of AQP5 mRNA in the
porcine luminal epithelial cells during the follicular phase of the estrous cycle (Figure 3A,
p < 0.05). Following treatment with E2 and PD98059 (1 µM), AQP5 mRNA expression
was significantly downregulated in the cells on the early luteal phase of the estrous cycle
(Figure 3B, p < 0.05). Treatment of these cells with AA caused a significant decrease in the
expression of AQP7 mRNA on days 2–4 of the estrous cycle (Figure 4B, p < 0.05).
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Figure 1. The influence of estradiol (10 nM), progesterone (10−6 M), arachidonic acid (10−5 M), and kinase inhibitors H89 (1 

µM, 10 µM) and PD98059 (1 µM, 10 µM) and mix of these factors on Aquaporin 1 mRNA expression (Experiment 1: (A,B), 

Experiment 2: (C,D)) in the porcine luminal epithelial cells from days 18–20 and 2–4 of the estrous cycle. The gene expres-

sion was determined by quantitative real-time PCR. Results are reported as the means ± S.E.M. (n = 5). Bars with different 

superscripts differ (p < 0.05) and are marked by (*). 

Figure 1. The influence of estradiol (10 nM), progesterone (10−6 M), arachidonic acid (10−5 M), and kinase inhibitors H89
(1 µM, 10 µM) and PD98059 (1 µM, 10 µM) and mix of these factors on Aquaporin 1 mRNA expression (Experiment 1:
(A,B), Experiment 2: (C,D)) in the porcine luminal epithelial cells from days 18–20 and 2–4 of the estrous cycle. The gene
expression was determined by quantitative real-time PCR. Results are reported as the means ± S.E.M. (n = 5). Bars with
different superscripts differ (p < 0.05) and are marked by (*).
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Figure 2. The influence of estradiol (10 nM), progesterone (10−6 M), arachidonic acid (10−5 M), and kinase inhibitors H89 (1 

µM, 10 µM) and PD98059 (1 µM, 10 µM) and mix of these factors on Aquaporin 2 mRNA expression (Experiment 1: (A,B), 

Experiment 2: (C,D)) in the porcine luminal epithelial cells from days 18–20 and 2–4 of the estrous cycle. The gene expres-

sion was determined by quantitative real-time PCR. Results are reported as the means ± S.E.M. (n = 5). Bars with different 
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Figure 2. The influence of estradiol (10 nM), progesterone (10−6 M), arachidonic acid (10−5 M), and kinase inhibitors H89
(1 µM, 10 µM) and PD98059 (1 µM, 10 µM) and mix of these factors on Aquaporin 2 mRNA expression (Experiment 1:
(A,B), Experiment 2: (C,D)) in the porcine luminal epithelial cells from days 18–20 and 2–4 of the estrous cycle. The gene
expression was determined by quantitative real-time PCR. Results are reported as the means ± S.E.M. (n = 5). Bars with
different superscripts differ (p < 0.05) and are marked by (*).
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Figure 3. The influence of estradiol (10 nM), progesterone (10−6 M), arachidonic acid (10−5 M), and kinase inhibitors H89 (1 

µM, 10 µM) and PD98059 (1 µM, 10 µM) and a mix of these factors on Aquaporin 5 mRNA expression (Experiment 1: (A,B), 

Experiment 2: (C,D)) in the porcine luminal epithelial cells from days 18–20 and 2–4 of the estrous cycle. The gene expres-

sion was determined by quantitative real-time PCR. Results are reported as the means ± S.E.M. (n = 5). Bars with different 

superscripts differ (p < 0.05) and are marked by (*), tendency (p < 0.1) and are marked by plus (+). 

Figure 3. The influence of estradiol (10 nM), progesterone (10−6 M), arachidonic acid (10−5 M), and kinase inhibitors H89
(1 µM, 10 µM) and PD98059 (1 µM, 10 µM) and a mix of these factors on Aquaporin 5 mRNA expression (Experiment 1:
(A,B), Experiment 2: (C,D)) in the porcine luminal epithelial cells from days 18–20 and 2–4 of the estrous cycle. The gene
expression was determined by quantitative real-time PCR. Results are reported as the means ± S.E.M. (n = 5). Bars with
different superscripts differ (p < 0.05) and are marked by (*), tendency (p < 0.1) and are marked by plus (+).
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Experiment 2: (C,D)) in the porcine luminal epithelial cells from days 18–20 and 2–4 of the estrous cycle. The gene expres-

sion was determined by quantitative real-time PCR. Results are reported as the means ± S.E.M. (n = 5). Bars with different 
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Table 3. A summary of the results from Experiment 1. 

