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Abstract: Depression is one of the most frequently observed psychological disorders, affecting
thoughts, feelings, behavior and a sense of well-being in person. As per the WHO, it is projected to
be the primitive cause of various other diseases by 2030. Clinically, depression is treated by various
types of synthetic medicines that have several limitations such as side-effects, slow-onset action, poor
remission and response rates due to complicated pathophysiology involved with depression. Further,
clinically, patients cannot be given the treatment unless it affects adversely the job or family. In
addition, synthetic drugs are usually single targeted drugs. Unlike synthetic medicaments, there are
many plants that have flavonoids and producing action on multiple molecular targets and exhibit anti-
depressant action by affecting multiple neuronal transmissions or pathways such as noradrenergic,
serotonergic, GABAnergic and dopaminergic; inhibition of monoamine oxidase and tropomyosin
receptor kinase B; simultaneous increase in nerve growth and brain-derived neurotrophic factors.
Such herbal drugs with flavonoids are likely to be useful in patients with sub-clinical depression. This
review is an attempt to analyze pre-clinical studies, structural activity relationship and characteristics
of reported isolated flavonoids, which may be considered for clinical trials for the development of
therapeutically useful antidepressant.
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1. Introduction

Among mental disorders, depression is one of the most commonly known multi-
faceted disorders which negatively impacts social life, work and health of humans [1,2]. It
is the most responsible cause of suicide or illness occurring across all ages, despite of social
background and gender [3]. A variety of antidepressants are available for treating depres-
sion such as tricyclic antidepressants, selective dopamine reuptake inhibitors, selective
norepinephrine reuptake inhibitors and SSRIs (selective serotonin reuptake inhibitors) [4,5].
They exert their anti-depressant action via acting on various neurotransmitter systems,
including serotonergic (5-HT), dopaminergic (DA), and noradrenergic (NA) or by inhibit-
ing mono amino oxidase (MAO) enzymes [6]. These antidepressants may, however, have
delayed onset of action and possess multiple side effects when given for a longer dura-
tion [7]. Further, some of these are found to be less effective in the treatment-resistant
depression and in some cases, there is incomplete recovery of patient with these standard
medicines [8].

In case of sub-clinical depression, during the initial stage of development of major
depression, it is difficult to treat the person clinically with synthetic anti-depressants [9].
Even, in several cases, ‘sub-clinical depression’ arises as a clinical condition of patients
who have not yet entered full remission and has symptoms left over after treatment with
synthetic antidepressants [10,11]. In addition, symptoms of sub-clinical depression are also
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very common in general people, among those who do not have any clinically diagnosed
mental illnesses [12]. Due to lacking in diagnostic parameters for subclinical depression,
the associated symptoms affect quality of common life, social life and occupational life
functioning, resulting in economic and personal encumber [13]. Therefore, there is a need
for consideration or provision for new basic or coordinated approaches to diagnose sub-
clinical depression with investigation of specific interventions or treatment options for
prevention of sub-clinical depression. Several emerging pieces of evidence have shown
an association between dietary measures and the risk of depression and also, have sug-
gested that adding nutrients in diet can affect the onset of depression [14,15]. Even many
clinical trials have lightened up the effectiveness of nutraceuticals as antidepressants in
the initial phase of depression or sub-clinical depression, via providing a wide range of
pharmacological effects [15–17].

By identifying these important neurobiological mechanisms of nutraceuticals, this ad-
junctive therapy can be proven scientifically to have potential antidepressants effect. There
are different mechanisms suggested to be involved in neuroprotective effect of nutraceuti-
cals (i.e., fats, amino acids, minerals, vitamins and other nutrients) via playing a remarkable
role in nurturing structure and function of neurons, provide energy and nutrients to brain,
strengthen the immunity, exert antioxidant defence mechanism, influence neurotrophic
factor essential for maintaining brain plasticity and neuronal preservation [18–20]. Nu-
traceuticals are found to modulate neurobiological pathways involved in depression, such
as monoamine deficiency, reduced neurogenesis, bioenergetics abnormalities; cytokine
alteration associated with chronic inflammation neuro-endocrinological disorders [21,22].
Therefore, scientific evidence seems to regard food as a supplement and as a key to the
approach to mental illness.

Admonition related to the nutraceuticals prescription includes the significance of
prescribing highly standardized, stable and high-quality nutrient products with appropriate
formulas and doses. The practitioners may be confused about which products to be
prescribed or recommended, and in such type of cases it is advisable to refer specialized
health professionals having the knowledge of nutraceuticals. However, it is reasonable or
comprehensible to stand by to gauge the dose, potency and mechanism of anti-depressants
before the introduction of prescription nutraceuticals to any patient, so that nutraceuticals
could be started as the first antidepressant treatment [23–26]. All these factors have
prompted researchers to find plant base alternatives for antidepressant action. Therefore, in
this review, we have tried to emphasize the potential anti-depressant outcome of precious
flavonoids isolated from plants or herbs.

Flavonoids are natural occurring polyphenols that have been extensively investigated
for their pharmacological properties [27]. Almost all fruits, grains, vegetables, alcohol
and tea are the rich source of flavonoids and are capable of preventing or reversing stress
through a number of mechanisms [28]. In past decades, a large number of studies have
conducted to explore antidepressant activity of natural chemical compounds, especially
flavonoids, having multiple actions on brain [29]. Several preclinical studies have shown
that certain flavonoids have antidepressant potential and have found to reverse depressive
behavior of rodents in animal models. Increasing in expression levels of various neuro-
transmitters, neurotrophic factors and neurogenesis in brain are the suggested underlying
mechanisms for anti-depressant action [1,30]. In the present review, we have focused
antidepressant potential of certain flavonoids and to describe the mode of action involved
based on pre-clinical studies. The aim of the present review chapter is to compile potential
molecules from literature having beneficial antidepressant action, which would help to
develop effective and safe nutraceuticals products to reduce depression in humans.

2. Flavonoids and Structure Activity Relationship

Flavonoids are low molecular weight phenolic compounds and widely found in
plants. To date, more than 5000 flavonoids are identified, which have extensive biological
activity [1]. On the basis of their respective structures, flavonoids could be categorized
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into major groups, i.e., flavones, flavonols, isoflavones, flavanones, flavanonols, flavanols
and anthocyanidins [31]. Generally, a flavonoid skeleton contains two aromatic carbon
rings, one benzene and benzopyran, as shown below. This classification is related to hy-
droxylation manner of the ring structure, oxidation level of the C-ring and substitution
at 3-position (Figure 1). Therefore, variation in the number and sequence of hydroxyl
groups, with their glycosylation and alkylation is the responsible factor for the differences
among these classes [32]. Various pre-clinical and in-vitro trials have shown several phar-
macological aspects of flavonoids, i.e., they are antioxidant, hepatoprotective, antiallergic,
anticarcinogenic, antiviral, neuroprotective, antitoxic, antiepileptic, anti-angiogenic, anti-
diabetic and estrogenic [33–39]. These actions depend upon type and dose of flavonoids
administered [1].
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Flavones are one of the most interesting flavonoids because of their in-vivo and in-

vitro biological activities. The basic backbone of flavones is 2-phenylchromen-4-one (2-
phenyl-1-benzopyran-4-one) (Figure 2). Unlike other flavonoids, flavones have no substi-
tution at position C3, and having double bond between positions C2 and C3. In addition, 
they oxidized at position C4. Usually, flavones predominantly present in plants as glyco-
sides composed of aglycone plus sugar moiety [40]. These can be easily hydrolyzed with 
acid or enzyme such as malonyl esterases and remains as glycoside after heating, shred-
ding or juicing. Whereas unlike flavone O-glycoside, flavone C-glycoside are more stable 
during process such fermentation, juicing, heating, pasteurization and spray drying. 
Therefore, all these parameters should be considered during isolation of flavones 7-O-, 6-
C- and 8-C-glucosides [37–40]. 

Various flavones have been isolated from different plants and herbs to evaluate anti-
depressant potential using different animal model and found to be significant candidate 
to combat depressive-like behavior in rodents (Table 1). These flavones act as anti-depres-
sant via different mechanism and have not shown any adverse effect during studies. 
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2.1. Flavones

Flavones are one of the most interesting flavonoids because of their in-vivo and in-vitro
biological activities. The basic backbone of flavones is 2-phenylchromen-4-one (2-phenyl-
1-benzopyran-4-one) (Figure 2). Unlike other flavonoids, flavones have no substitution
at position C3, and having double bond between positions C2 and C3. In addition, they
oxidized at position C4. Usually, flavones predominantly present in plants as glycosides
composed of aglycone plus sugar moiety [40]. These can be easily hydrolyzed with acid or
enzyme such as malonyl esterases and remains as glycoside after heating, shredding or
juicing. Whereas unlike flavone O-glycoside, flavone C-glycoside are more stable during
process such fermentation, juicing, heating, pasteurization and spray drying. Therefore,
all these parameters should be considered during isolation of flavones 7-O-, 6-C- and
8-C-glucosides [37–40].

Various flavones have been isolated from different plants and herbs to evaluate anti-
depressant potential using different animal model and found to be significant candidate to
combat depressive-like behavior in rodents (Table 1). These flavones act as anti-depressant
via different mechanism and have not shown any adverse effect during studies.
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Table 1. Flavones and their Structure activity relationship.

Sr. No. Flavones C5 C6 C7 C8 C3′ C4′

1. 7,8-Dihydroxyflavone -OH -OH

2. Amentoflavone -OH -OH -C15H12O5 -OH

3. Apigenin -OH -OH -OH

4. Baicalein -OH -OH -OH

5. Chrysin -OH -OH

6. Luteolin -OH -OH -OH -OH

7. Nobiletin -OCH3 -OCH3 -OCH3 -OCH3 -OCH3

8. Orientin -OH -OH -C6H11O5 -OH -OH

9. Vitexin -OH -OH -C6H11O5 -OH

Further, 7, 8-dihydroxyflavone (Figure 3) is a natural flavone which has shown antide-
pressant action in several studies. Pre-clinically, 7, 8-dihydroxyflavone has been reported
to mimic BDNF (brain derived neurotrophic factor) and also increased its expression and
level in hippocampus [41]. In addition, it has been reported to have therapeutic potential
against several neurological diseases or disorders, i.e., stroke, depression and Parkinson’s
disease using animal models. In two different studies, 7, 8-dihydroxyflavone has shown
significant oral bioavailability and found to cross the brain–blood-barrier (BBB). Hence,
this flavone found to be a superior phytoconstituent for treating depression disorder as it
acts on nitric oxide signalling pathway and activated TrkB receptors (tropomyosin receptor
kinase B), also [42,43].
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Amentoflavone (Figure 4) is a natural biflavonoid formed by coupling of two molecules
of apigenin at position C8 and it have been reported to possess many pharmacological
potentials such as neuroprotective action, antioxidative and anti-inflammatory effect [44].
Ishola et al., studied that amentoflavone flavone isolated from methanolic extract of roots
of Cnestis ferruginea Vahl ex DC. has shown anxiolytic and antidepressant effects in mice. It
has been concluded that the underlying mechanism of amentoflavone was via interactions
with the ionotropic GABA (gamma-aminobutyric acid), adrenergic receptors (α1- and α2-)
and serotonin (5-HT2) receptors [45].
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Figure 4. Amentoflavone.

Apigenin is a 4′, 5, 7-trihydroxyflavone (Figure 5), founds in vegetables and fruits.
It has been reported to have several pharmacological actions such as antitumor, anti-
inflammatory and antioxidant activities [46]. Several pre-clinical studies were demon-
strated to prove anti-depressant potential of apigenin. Nakazawa et al., have studied
antidepressant action of apigenin using forced swim test in rodents and found to ameliorate
depressive-like behavior in mice, which was suggested to be mediated via dopaminergic
system [47]. In another study, apigenin has been found to exhibit antidepressant effects
in rats evaluating using chronic unpredictable mild stress animal model. The authors
concluded that this effect possibly due to upregulation of PPAR (peroxisome proliferator-
activated receptor) expression resulting in inhibition of NLRP3 inflammasome expression
and IL-1 production [48]. Involvement of apigenin in up-regulating the level of hip-
pocampal BDNF [49] and inhibition of mono-amino oxidase enzyme has also confirmed its
anti-depressant mechanism [50]. Apigenin has also found to reverse the lipopolysaccharide-
induced depression in rodents which may be due to its anti-inflammatory potential [51].
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Figure 5. Apigenin.

Baicalein is a 5, 6, 7-trihydroxyflavone flavonoid having hydroxyl group at position
C5, C6 and C7 (Figure 6). It is found to be one of the most active flavones among all
flavonoids present in Scutellaria baicalensis Georgi, [52]. Various reports have proved that
baicalein has strong antioxidant activity with significant xanthine oxidase inhibition and
free-radical scavenging properties [52,53]. In literature, this flavone has reported to exhibit
significant antidepressant effect via reversing the level of reduced ERK phosphorylation
and hippocampal BDNF expression in animal model of chronic mild stress [54]. In addition,
it has been found to cross the BBB. Another study has also proved the antidepressant
potential of baicalein mediating via prevention of decrease level of BDNF and dopamine in
hippocampus [55]. Further studies have suggested that baicalein isolated from methanolic
extract of roots of Scutellaria baicalensis Georgi could inhibit cyclooxygenase-2 in rodent
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brain resulting in reduced brain level of prostaglandin E2 and act as strong anti-oxidant,
which also helps in prevention of the chronic mild stress-induced depression-like behavior
in mice [56].
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Chrysin (Figure 7) is a 5, 7-dihydroxyflavone natural flavonoid highly found in honey
and many plants, exhibiting multiple pharmacological activities i.e., antineoplastic, anti-
inflammatory, antioxidant and hypolipidemic [57–59]. In literature, several researchers
have demonstrated antidepressant action of chrysin in rodents using chronic unpredictable-
mild stress. The proposed underlying mechanism associated with anti-depressant potential
of chrysin is up-regulation of BDNF expression and its level in the hippocampus and
prefrontal cortex of stressed mice [60]. In another study, researchers have proved anti-
depressant potential of chrysin in olfactory-bulbectomized mice and suggested that BDNF
was the key target of chrysin in preventing the depressant [61]. Further, the authors sug-
gested chrysin also modulated the 5-hydroxy-tryptamine metabolism, pro-inflammatory
cytokines synthesis, caspases activities and kynurenine pathway [62].
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Luteolin (Figure 8) is a 3′, 4′ 5, 7, tetrahydroxyflavone natural flavonoid and possess
various pharmacological properties such as anticancer, antioxidant, anxiolytic, memory-
boosting properties, and also found to easily penetrate through BBB [63]. De la Peña et al.,
have reported that luteolin isolated from ethanolic extract of dried aerial parts of Cirsium
japonicum Var. Maackii have shown antidepressant effects possibly mediated via potentia-
tion of GABA-A receptor-calcium ion channels [64]. Ishisaka et al., also have confirmed
anti-depressant potential of luteolin mediated via attenuation of hippocampal expression
of stress-related protein of endoplasmic reticulum using animal model of corticosterone-
induced depression [63]. It has been reported to inhibit MAO enzyme, thereby directly
leading to increases in neurotransmitter levels in the brain in depression [50].
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Figure 8. Luteolin.

Nobiletin is a citrus flavones and chemically known as 5,6,7,8,3′,4′-hexamethoxyflavone
(Figure 9). This flavone has been reported to exert neuroprotective effects against β-amyloid
peptide-induced neuronal death in hippocampal CA1 region, cognition impairment and
also reduced level of β-amyloid peptides [65]. The anti-depressant potential of nobiletin
isolated from orange peel was studied in animal models, i.e., forced swim and tail suspen-
sion test; and found to significantly inhibit depressive-like behaviors. This anti-depressant
action of nobiletin was suggested to be umpired via interaction with noradrenergic (α1-
adrenoceptor), dopaminergic (D1 and D2- receptors) and serotonergic (5-HT1A and 5-HT2-
receptors) systems [66].

Biomolecules 2021, 11, x FOR PEER REVIEW 7 of 48 
 

 
Figure 8. Luteolin. 

Nobiletin is a citrus flavones and chemically known as 5,6,7,8,3′,4′-hexamethoxyfla-
vone (Figure 9). This flavone has been reported to exert neuroprotective effects against β-
amyloid peptide-induced neuronal death in hippocampal CA1 region, cognition impair-
ment and also reduced level of β-amyloid peptides [65]. The anti-depressant potential of 
nobiletin isolated from orange peel was studied in animal models, i.e., forced swim and 
tail suspension test; and found to significantly inhibit depressive-like behaviors. This anti-
depressant action of nobiletin was suggested to be umpired via interaction with noradren-
ergic (α1-adrenoceptor), dopaminergic (D1 and D2- receptors) and serotonergic (5-HT1A 
and 5-HT2- receptors) systems [66]. 

 

Figure 9. Nobiletin. 

Orientin is a C-glycosyl flavonoid, i.e., luteolin substituted with β-D-glucopyranosyl 
moiety at C8 position (Figure 10). It is highly abundant in herbs, fruits and millet and 
found to possess strong antioxidant activity [67]. In a study, anti-depressant effect of ori-
entin was evaluated using animal model of chronic unpredictable mild stress and found 
to exert antidepressant-like activity in mice. The suggested possible mechanism was in-
crease in MAO inhibition, neurotransmitters level, synaptic proteins and BDNF expres-
sion in prefrontal cortex and hippocampus. Further, it has been found to improve neuro-
plasticity, neurotransmission and reduce oxidative stress in depressed mice [68]. 

  

Figure 9. Nobiletin.