Experiment 1 

 
AQP1 AQP2 AQP5 AQP7 

Days 18–20 Days 2–4 Days 18–20 Days 2–4 Days 18–20 Days 2–4 Days 18–20 Days 2–4 

E2 ↑ - - ↑ - ↓ - - 

P4 ↑ ↑ ↑ ↑ ↑ - - - 
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Figure 4. The influence of estradiol (10 nM), progesterone (10−6 M), arachidonic acid (10−5 M), and kinase inhibitors H89
(1 µM, 10 µM) and PD98059 (1 µM, 10 µM) and mix of these factors on Aquaporin 7 mRNA expression (Experiment 1:
(A,B), Experiment 2: (C,D)) in the porcine luminal epithelial cells from days 18–20 and 2–4 of the estrous cycle. The gene
expression was determined by quantitative real-time PCR. Results are reported as the means ± S.E.M. (n = 5). Bars with
different superscripts differ (p < 0.05) and are marked by (*).
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Table 3. A summary of the results from Experiment 1.

Experiment 1

AQP1 AQP2 AQP5 AQP7

Days 18–20 Days 2–4 Days 18–20 Days 2–4 Days 18–20 Days 2–4 Days 18–20 Days 2–4

E2 ↑ - - ↑ - ↓ - -

P4 ↑ ↑ ↑ ↑ ↑ - - -

AA - - ↑ ↑ - - - ↑
H89 1 µM - - - - - - - -

H89 10 µM - - - - - - - -

PD98059 1 µM - ↓ - - - ↓ - -

PD98059 10 µM ↓ ↓ - - - - - -

Note: ‘↑’ or ‘↓’ indicate the upregulation or downregulation of aquaporin genes expression.

3.2. The Effect of Estradiol, Progesterone, and Arachidonic Acid Combined with Kinases Inhibitors
(H89—PKA Inhibitor, PD98059—MAPK Inhibitor) on Aquaporin 1, 2, 5, and 7 mRNA
Expressions in the Porcine Endometrial Luminal Epithelial Cells (Experiment 2)

Data of Experiment 2 are presented in Figure 1C,D, Figure 2C,D, Figure 3C,D and
Figure 4C,D. The summarized results of Experiment 2 are shown in Table 4.

Table 4. A summary of the results from Experiment 2.

Experiment 2

AQP1 AQP2 AQP5 AQP7

Days 18–20 Days 2–4 Days 18–20 Days 2–4 Days 18–20 Days 2–4 Days 18–20 Days 2–4

E2 + H89 1 µM - ↓ - - - - - ↑
E2 + H89 10 µM ↓ ↓ - - ↑ - - ↑

E2 + PD98059 1 µM - - - - - - - ↑
E2 + PD98059 10 µM - - - - - ↑ - ↑

P4+ H89 1 µM - - - - - ↑ - -

P4+ H89 10 µM - - - - - - - -

P4+ PD98059 1 µM - - - - - - - ↑
P4 + PD98059 10 µM - - - - ↓ - - -

AA + H89 1 µM - - - - ↓ - ↑ -

AA + H89 10 µM - - - - ↓ - ↑ ↑
AA + PD98059 1 µM - - - - ↓ T - - ↑

AA + PD98059 10 µM - - - - ↓ ↓ - -

Note: ‘↑’ or ‘↓’ indicate the upregulation or downregulation of aquaporin genes expression. The ‘T’ letter means tendency.

Treatment of the porcine endometrial luminal epithelial cells with E2 combined with
PKA inhibitor (10 µM) significantly decreased expression of AQP1 mRNA during the
follicular phase of the estrous cycle (Figure 1C, p < 0.05). On the early luteal phase of the
estrous cycle, estradiol in combination with two doses of PKA inhibitor (1 µM or 10 µM)
significantly downregulated AQP1 mRNA expression in these cells (Figure 1D, p < 0.05).

The AQP2 mRNA expression did not significantly change after treatment with studied
factors (Figure 2C,D).

On days 18–20 of the estrous cycle, E2 with the addition of H89 inhibitor to the cells
had a significant stimulatory effect on AQP5 mRNA expression. After treatment with
progesterone and MAPK kinase inhibitor on dose 10 µM and arachidonic acid with two
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doses (1 µM or 10 µM) of PKA inhibitor or MAPK inhibitor AQP5 expression significantly
decreased in these cells in the follicular phase of the estrous cycle (Figure 3C, p < 0.05). In the
early luteal phase of the estrous cycle, AQP5 was significantly upregulated by E2 combined
with PD98059 (10 µM) and P4 in combination with H89 (1 µM) and downregulated by the
combination of arachidonic acid with MAPK inhibitor in dose 10 µM (Figure 3D, p < 0.05).