Orientin is a C-glycosyl flavonoid, i.e., luteolin substituted with β-D-glucopyranosyl
moiety at C8 position (Figure 10). It is highly abundant in herbs, fruits and millet and found
to possess strong antioxidant activity [67]. In a study, anti-depressant effect of orientin
was evaluated using animal model of chronic unpredictable mild stress and found to
exert antidepressant-like activity in mice. The suggested possible mechanism was increase
in MAO inhibition, neurotransmitters level, synaptic proteins and BDNF expression in
prefrontal cortex and hippocampus. Further, it has been found to improve neuroplasticity,
neurotransmission and reduce oxidative stress in depressed mice [68].

Biomolecules 2021, 11, x FOR PEER REVIEW 8 of 48 
 

 
Figure 10. Orientin. 

Vitexin (C-glycosyl compound and a trihydroxyflavone; Figure 11) is an apigenin 
flavone glucoside and present in nutraceuticals and foodstuffs. In literature, it has been 
documented to exert many pharmacological actions such as antitumor, anti-inflamma-
tory, peripheral analgesic and antioxidant activities [69–72]. In addition, it has been found 
to inhibit platelet aggregation, urease, α-glucosidase and adipogenesis [73–76]. Among 
plants, Vitexin is highly abundant in Passiflora incarnate L. and reported to have significant 
anxiolytic and anti-depressant activities mediated via interaction with dopaminergic (D1, 
D2, and D3), serotonergic (5-HT1A) and noradrenergic (α2) receptors and also by increas-
ing synaptic concentration of neurotransmitters [77]. 

 
Figure 11. Vitexin. 

Structure Activity Relationship (SAR) of Flavones  
Based on the information available on the activities of various flavones, following 

SAR appears to be applicable (Figure 12). 

 
Figure 12. SAR of Flavones. 

1. The presence of ketonic group at C4 and ring B, C may be responsible for enhance-
ment of BDNF level in the brains of mice. 

2. Attachment of hydroxyl group at C7 and long chain group at C8 resulting in incre-
ment of activity of serotonin and nor-epinephrine pathways. 

3. Hydroxyl group at C3′ and C4′ is necessary for increments of anti-oxidant potential 
and radical scavenging properties. 

Figure 10. Orientin.



Biomolecules 2021, 11, 1825 8 of 49

Vitexin (C-glycosyl compound and a trihydroxyflavone; Figure 11) is an apigenin
flavone glucoside and present in nutraceuticals and foodstuffs. In literature, it has been
documented to exert many pharmacological actions such as antitumor, anti-inflammatory,
peripheral analgesic and antioxidant activities [69–72]. In addition, it has been found
to inhibit platelet aggregation, urease, α-glucosidase and adipogenesis [73–76]. Among
plants, Vitexin is highly abundant in Passiflora incarnate L. and reported to have significant
anxiolytic and anti-depressant activities mediated via interaction with dopaminergic (D1,
D2, and D3), serotonergic (5-HT1A) and noradrenergic (α2) receptors and also by increasing
synaptic concentration of neurotransmitters [77].
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Structure Activity Relationship (SAR) of Flavones

Based on the information available on the activities of various flavones, following
SAR appears to be applicable (Figure 12).
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Figure 12. SAR of Flavones.

1. The presence of ketonic group at C4 and ring B, C may be responsible for enhancement
of BDNF level in the brains of mice.

2. Attachment of hydroxyl group at C7 and long chain group at C8 resulting in increment
of activity of serotonin and nor-epinephrine pathways.

3. Hydroxyl group at C3′ and C4′ is necessary for increments of anti-oxidant potential
and radical scavenging properties.

4. At C3′ and C4′ position, mono-substitution enhances the selectivity towards MAO-A
inhibition, whereas di-substitution increases the selectivity for MAO-B inhibition.

5. Glycoside-O linkage at C7 abolished or reduces the MAO inhibitory potential.
6. Acetate and methyl group at C7 and C8 decreased antioxidant potential of flavones.

2.2. Flavonols

Flavonols are polyphenolic flavonoids with backbone of 3-hydroxy-2-phenylchromen-
4-one (Figure 13). Their skeletons have 3-hydroxyflavone. They have double bond between
position C2 and C3 and a ketone group at position C4. Unlike flavones, flavonols have
hydroxyl group at C3, and sometime can link with sugar moiety, which can be glycosy-
lated [37–40]. This sugar can be either rhamnose or glucose, but sometimes it could be
galactose, xylose, arabinose and glucuronic acid. Their glycosylated form mostly found in
fruits, vegetables and plant-derived foods. Mostly, flavonols are represented by glycosides
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of myricetin, kaempferol, quercetin and isorhamnetin [37–40]. Table 2 shows structure
activity relationship of some isolated flavonols having anti-depressant action.
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Table 2. Flavonols and their structure activity relationship.

Sr. No. Flavonols R C5 C6 C7 C8 C3′ C4′ C5′

1. 3,5,6,7,8,3′,4′-Heptamethoxyflavone -CH3
-

OCH3

-
OCH3

-OCH3
-

OCH3

-
OCH3

-
OCH3

2. Fisetin H OH OH OH

3. Hyperoside (C6H11O5) -OH -OH -OH -OH

4. Icariin H OH -
O(C6H11O5) C5H9 OCH3

5. Isoquercitrin -
(C6H11O5) OH OH OH OH

6. Kaempferitrin (C6H11O4) -OH -
O(C6H11O4) -OH

7. Kaempferol H OH OH OH

8. Kaempferol-3-O-β-D-glucose -
(C6H11O5) OH OH OH

9. Miquelianin -
(C6H9O6) OH OH OH OH

10. Myricetin H OH OH OH OH OH

11. Myricitrin -
(C6H11O4) OH OH OH OH OH

12. Quercetin H OH OH OH OH

13. Quercetin-
3-O-β-D-glucose

-
(C6H11O5) OH OH OH OH

14. Quercitrin -
(C6H11O4) OH OH OH OH

15. Rutin -
(C12H21O9) OH OH OH OH

Further, 3,5,6,7,8,3′,4′-heptamethoxyflavone (Figure 14) is a citrus flavonoid derived
from citrus fruits [78]. This flavonol exhibited several pharmacological activities such as
neuroprotective, immune-modulatory and anti-inflammatory activities [78,79]. Accord-
ing to Sawamoto et al., 3,5,6,7,8,3′,4′-heptamethoxyflavone derived from orange oil has
shown antidepressant action at dose of 50 mg/kg in ischemic mice using animal model of
corticosterone induced depression. This flavone found to increase the regulation of extra-
cellular signal-regulated kinase1/2 and phosphorylation of calcium calmodulin dependent
protein kinase-II. Therefore, 3,5,6,7,8,3′,4′-heptamethoxyflavone ameliorated corticosterone-
induced depressive behavior and reduction in weight loss, neurogenesis, hippocampal
BDNF production and expression in mice [80].
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protective actions [81,82]. Zhen et al., have proven the antidepressant action of fisetin in 
rodents and suggested the involvement of noradrenergic and serotonergic systems. Even 
the author confirmed that the inhibitory action of fisetin on monoamine oxidase enzyme, 
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Figure 14. 3,5,6,7,8,3′,4′-heptamethoxyflavone.

Fisetin is a 7, 3′, 4′-flavon-3-ol (Figure 15) bioactive flavonoid and highly abundant
in vegetables and fruits, especially in strawberries. This flavonoid has been found to
exert various pharmacological activities, including anti-inflammatory, antioxidant and
neuroprotective actions [81,82]. Zhen et al., have proven the antidepressant action of fisetin
in rodents and suggested the involvement of noradrenergic and serotonergic systems.
Even the author confirmed that the inhibitory action of fisetin on monoamine oxidase
enzyme, i.e., also contributed to its anti-depressant action [83]. Further, Yu et al., have also
demonstrated anti-depressant potential of fisetin and found to reverse depressive behaviour
in a lipopolysaccharide-(LPS-) induced acute neuro-inflammation animal model, which
confirmed its potential to become a potent candidate for neurological and psychological
disorder therapy [84]. In another study, the therapeutic potential of fisetin for treating
depression was found to be mediated via activation of TrkB signaling pathway and leads
to increase in phosphorylation of TrkB level without disturbing total TrkB [85].
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Figure 15. Fisetin.

Hyperoside (tetrahydroxyflavone) is a natural flavonol and also known as 3-O-
galactoside of quercetin, in which β-D-galactosyl residue attached at C3 (Figure 16) [86]. In
2012, Zheng et al., has reported that hyperoside isolated from hydroethanolic extract of
Apocynum venetum L. leaves, exhibited antidepressant effects and has shown cytoprotective
action via upregulation of CREB (cAMP response elements binding protein) and BDNF ex-
pression through regulating AC-cAMP-CREB signalling pathway [87]. In 2011, Haas et al.,
have also proved the anti-depressant potential of hyperoside isolated from methanolic
extract of aerial part of Hypericum caprifoliatum L., which was claimed to be mediated via
activation of D2-DA receptors of dopaminergic system [88]. Another study has also shown
its antidepressant potential mediating via modulation of HPA axis by reducing plasma
corticosterone and ACTH levels [89].
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Icariin is an 8-prenyl derivative of kaempferol 3, 7-O-diglucoside and also known as
prenylated flavonol glycoside (Figure 17) [90]. It is highly found in Herba epimedii, which is a
traditional Chinese herb and used for treating from centuries. Icariin was found to possess
significant neuroprotective and anti-depressant actions evaluated using chronic stress
induced animal models [91]. Wu et al., has studied that icariin helps in partly restoring of
social defeat induced impairment of HPA axis hyperactivity and glucocorticoid sensitivity.
This result in normalization of glucocorticoid receptors function and also increase in
hippocampal BDNF level and expression [92]. Further, Liu et al., and Wei et al., have
also confirmed anti-depressant effect of icariin using unpredictable chronic stress-induced
depression model of rodents and found to decrease hippocampal neuroinflammation,
inhibited inducible nitric oxide synthase enzyme activity via acting on different targets
in prefrontal cortex and hippocampus [91]. According to Wei et al., icariin has found
to decrease in levels of SGK1 (serum and glucocorticoid-regulated kinase 1) and FKBP5
(FK506 binding protein 5) expression and restore negative feedback regulation of HPA axis
via normalizing gluco-corticoids receptor [93]. Gong MJ et al., revealed anti-depressant
potential of icariin using corticosterone- induced depression model and concluded that this
effect was mediated via increase in BDNF level and regulation of metabolic dysfunction
and pathways [94].
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Isoquercitrin is a 3-O-glucoside of quercetin (Figure 18) and known as isoquercetin and
isotrifoliin. In a study, isoquercitrin, miquelianin and hyperoside isolated from methanolic
extract of aerial parts of St. John’s wort found to exhibited anti-depressant action in rats
acting via modulating functions of HPA axis (hypothalamic–pituitary–adrenal axis) by
preventing hyper secretion of cortisol and adrenocorticotropic hormone [89]. Scheggi S et al.
has demonstrated the anti-depressant potential of isoquercitrin, quercetin and rutin isolated
from methanolic extract of aerial parts of Hypericum connatum L. in rats, which may be due
to their antioxidant potential [95]. Miquelianin is a quercetin 3-O-glucuronide (Figure 19)
and also found in green beans, wine or Nelumbo nucifera. It is found to be presented in
plasma or urine as metabolite of quercetin, tea and cocoa, and exert strong antioxidant
action in the body [96].
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Figure 19. Miquelianin.

Kaempferitrin is a 3, 7-dirhamnoside of kaempferol (Figure 20) and extracted from vari-
ous plants [97]. Cassani et al., has reported that kaempferitrin isolated from hydroethanolic
extract of aerial parts of Justicia spicigera Schltdl plant exhibited anti-depressant action
in animal behavioral models [98]. In addition, this plant has been reported to possess
various pharmacological properties, i.e., ant-inflammatory, antidiabetic, anti-seizure and
analgesic actions [98]. The antidepressant potential of kaempferitrin was suggested to be
mediated through serotonergic system (mainly, presynaptic 5-HT1A receptors) and also
via regulating the HPA axis [98].
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Figure 20. Kaempferitrin.

Kaempferol is a 3, 4′,5,7-tetrahydroxyflavone consisting of the hydroxyl group at
positions C3, C5, C7 and C4′ (Figure 21). It has been found in varieties of plants, fruits and
vegetables such as tea, broccoli, tomatoes, Ginkgo biloba L. and grapes, etc. [99]. In a pre-
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clinical study, kaempferol and quercetrin isolated from hydroethanolic extract of aerial parts
of Opuntia ficus-indica indica var. saboten were found to exhibit anti-depressant action in tail
suspension and forced swim test and the underlying mechanism was found to be mediated
via increasing level of plasma β-endorphin or POMC mRNA in mice [100]. Quercetrin
(tetrahydroxyflavone) is a quercetin O-glycoside, in which quercetin is substituted with α-
L-rhamnosyl moiety at position C3 via glycosidic linkage (Figure 22) [100]. In another study,
kaempferol, kaempferol-3-O-β-D-glucoside, quercetin, and quercetin3-O-β-D-glucoside
(Figure 23) isolated from hydroethanolic extract of Apocynum venetum L. leaves, were also
found to exert significant anti-depressant actions in mice [101]. The underlying mechanism
behind this effect was suggested to be increase in dopamine, serotonin and nor-epinephrine
level with reduction in serotonin metabolism [101]. Kaempferol-3-O-β-D-glucoside is a
trihydroxyflavone, which is also known as kaempferol O-glucoside and having glucosyl
residue at position C3 of kaempferol via a β-glycosidic linkage (Figure 24). It is mainly
present in red wine and having strong antioxidant activity. Quercetin3-O-β-D-glucoside is
a quercetin O-glucoside, in which quercetin have β-D-glucosyl residue attached at position
C3, derived from β-D-glucose [101].
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Figure 24. Kaempferol-3-O-beta-D-glucoside.

Myricetin is a hexahydroxyflavone and substituted with hydroxyl group at C3, C3′,
C4′, C5, C5′ and C7 (Figure 25). It is highly abundant in fruits, vegetables, nuts, red
wine, berries, and tea. It has been documented for anti-inflammatory, antioxidant, neu-
roprotective and anti-apoptotic properties [102,103]. In a study, myricetin has found to
decreased depressive behavior in mice when exposed to stress, which was predicting in
forced swim and tail suspension test. This flavonol has found to decreased plasma level
of corticosterone, improved activity of glutathione peroxidase enzyme in hippocampus
and also increased BDNF level, all these results contributed to anti-depressant potential of
myricetin [104].
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Figure 25. Myricetin.

Myricitrin (glycosyloxyflavone or pentahydroxyflavone) is a 3-O-α-L-rhamnopyranoside
of myricetin in which myricetin is attached to α-L-rhamnopyranosyl residue at position
C3 via glycosidic linkage (Figure 26) [105]. In literature, it has been found to possess
antioxidant, anti-fibrotic and anti-inflammatory activities [105]. Pre-clinically, it has shown
potent anti-depressant potential in tail suspension test using mice. This effect was proposed
to be mediated through inhibition of nitric oxide and hippocampal neurogenesis [106]. In
addition, myricetin increases neuronal proliferation, growth and their survival, especially
in the subventricular zone and the subgranular zone [106].
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Figure 26. Myricitrin.

Quercetin is a pentahydroxyflavone (Figure 27) and highly abundant in apple, onion,
broccoli, wine and plants such as green tea and Ginkgo biloba [107]. This flavonol has been
documented to have significant free radical scavenging property, which helps in amelio-
ration of various diseases and disorders [107]. In addition, anti-depressant potential has
also been proven in various animal models and found to increase synaptic cleft serotonin
and nor-epinephrine availability via inhibition of MAO enzyme [50,101]. Demir et al., has
demonstrated antidepressant potential of quercetin in diabetic rodents and has concluded
that it could be considered as a potent supplement for treating depression in diabetic con-
dition [108]. In addition, Rinwa and Kumar have reported that it produced antidepressant
effect in olfactory bulbectomized rats and also suppresses micro-glial neuro-inflammation
in rat brain [109].
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Figure 27. Quercetin.

Rutin (tetrahydroxyflavone) is a citrus bioflavonoid (Figure 28), which is also known as
quercetin-3-O-rutinoside, sophorin and rutoside [110–112]. It is the glycoside combination
of flavonol quercetin and disaccharide rutinose, having quercetin with -OH at position C3
substituted with rhamnose and glucose sugar groups. It has been found in citrus fruits,
vegetables and plants, such as black tea, green tea, figs and buckwheat, etc. [110,111]. It
helps in producing collagen and usage of vitamin C in body. It has been documented
to possess several pharmacological actions, i.e., it is neuroprotective, antioxidant, anti-
inflammatory and anti-tumor, etc. [110–112]. According to Machado DG et al., report, rutin
isolated from ethanolic extract from aerial parts of Schinus molle L. has shown antidepressant
action in forced swim and tail suspension test. Increases in the level of synaptic nor-
adrenaline and serotonin justified the anti-depressant action of rutin [8].
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SAR of Flavonols

Based on the information available on the activities of various flavonols, the following
SAR appears to be applicable (Figure 29).
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1. In flavonols, attachment at C3 with –OR, does not much affect the antidepressant potential.
2. Substitution at C3 with hydroxyl group resulting in increase of brain levels of neuro-

transmitter, i.e., serotonin, dopamine, nor-epinephrine.
3. The presence of ketonic group at C4 and ring B, C may be necessary for anti-depressant

potential of flavonols.
4. Substitution at –OR at C3 with long chain molecules (C6H11O5 or C6H11O6) resulting

in decrease activation of hypothalamic-pituitary-adrenal axis, thereby decrease the
release of ACTH.

5. Substitution of –OR at C3 with long chain molecule may be responsible for decrease
in BDNF activity of flavonols.

6. Substitution of –OR with –OH group decreases the MAO inhibitory potential.
7. Hydroxyl group at C3′ and C4′ is necessary for increment of antioxidant potential

and radical scavenging property.
8. Acetate and methyl group at C7 and C8 decreased antioxidant potential of flavones.
9. Glycoside-O linkage at C7 abolished or reduces the MAO inhibitory potential.