Following treatment of the cells with arachidonic acid mixed with two doses (1 µM,
10 µM) of PKA inhibitor expression of AQP7 mRNA significantly increased on days 18–20
of the estrous cycle. On days 2–4 of the estrous cycle, treatment with estradiol and two
doses of H89 or PD98059, progesterone with PD98059 (1 µM) as well as arachidonic acid
with H89 (10 µM) or PD98059 (1 µM) upregulated the expression of AQP7 mRNA in the
porcine endometrial luminal epithelial cells (Figure 4D, p < 0.05).

4. Discussion

Our experiments confirmed the AQP1 and AQP5 gene expression in the porcine
uterine luminal epithelial cells [11,25–27], a novel finding was that AQP2 and AQP7 are
also expressed in these cells. In addition, in this study, we investigated the effects of the
estradiol, progesterone, arachidonic acid, H89 (selective PKA inhibitor), and PD98059
(MAPK inhibitor) on the AQP1, AQP2, AQP5, and AQP7 gene expression in the uterine
epithelial cells.

The transport of water across the secretory epithelia involves two distinct pathways,
i.e., the paracellular and transcellular pathways. In the transcellular pathway, aquaporins
are mainly responsible for a large amount of transport of water, which is driven by the
osmotic gradient [6]. It has been already shown that several factors, including hormones,
regulate uterine transepithelial water transport via modulating the expression level of
AQPs [6,25–27,40]. As shown in our results, treatment with steroid hormones (E2 and P4)
resulted in a predominantly stimulatory effect on AQP1 and AQP2 mRNA expression.
Moreover, luminal epithelial cells from the follicular phase treated with P4 upregulated
AQP5 mRNA expression. Conversely, E2 treatment significantly downregulated AQP5
mRNA expression. In the present study, there was no significant change of AQP7 mRNA
expression in the epithelial cells after P4 and E2 treatment. Chinigarzadeh et al. [40]
reported that AQP2 might participate in estradiol-induced uterine fluid accumulation in
the rat. While in humans, the levels of endometrial AQP2 positively correlate with plasma
estrogen levels [31]. Others have shown the regulatory effects of E2 on AQP2 in the human
endometrium [41]. Contrary to the research of Chinigarzadeh et al. [40], in our study,
progesterone did not induce the expression of AQP7 at the mRNA level. AQP7, which also
transports urea and glycerol was found to be involved in decidualization [36]. Recently,
the expression of AQP7 in the uterus was reported to be influenced by testosterone [42].
Thus, our results provide further evidence of hormonal regulation of the water channels in
the porcine uterine epithelial cells. Notably, the fluid produced in the uterus provides a
physiological medium for its normal function and early embryonic development [25,26].
Very recent transcriptomes throughout swine estrous cycle studies revealed that ovarian
steroids and cytokines regulate endometrial gene expression during the estrous cycle [43].
Molecular studies have already elucidated the physiological functions of aquaporins and
their contribution to the mechanism responsible for balancing water concentration within
the uterus [2,6,40,44]. Furthermore, the quality and quantity of the uterine fluid are
modified in correlation with fluctuations of estrogen and progesterone during the estrous
and menstrual cycle [11,25–27].

In this study, apart from hormones, we have shown that arachidonic acid (AA) could
enhance AQP1 and 7 mRNA expression in the porcine uterus. Arachidonic acid is important
for the biosynthesis of prostaglandins, which play an essential role in the regulation of
reproductive processes [45,46]. Several articles report a significant effect of prostaglandins
on water homeostasis. The COX-2-derived prostaglandins can regulate the expression
of AQP2 and AQP3 in the collecting duct and additionally the role of prostaglandins in
AQPs translocation, which can stimulate water permeability [47]. Selective decrease in
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urinary AQP2 and increase in PGE2 excretion are associated with post obstructive polyuria
in human congenital hydronephrosis [48]. The results obtained in this study revealed that
AA differentially regulated the expression of AQP genes in the luminal epithelial cells
and that this regulation was dependent on the phase of the estrous cycle. In the follicular
phase, AA led to the upregulation of AQP2 mRNA, but, in the early luteal phase, AA
upregulated both aquaporins AQP2 and AQP7. We can presume that prostaglandins may
exert regulatory effects on AQP2 and 7. However, given that the present findings are based
on gene expression, the results should be treated with caution. In consistence with these
findings, our previous study also revealed the participation of AA, steroid hormones (E2
and P4), OT, FSK, and cAMP in the regulation of AQP1 and AQP5 expression at mRNA and
protein level in the endometrium and myometrium of cyclic gilts during the mid-luteal
phase and luteolysis [11,27]. The above results support the notion that steroid hormones, as
well as other factors, including prostaglandins, cAMP, oxytocin, and arachidonic acid are
important for the regulation of uterine AQPs, and may affect endometrial cellular functions.