2.3. Flavanones

Flavanones are derived from hybrid of flavanes and also known as 2-phenyl-2, 3-dihydro
chromen-4-one (Figure 30). Structurally, flavanones consist of flavan having oxo substituent at
position C4. They are highly abundant in citrus vegetables and fruits such as grapes, tomato
and cherries etc. Unlike flavones, flavanones do not have double bond between position C2
and C3 [37–40]. Flavanones possess very strong antioxidant activity, which helps in curing
various oxidative-stress related maladies such as cardiovascular disease, central nervous
system disorders, cancer and atherosclerosis [38–40]. Their pharmacological properties include
anti-inflammatory, antioxidant, antimicrobial and antiviral activities [37–40]. In recent years,
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several flavanones have been isolated and found to reduce depressive-like behavior when
evaluated for anti-depressant action in rodents (Table 3).
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Table 3. Flavanones and their structure activity relationship.

Sr. No. Flavanone C5 C7 C3′ C4′

1. Hesperidin -OH -O(C12H21O9) -OH -OCH3

2. Isosakuranetin-5-O-rutinoside -O(C12H21O9) -OH -OCH3

3. Liquiritin -OH -O(C6H11O5)

4. Naringenin -OH -OH -OH

5. Naringin -OH -O(C12H20O9)

Hesperidin (3′-hydroxyflavanones) is a natural bioflavonoid predominant in citrus
vegetables and fruits. Structurally, it composed of hesperetin substituted with a 6-O-(alpha-
L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position C7 via glycosidic linkage
(Figure 31). It has been reported to possess multiple therapeutic properties, i.e., antioxidant,
antidiabetic, antineoplastic, neuroprotective and anticancer properties, which have been
evaluated in vivo and in vitro [113–116]. El-Marasy et al. studies the antidepressant poten-
tial of hesperidin using streptozotocin-induced diabetic rat model. The authors suggested
multiple underlying mechanisms responsible for anti-depressant property via modulating
hyperglycemia also, i.e., increases in monoamine level in brain, induction of hippocampal
BDNF level and expression, anti-inflammatory and antioxidant activities [117]. In another
study, hesperidine at doses 0.1, 0.3, and 1 mg/kg (i.p.) has shown antidepressant potential
in Swiss albino mice as it reduced the immobility time in mice model [118]. Increase in
activation of serotonergic, noradrenergic, and dopaminergic systems, action at receptor
5-HT1A and increase in hippocampal BDNF concentrations were found to be responsi-
ble for antidepressant-like effect of these flavanones [118,119]. Moreover, hesperidin has
been found to decrease reactive oxidative species (ROS) generation, malondialdehyde
(MDA) formation, enhances glutathione levels and superoxide dismutase in human cell
lines, i.e., ARPE-19 and HaCaT cells [118–120]. In addition, in-vitro and animal models,
quercetin, naringenin, astilbin and hesperidin were found to prevent depressive symptoms
because of their antioxidant potential, defence response against inflammatory cascades and
monoamine oxidases inhibitory action [30]. Furthermore, Li et al., evaluated the antide-
pressant potential of hesperidin in mice using chronic mild stress rodent model that results
in amelioration of the reduction in sucrose preference and also, revert immobility time of
mice induced by chronic mild stress. The outcome of this study claimed the involvement of
extracellular signal regulated kinase-(ERK-) BDNF signaling pathway in the antidepressant
action of hesperidine [121]. Donato et al., also observed that administration of hesperidin
combats the depressive-like behaviors in mice via inhibition of L-arginine-NO-cGMP
pathway, and increasing in hippocampal BDNF expression and its level [122].
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tract of roots of Glycyrrhiza uralensis Fisch. were evaluated for their anti-depressant poten-
tial in mice at doses 10, 20 and 40 mg/kg using forced swim and tail suspension test [124]. 
Further, these flavonoids found to produce significant antidepressant effect and their pro-
posed mechanism includes slowing down of 5-HT metabolism, significant reduction in 5-
HIAA/5-HT ratios and increased concentration of monoamine neurotransmitters (espe-
cially, serotonin and nor-epinephrine) in the cortex, hypothalamus and hippocampus of 
mice [124]. 
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Isosakuranetin-5-O-rutinoside is a new flavonoid and also known as 5-O-(6-rhamnosyl
glucoside)-7-hydroxy-4′-methoxyflavanone (Figure 32). This flavanone was isolated from
hydroethanolic extract of leaves of plant Salvia elegans Vahl and found to possess antide-
pressant activity in animal model, i.e., forced swimming test [123]. Further, reports on
underlying anti-depressant mechanism of this new flavanone are not available.
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Figure 32. Isosakuranetin-5-O-rutinoside.

Liquiritin is a 4′-O-glucoside of the flavanone liquiritigenin, in which aβ-D-glucopyranosyl
residue is attached to liquiritigenin at position C4′ by a glycosidic linkage (Figure 33) and
found in spices and herbs. Whereas isoliquiritin is a trans-chalcone derivative, C2′ and C4′

positions substituted with hydroxyl group and a β-D-glucopyranosyloxy moiety attached
at position C4 (Figure 34). liquiritin and isoliquiritin isolated from aqueous extract of
roots of Glycyrrhiza uralensis Fisch. were evaluated for their anti-depressant potential
in mice at doses 10, 20 and 40 mg/kg using forced swim and tail suspension test [124].
Further, these flavonoids found to produce significant antidepressant effect and their
proposed mechanism includes slowing down of 5-HT metabolism, significant reduction
in 5-HIAA/5-HT ratios and increased concentration of monoamine neurotransmitters
(especially, serotonin and nor-epinephrine) in the cortex, hypothalamus and hippocampus
of mice [124].
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Naringenin is a trihydroxyflavanone and highly prevalent in citrus fruits peel. Struc-
turally, it is substituted with three hydroxy groups at positions C5, C6 and C4′ (Figure 35). It
has been documented to possess multiple therapeutic properties such as anti-inflammatory,
antioxidant, neuroprotective, cognition enhancing, MAO inhibitor, anti-bacterial and
wound-healing [125–127]. Likewise, it was found to possess antidepressant effects also.
In addition, it has been found to stimulate monoamines and suppress neuro-endocrine
signaling and, which leads to up-regulation of hippocampal BDNF in rodents [128,129]. In
another study, naringenin isolated from methanolic extract of citrus peel, found to reduce
immobility duration in tail suspension animal model of mice at dose of 5, 10 and 20 mg/kg,
which interpreted it as potent antidepressant action [130]. This effect was suggested to
be involved the activation of noradrenergic and serotonergic monoamine systems in mice
brain [130]. In addition, naringenin at doses of 10 and 20 mg/kg found to increase BDNF
expression in the hippocampus of mice [128].
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Figure 35. Naringenin.

Naringin (4′-hydroxyflavanones) is a flavanone-7-O-glycoside (Figure 36) and oc-
cur naturally in citrus fruits especially in grapes. It is responsible for bitter taste of
fruits. Structurally, it is (S)-naringenin substituted with a 2-O-(α-L-rhamnopyranosyl)-β-
D-glucopyranosyl moiety at position C7 by a glycosidic linkage. It exerts various phar-
macological actions such as anticarcinogenic, blood lipid-lowering, antioxidant activity
and inhibition of cytochrome P450 enzymes (CYP1A2 and CYP3A4) [131,132]. Kwatra
M et al., studies that naringin and sertraline significantly prevent doxycycline-induced
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depression and anxiety in mice evidenced from forced swimming test and elevated plus
maze. Decrease in hippocampal tumor necrosis factor-α, interleukin-1 β and plasma
corticosterone levels were observed in naringin, and sertraline treated mice. Further-
more, their combination found to diminished hippocampal oxidative stress, modulated
mitochondrial-complexes protection pathway and 5-HT levels [133].
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SAR of Flavanones

Based on the information available on the activities of various flavanones, following
SAR appears to be applicable (Figure 37).
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1. In flavanones, there is absence of double bond at C2 and C3 position; it means this
bond is not necessary for antidepressant potential.

2. Saturation of double bond at C2 and C3 position does not much affect the BDNF
activity of flavanones.

3. Saturation of double bond at C2 and C3 position reduces the MAO inhibitory potential.
4. Substitution at C7 with O- (C12H21O9) may be responsible for selective interaction

with kappa-opioid receptors.
5. Glycoside-O linkage at C7 abolished or reduces the MAO inhibitory potential.
6. Acetate and methyl group at C7 and C8 decreased antioxidant potential of flavonols.
7. Hydroxyl group at C3′ and C4′ is necessary for an increment of antioxidant potential

and radical scavenging property.
8. Hydroxyl group at C3′ may be responsible for reduction in acetyl-cholinesterase activity.

2.4. Flavanonols

Flavanonols have backbone of 3-hydroxy-2, 3-dihydro-2-phenylchromen-4-one. Ba-
sically, they are 2-phenyl-3, 4-dihydro-2H-1-benzopyran having a ketone and a hydroxyl
group at C4 and C3 as shown below (Figure 38) [37–40]. Astilbin and dihydromyricetn
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were found to possess anti-depressant action, which are analogues of flavanonols as shown
in (Table 4).

Table 4. Flavanonols and their Structure activity relationship.

Sr. No. Flavanonols R’ C5 C6 C3′ C4′ C5′

1. Astilbin -
O(C6H11O4) -OH -OH -OH -OH

2. Dihydromyricetin -H -OH -OH -OH -OH -OH
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Astilbin is a natural flavonoid, structurally composed of (+)-taxifolin substituted by
a α-L-rhamnosyl moiety at position C3 by a glycosidic linkage (Figure 39). It is highly
abundant in plants of Hypericum perforatum and has various pharmacological actions such
as anti-inflammatory function, free radical scavenging and antioxidant properties [134,135].
Lv et al., studies the antidepressant potential of astilbin and suggested that this effect was
found to mediate via up regulation of BDNF signaling pathway and neurotransmitters
discharge in mice cortex by inhibiting MAO enzyme [136].
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Figure 39. Astilbin.

Dihydromyricetin is a flavanonols, structurally hydroxyl group present at C3, C5,
C6, C3′, C4′ and C5′ (Figure 40). It also known as Ampelopsin and widely found in
the Ampelopsis species grossedentata, megalophylla, japonica; Hovenia dulcis; Cercidiphyllum
japonicum; Rhododendron cinnabarinum; Pinus species; Salix sachalinensis; and Cedrus species.
Ren Z et al., observed that dihydromyricetin has significant anti-depressant action which
was investigated using experimental animal models and found to be associated with
inhibition of neuro-inflammation and increase in BDNF expression [137].
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2.5. Flavanols

Flavanols, chemically defined as flavan-3-ols, are one of the most important subclasses
of flavonoids (Figure 41). They are also commonly known as catechins. Structurally, there is
absence of a ketone group at C4 and a double bond between C2 and C3, results in presence
of two chiral carbons in flavonols. Hence, there are four possible diastereomers present
i.e., (−)-catechin (2S,3R), (+)-catechin (2R,3S), (−)-epicatechin (2S,3S) and (+)-epicatechin
(2R,3R). Flavanols are commonly found in berries and grapes in the form of (−) –epicatechin
and (+) –catechin, whereas epigallocatechin and epicatechingallate and have been found to
be present in tea [138].
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Figure 41. Skeleton of Flavanols.

The flavan-3-ols (−)-epicatechin and (+)-catechin isolated from methanolic extract of
dried hooks of Uncaria rhynchophylla (Miq.). Jacks have shown significant protective activity
against neurodegeneration via inhibiting MAO-B enzyme activity in rodent brain, thus
found to treat the symptoms of anxiety and depression [139]. Cocoa and dark chocolate
having a cocoa content of 70% or more are widely known for their action on symptoms
related to depression. Cocoa has been found to contains (+)-catechin and (−)-epicatechin
(Figures 42 and 43). In a study, polyphenolic extract of cocoa, containing high levels of
flavanols, has been found to exhibit antidepressant-like action in mice evaluated using
forced swim test paradigm [140].
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The flavan-3-ols (−)-epicatechin and (+)-catechin isolated from methanolic extract of 
dried hooks of Uncaria rhynchophylla (Miq.). Jacks have shown significant protective activ-
ity against neurodegeneration via inhibiting MAO-B enzyme activity in rodent brain, thus 
found to treat the symptoms of anxiety and depression [139]. Cocoa and dark chocolate 
having a cocoa content of 70% or more are widely known for their action on symptoms 
related to depression. Cocoa has been found to contains (+)-catechin and (−)-epicatechin 
(Figures 42 and 43). In a study, polyphenolic extract of cocoa, containing high levels of 
flavanols, has been found to exhibit antidepressant-like action in mice evaluated using 
forced swim test paradigm [140]. 
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Recently, Zafir et al., have proved that chronic administration of various antidepres-
sants to mice has caused a decrease in the activity of antioxidant enzymes, such as catalase
and superoxide dismutase and also, reduced the normalization of lipid peroxidation. In
contrast, flavonols have been found to exhibit strong antioxidant activity [141]. Li et al.,
have proved that epigallocatechin gallate (Figure 44) and catechin reduces the astrocyte
and/or microglia mediated neuro-inflammation, particularly by inhibiting the release
of cytokine. All of these concomitant data have strongly suggested that flavanols, with
their strong antioxidant activity, regulates oxidative stress, better than well-established
synthetic antidepressant, whereas, their role in the central nervous system is complicated,
specially, in the relationship with the modulation of genetic expression, mitochondrial
neuro-inflammation and intracellular signaling cascades [142].
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2.6. Others

Silibinin (Figure 45) is the major bioactive constituent of silymarin (containing a
mixture of flavonolignans composed of isosilibinin, silibinin, silidianin, silychristin, etc.)
extract prepared from Silybum marianum (i.e., milk thistle) seeds. It has been reported to
possess pharmacological activities such as antioxidant, hepatoprotective, cardioprotective,
anti-inflammatory and anticancer activities [133]. It has been found to exert anti-depressant
action in rats via altering immunological, endocrine and monoamines systems such as
5-HT, DA, NE, MDA formation, TNF-α, IL-6 and BDNF levels in hippocampus and cerebral
cortex [143,144].
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3. Possible Cellular and Molecular Mechanism of Anti-Depressant Action
of Flavonoids

Naturally occurring flavonoids were found to exhibit positive effects in depression
with poorly understood mechanisms. Although flavonoids are generally proposed to act as
antidepressant analogues via inhibiting overacted apoptosis (by modulating caspases 3 and
9, Bax and Bak proteins expression), changing behavior, levels of cytokine, inhibiting oxida-
tive stress, and also by altering energy metabolic parameters [145]. This ability of flavonoids
to influence depression is partly due to their capability to interact with molecular and as
well physiological mechanism [145,146]. It is believed that the concentrations of flavonoids
and their reactive metabolites to the brain are sufficient to stimulate receptors, transcription
factors and kinases [147]. The evidence suggests that these flavonoids have the potential to
act in many ways as the exact site of their interaction is still remains unresolved with the
intracellular signaling pathway for certain phytoconstituents. Mainly, antioxidant action of
flavonoids contributed to its antidepressant and neuroprotective effects [145–147]. Beside
antioxidant action, each flavonoid found to follow one or more distinct pathways against
the progression and advancement of depression through affecting neurotransmission re-
ceptors, BDNF levels, increasing neuronal growth, inhibiting certain enzymes activity, i.e.,
MAO and acetylcholinesterase, modulation of caspases 3 and 9, Bax, Bak and cytochrome
C protein expression, modulation of calcium and potassium ions channels, maintaining
brain plasticity and preventing potential dissipation of mitochondrial membrane [1,29,145].
Overall, flavonoid- induced activation of neuronal signaling and gene expression in the
brain, lead to alterations of brain neurogenesis and synaptic plasticity, which ultimately
affect depression as shown in Figure 46.

3.1. Flavonoids and Neurotransmitters

According to different monoamines hypothesis of depression, deficiencies or imbal-
ance of monoamine neurotransmitters, i.e., serotonin, dopamine, nor-epinephrine induces
the development of depressive-like symptoms [148–150]. The causal link between neu-
rotransmitter and depression is the disturbances of monoamine metabolism and their
receptor abnormalities. These neurotransmitters are prone to metabolism by different
enzymes at each step from synthesis to binding with respective receptors. The degrading
enzymes such as monoamine oxidase does metabolism of neurotransmitter after their
release from vesicles [149–151]. It has been reported that many flavonoids possess anti-
inflammatory, antidepressant and antioxidant activities in animal studies via balancing the
neurotransmitters level in brain by acting at transcription factors, enzymes and kinases
(Figure 47) [145–152]. Flavonoids such as rutin, amentoflavone, luteolin, nobiletin, vitexin,
fisetin, kaempferitrin, quercetin, hesperidin and naringenin were found to possess anti-
depressant action via modification of neurotransmitters or via acting on their pre- or post-
receptors [8,45,64,66,77,83,98,101,117,120]. Whereas flavonoids such as apigenin, luteolin,
oreintin, hesperidin, quercetin, fisetin and astiblin were found to inhibit MAO enzyme and
increases brain neurotransmitters levels.
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3.2. Flavonoids and Neurodegeneration