The above studies allow us to more efficiently investigate the effect of AA and other
factors/inhibitors in the endometrial cells in vitro on AQPs expression. In cultures of
luminal epithelium, we found that, in the follicular phase of the estrous cycle, AA combined
with H89 decreased expression of AQP5, but increased expression of AQP7. A different
situation was observed on days 2–4 of the estrous cycle when progesterone in combination
with the H89 upregulated expression of AQP5, while E2 combined with two doses of
H89 (1 µM and 10 µM) and AA with H89 (10 µM) increased expression of AQP7 mRNA.
The PKA signaling pathway is responsible for all the cellular responses induced by the
cAMP second messenger system and plays an essential role in the integration of the
signaling pathway networks in cells [49,50]. cAMP-dependent protein kinase via the
transcription factor CREB plays a role in the regulation of the cell cycle, cell proliferation,
and differentiation, as well as controlling of several metabolic reproductive processes like
progesterone-induced oocyte maturation [51–53]. Lochner and Moolman showed that
high-affinity N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide has been
used greatly for the evaluation of the role of PKA in various cell types, e.g., epithelial,
smooth muscle, embryonic, and neural cells [54,55]. H89 is involved in the regulation
of PKA, which is required for estrogen binding and signaling to PI3K and it also plays
role in placental steroidogenesis [56,57]. Yang et al. suggest that H89 also inhibited injury
stimulated by AA in the podocyte [58].

We found that the expression of AQP1 and AQP5 at the mRNA level significantly de-
creased when endometrial luminal epithelial cells were treated with PD98059. In addition,
following progesterone combined with PD98059 treatment, PD98059 attenuated the effect
of P4 on the expression of AQP1 and AQP5 mRNA (days 18–20 of the estrous cycle). We
have demonstrated by the use of a specific and potent MAPK inhibitor that the regulation
of AQP1 and 5 expression at the mRNA level primarily occurs by the MAPK pathway.
Incubation of uterine cells with PD98059, prevented the activation of ERK and blocked
both AQPs expression at the mRNA level. This supports previous findings in the literature
that MAPK signaling is implicated in the regulation of AQP1 and 5 [59,60]. Furthermore,
it has also been shown that the p38 MAPK-dependent pathway is possibly the primary
mechanism in controlling the altered expression of a number of major AQPs including
AQP4 and AQP9 [61], as well as AQPs 3, 5, and 8 [62]. In contrast, when endometrial
luminal epithelial cells from the early luteal phase of the estrous cycle were treated with
E2 combined with PD98059, the expression of AQP5 mRNA was upregulated. As shown
in our results, treatment with E2 combined with PD98059, and P4 with PD98059 signifi-
cantly increased the expression of AQP7 mRNA in luminal epithelial cells derived from
2–4 days of the estrous cycle. These results demonstrate that examined AQPs isoforms are
differentially regulated and can respond independently to environmental changes.

MAPKs are a family of serine-threonine kinases that integrate signals from a diverse
range of stimuli and elicit an appropriate physiological response, including cellular differ-
entiation, proliferation, inflammatory responses, and apoptosis in mammalian cells [63].
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It was demonstrated that two isoforms of MAPKs, ERK1 (p44) and ERK2 (p42), express
widely in mammalian oocytes and play a pivotal role in meiosis [64]. Similarly, MAP kinase
is also involved in oocytes maturation, it encodes serine/threonine protein kinase, which
can phosphorylate and activate MEK1. The pre-treatment of cells with the MEK1/MEK2
inhibitors, to which we include PD98059, resulted in a direct reduction in ERK1/ERK2
MAPK phosphorylation. MEK1/2 are dual-specificity kinases that phosphorylate and
activate ERK, the classical MAP kinase [65]. The critical role of MAPK/ERK signaling on
the expression of essential genes involved in the regulation of gonadotropic hormones
was found. It has been proposed that the MAPK pathways are tightly regulated and
cross-communicated with other signaling pathways [66].

The regulatory mechanisms underlying AQP gene and protein expression are complex
and could be influenced by various physiological, pathological, or regulatory stimuli,
including hormones, cytokines, and/or stress-activated signals.

5. Conclusions

Therefore, we can conclude that AQP1 and AQP5 gene expression in the porcine
uterine luminal epithelial cells are regulated by estradiol, progesterone, and arachidonic
acid through PKA and MAPK signaling pathways in the periovulatory period. The pre-
sented data may contribute to the existing knowledge of the mechanism linking signaling
pathways and factors, which may affect uterine water homeostasis in pigs. Additionally,
these data might be used as a basic reference for further studies in this research area.
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