Neurodegeneration in depression is a complex phenomenon, including failure of
various metabolic processes, oxidative stress, imbalance of calcium homeostasis and exci-
totoxicity [153,154]. In major depressive disorder, early mitochondrial metabolic failure
(ATP) disrupts ionic pump function at membrane level which results in heavy release
of neurotransmitters (glutamate) and increase intracellular concentrations of Na+ and
Ca2+ [153–155]. Large-scale Ca2+ entry activate enzymes such as proteases, phospholi-
pase, oxidase and endonucleases, which is responsible for hydrolysis of DNA molecule
and damage the cytoskeleton [154–156]. Activated phospholipase A2 metabolize arachi-
donic acid via icosanoids and liposoxides thereby activating lipid peroxidation [153–157].
Increased intracellular Ca2+ can also activate protein kinase-C, which may modify the
functions of multiple ion channels. These active intracellular metabolic events resulting
in generation of the reactive oxygen radicals, which bypass antioxidant defense and pro-
voke oxidative-stress [155–159]. In turn, oxidative stress provokes various changes in the
macromolecules and lipid membranes, creating a vicious cycle of excessive oxidation and
further oxidative damage [158–160]. Therefore, activation of enzymes such as xanthine
oxidase (XO), cyclooxygenase (COX), nitric oxide synthase (NOS), lipoxygenase (LOX) and
production of reactive oxygen and nitrogen species leads to mitochondrial DNA damage
and lipid peroxidation [161,162]. In literature, several flavonoids were discovered to act in
different ways in this process i.e., binds to ATP sites of receptors and enzymes, affects the
function of phosphatise, modulate the activity of different kinases directly, maintain the
homeostasis of calcium ion, activate transcription factor, inhibit lipid peroxidation, XO, IP3
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kinase, scavenging free radicals, LOX and PKC [30,145] (Figure 48), red star shows the site
of action of flavonoids).
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3.3. Flavonoids and Oxidative Stress

Oxidative stress is a biochemical imbalance between biological systems; detoxify body
and reactive oxygen species, which can cause harm to organism [163]. Oxidative stress is
associated with the development of much pathology, i.e., inflammatory disorders, neuronal
damage, joints problem or cardio-disorder etc. [163,164]. Many compounds, including
flavonoids, are classified as suppressors of oxidative stress, and therefore, are best described
by their ability to be act as powerful antioxidants [165]. Catechins and flavones appear
to be highly active antioxidant among all flavonoids to protect the body from reactive
oxygen species [165,166]. Cells and tissues in the body are constantly damaged by reactive
oxygen species and free radicals that arise during normal oxygen metabolism or are
triggered by exogenous damages [163,167]. The mechanisms and sequence of events in
which these free radicals interfere with function of cells are not fully understood, but lipid
peroxidation is found to be most important mechanism, which result in damage to the
cellular membrane. The cellular damage result in a change of overall cell charge alters
osmotic pressure, causes inflammation and then cell death [163,164]. Free radicals attract
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several inflammatory mediators that contribute to inflammatory responses and tissues
damage [168]. In order to protect them-selves from this cellular damage, organisms tend
to have developed different effective mechanisms, i.e., the body’s antioxidant-defense
mechanism includes enzymes such as catalase, glutathione peroxidase or superoxide
dismutase, and also non-enzymatic counterparts which are tocopherol, glutathione and
ascorbic acid [169–171]. During damage or injury, the increased level of reactive oxygen
species leads in depletion and consumption of endogenous-scavenging compounds [164].
In addition, flavonoids found to have synergic and additive action with these endogenous-
scavenging compounds [1,145]. Flavonoids are found to have very strong antioxidant
performance, to interfere with more than three free radical producing systems at a time
and eventually enhance action of endogenous antioxidants, resulting in decreases cell
disruption and apoptosis [1,145] as shown in Figure 49.
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response element binding protein; mTOR, mammalian target of rapamycin; Arc/Arg 3,1, Activity-regulated cytoskeletal-
associated protein.

In presence of iron, oxidative free radicals result in lipid peroxidation [172]. Further-
more, some flavonoids are found to chelate with iron, thereby eliminating the causative
factor for free radical growth [1,145]. Quercetin is particularly known for its iron chelating
and stabilizing properties [109]. Further, its other protective action is the direct protective
inhibitor of lipid peroxidation [1,109].

In pathogenesis of depression, low levels of antioxidant and high level of free radi-
cals results in lipid peroxidation, DNA strand-brakes, enzyme inactivation and neuronal
damage [163,164]. Some flavonoids can remove superoxide directly, while other flavonoids
refer to highly reactive oxygenated radicals known as peroxynitrite, which is a major
mechanism of flavonoids [165,172–177]. The other possible underlying mechanism of
flavonoids may include interaction with various enzymes functions. Therefore, flavonoids
have been proven to be bioactive molecules of choice for preventing oxidative stress-
induced disorder or disease such as depression [173–176]. The formation of flavonoids
comprises a highly reactive hydroxyl group, which are oxidized by free radicals, resulting
in a highly stable low reactive radical. These oxidative free radicals have an uneven number
of electrons [173–177]. Therefore, flavonoids react with reactive compounds of free radical
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and tend to stabilize or neutralize these reactive oxidative species to prevent neuronal
damage [165]. This reaction involves the following equation:

(OH) Flavonoid+ R• → (O•) flavonoid+ RH

where, R• represented as free radical, O• represented as oxidative free radical.
Nitric oxide (NO) is produced by a variety of cells, which include macrophages

and endothelial cells [178]. Increasing levels of nitric-oxide synthase in macrophages
increases the production of both superoxide ion and nitric oxide. Peroxynitrite is produced
when nitric oxide reacts with free radicals, which is very harmful to the cell and cause
oxidative damage [178,179] as shown in Figure 50. These free radicals scavenged by
antioxidant action of flavonoids and left no radical to interact with NO, resulting in
minimal damage [1,145]. Even in some studies, NO itself considered as radical molecules
and found to be directly scavenged by flavonoids [145].
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Antioxidant enzymes such as catalase, glutathione peroxidase or superoxide dismu-
tase (SOD) metabolizes free radicals to less toxic molecule [180]. SOD is the most important
antioxidant enzyme, which catalysis the reaction of conversion of superoxide to H2O2
(comparable less toxic in nature) and also, interacted with other neuroprotective com-
ponents [180,181]. This H2O2 also increase oxidative stress but to lesser extent. There
are various isoforms of SOD such as manganese, zinc and copper, and varies in cellular
distribution such as zinc and copper highly available in glial cells, whereas manganese in
erythrocytes and neurons [181]. Hesperidine found to increase the activity of superoxide
dismutase to reduce oxidants levels in the brain [1,145].

Xanthine oxidase (XO) pathway has suggested being an important pathway in tis-
sues oxidative injury [182–184]. XO and xanthine dehydrogenase are found to catalyze
oxidation of hypoxanthine to form xanthine and involve in metabolism process of xanthine
to uric acid [182–185]. Xanthine dehydrogenase is a form of enzyme found to present
under normal physiological conditions, but under conditions of ischemic it undergoes
configurationally and changes to XO. XO produces oxidative free radicals and also known
as pro-oxidant [182]. During reperfusion phase (re-oxidation), XO reacts with oxygen
molecule and produces hydrogen peroxide as well superoxide free radical [182–187] as
shown in Figure 51. In a study, silibin and quercetin inhibited XO activity, thereby re-
duced oxidative injury [188,189]. According to a study on animal models has proved
that luteolin was the most potent XO inhibitor [190]. Several other flavonoids such as 7,
8-dihydroxyflavone, apigenin, myricetin, silibinin, quercetin, rutin and kaempferol tend to
exhibit antidepressant action via inhibiting XO [1,145,189]. Rutin is also a powerful free
radical scavenger, which finds to inhibit xanthine oxidase enzyme [189].
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superoxide dismutase; GSH-PX, glutathione peroxidase; CAT, catalase; OH*, hydroxyl free radical;
NO2*, nitrogen dioxide radical.

Cyclo-oxygenase (COX-2) -2 is a rate-limiting enzyme responsible for synthesis of
prostaglandin E2, and significantly increases chronic stress-induced depression in rats [191].
Inhibition of COX-2 by celecoxib protects neuron from neuronal injury by suppressing
oxidative stress and, thus, mediating its antidepressant effects [192–194]. In depression
models of rats, COX-2 was found to highly express in hippocampus dentate gyrus and its
action is responsible for depression-like behavior. In dentate gyrus, neuroprotective activity
was seen by inhibition of COX-2 [192–195]. Other, critical risk factors such as neuronal
apoptosis, neuroinflammatory response and oxidative stress in dentate gyrus, which are
responsible for pathophysiology of neuronal damage and depression, were found to be
suppressed after inhibition of COX-2. N-acetylcysteine significantly reduces dendritic
spine defects and level of oxidative stress, resulted from over-expression of COX-2 and
also significantly reduces depressive behavior in rats [191–195]. Therefore, the targeted
inhibition of enzyme COX-2 seems to enhance protection against neurodegeneration and
oxidative stress in depression as shown above in Figure 48.

3.4. Flavonoids and BDNF Expression

Brain derived neuronal factor is a brain-derived neurotrophic factor, found to be
highly abundant in human brain and observed in both blood plasma and serum [196].
BDNF is necessary for morphological protection of neuronal dendrites and axon, main-
tenance of synaptic plasticity; regulation of neuronal survival and intracellular signaling
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processes [197]. It has been found to be involved in several neurological and psychological
disorders such as depression, anxiety, schizophrenia, Alzheimer’s disease, eating disor-
ders, addiction and epilepsy, etc. [198,199]. Hippocampal BDNF expression is regulated
by physical exercise, medication, exercise, social interaction and sensory input [200]. It
enhances neuronal activity of brain, and this respective positive feedback-loop preserves
the state of mind to be active [200]. In contrast, reduction in activity dependent expression
of BDNF and neuronal activity is consequence of disruption of BDNF expression caused by
stress, epigenetic processes [201]. In postpartum of a brain sample of a depressed patient,
reduced level of hippocampal BDNF was seen, which cause atrophy of the hippocampus
and also makes it a prominent biomarker in depression etiology. Recently, in several
clinical studies, reduction in BDNF levels of plasma and serum was also observed in MDD
patient [201–203].

In recent studies, extensive investigations have suggested the involvement of BDNF
in nervous system is regulated by binding mainly to TrkB [204–206]. Precipitating stress
factors, i.e., chronic stress can cause a decrease in BDNF support thereby reduces anti-
apoptotic control of BCL-2 and decreasing the survival of neurogenic cells. This may have
negative consequences for hippocampal function and eventually lead to development of
depression [204–206]. In addition, BDNF activates intracellular tyrosine-kinase activity
by binding to TrkB, leading to autophosphorylation of TrkB, phospholipase C-gamma
pathway, mitogen-activated-protein kinase pathway, phosphatidyl-inosine 3-kinase path-
way and also of other signaling pathways [204,205]. Finally, the CREB response element
is activated at the Ser133 site of binding protein (CREB), which results in increase in ex-
pression of BCL-2 and BDNF genes and enhances neurogenesis, synaptic plasticity and
promotes neuronal survival [204–208]. Besides, development functions and survival of
neurons, BDNF-TrkB also increases development of dendrite spine, providing structural
basis for formation of synapse, which improves transduction synapse efficiency [204–209].

In various animal stress models such as foot shocks, immobilization stress, early
maternal deprivation and social defeat, a significantly reduction in hippocampal BDNF
level and expression was seen, especially in dentate gyrus [209,210]. Moreover, exoge-
nous corticosterone tends to reduce in hippocampal BDNF expression, reflecting towards
involvement hippocampal glucocorticoids in regulating BDNF expression [211]. Hence,
stress stimulated the hypothalamic-pituitary-adrenal axis, and then increases glucocorti-
coids, which ultimately leads to reduce activity of BDNF [204–210]. In addition, decreased
BDNF levels in knockouts or precursors of the BDNF gene may impede the behavioral
antidepressants effect [205–208]. In recent years, there are enough studies to prove the key
role of antidepressant treatment in curing depression through regulation of brain BDNF
and via activation of TrkB receptors [212,213].

Various isolated flavonoids have found to reversed reduced level of BDNF and shown
anti-depressant action by increasing BDNF expression [1,30,145]. These flavonoids include
hesperidine, apigenin, astilbin, baicalein, chrysin, dihydromyricetin, hyperoside, icariin, 7,8
dihydroxyflavone, myricetin, naringenin, naringenin, orientin, silibinin and 3,5,6,7,8,3′,4′-
heptamethoxyflavone, etc. [1,41,49,54,55,60,61,68,80,87,92,94,104,122,128,136,137]. In pre-
clinical studies, these flavonoids increased hippocampal BDNF level, modulate neuronal
network, maintain neuronal plasticity and regulate neurogenesis, neuronal maturation
and synaptogenesis in rodent brain [214–216]. Unlike synthetic antidepressant, these
flavonoids found to prevent both stress-induced and corticosterone-mediated decrease
in BDNF expression [214–216] as shown in Figure 52. Therefore, BDNF/TrkB signalling
found to have a major and significant impact on antidepressant effects of flavonoids [214].
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activated protein kinase; ERK, extracellular regulated kinase; RSK, ribosomal S6 kinase; P13K, phosphoinositide 3-kinases;
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trisphosphate; CAMK, Ca2+/calmodulin-dependent protein kinase; DAG, diacylglycerol; PKC, protein kinase C; CREB,
cAMP-response element binding protein.

In Table 5, isolated flavonoids have been summarized with their respective dose, route
of administration and mechanism of action.

Table 5. Isolated flavonoids with anti-depressant action.

Flavones

Isolated
Bioactive

Flavonoids
Doses Route Animal

Species
Treatment
Duration Mechanism of Actions References

7,8-
Dihydroxy

flavone

1, 3, and 10
mg/kg Intra-gastric Male Swiss

mice
60 min before
test

• Modulation of nitric oxide
signalling pathway

• Increased BDNF level in
prefrontal cortex and
hippocampus

[41]

10 and 20
mg/kg Intraperitoneal

Male
C57BL/6
mice

28 days

• Permeable to the BBB and
mimics hippocampal
brain-derived neurotrophic
factor action

• Acted as TrkB
receptor-specific agonist

[42]
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Table 5. Cont.

Flavones

Isolated
Bioactive

Flavonoids
Doses Route Animal

Species
Treatment
Duration Mechanism of Actions References

5 mg/kg Oral
Male
C57BL/6
mice

21 days

• Permeable to the BBB and
mimics hippocampal
brain-derived neurotrophic
factor action

• Acted as TrkB
receptor-specific agonist

[43]

Amento
flavone

6.25, 12.5,
25, or 50
mg/kg

Oral Male Swiss
albino mice 3 days

• Interacted with
serotonergic (especially, 5-
HT2 receptors) and
noradrenergic (especially,
α1 and α2 receptors)

[45]

Apigenin

12.5 and 25
mg/kg I.p. Male ddY

mice 1 h • Regulated dopaminergic
system

[47]

20 mg/kg I.g.
Male Sprague–
Dawley
rats

21 days

• Inhibited IL-1 production
• Inhibited NLRP3

inflammasome expression
• Up-regulated PPAR

expression

[48]

20 and
40mg/kg Oral Male ICR

mice 21 days
• Up-regulated BDNF

concentrations in the
hippocampus

[49]

25, 50
mg/kg I.p. Male ICR

mice 7 days
• Inhibited nitric oxide

synthase
• Inhibited cyclooxygenase-2

[51]

Baicalein

1, 2, or 4
mg/kg I.p.

Male
Kunming
mice

7 and 21 days

1. Reversed in the reduction
of extracellular ERKs
phosphorylation

2. Enhanced level of
hippocampal BDNF
expression

[54]

10, 20, and
40 mg/kg I.p.

Male Sprague–
Dawley
rats

14 days

1. Prevented decrease of
BDNF level and dopamine
concentrations in
hippocampus

[55]

10, 20, or 40
mg/kg Oral Male Wistar

rats 35 days

1. Decreased COX-2 activity
and as well its expression

2. Reduced of PGE2 levels in
brain

[56]

Chrysin
5 and 20
mg/kg Oral Female

C57B/6J mice 28 days

• Increased BDNF and nerve
growth factor levels in
cortex prefrontal and
hippocampus

• Antioxidant activity

[60]
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Table 5. Cont.

Flavones

Isolated
Bioactive

Flavonoids
Doses Route Animal

Species
Treatment
Duration Mechanism of Actions References

5 and 20
mg/kg Oral Male C57B/6J

mice 14 days

• Increased brain-derived
neurotrophic factor
synthesis

• Increased serotonin level in
hippocampus

[61]

5 and 20
mg/kg Oral Female

C57B/6J mice 28 days

• Reverse the decreases
hippocampal 5-HT levels

• Reduction in IL-1β, TNF-α,
IL-6 and kynurenine levels

• Increased the caspases
activities in cerebral

[62]

Luteolin

50 mg/kg Oral Male ICR
mice 23 days

• Suppressed hippocampal
endoplasmic reticulum
stress via inhibiting the
expression of endoplasmic
reticulum stress related
proteins

[63]

5 or 10
mg/kg Oral Male ICR

mice
30 min before
test

• Potentiated the GABAA
receptor- Cl− ion channel
complex

[64]

Nobiletin 20, 50, or
100 mg/kg Oral Male ICR

mice After 60 min
• Activated serotonergic,

noradrenergic and
dopaminergic systems

[66]

Orientin 20 and 40
mg/kg Oral

Male
Kunming
mice

21 days

• Increased BDNF level
• Increased in levels of

serotonin, and
nor-epinephrine levels in
the hippocampus and
prefrontal cortex

• Improved central oxidative
stress, neuroplasticity and
neurotransmission

• MAO inhibition

[68]

Vitexin 10,20 and 30
mg/kg Oral Male BALB/c

mice
60 min before
test

• Increased monoamines
level in synaptic cleft

• Interacted and modulated
noradrenergic α2,
dopaminergic D1, D2, D3
and serotonergic 5-HT1A
receptors

[77]

Flavonols

3,5,6,7,8,3′,4′-
Heptame

thoxyflavone
50 mg/kg S.c. C57BL/6

mice 25 days

• Increased in hippocampal
BDNF concentration

• Increased in neurogenesis
and neuroplasticity in the
hippocampus

[80]
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Table 5. Cont.

Flavones

Isolated
Bioactive

Flavonoids
Doses Route Animal

Species
Treatment
Duration Mechanism of Actions References

Fisetin

10 or 20
mg/kg Oral Male ICR

mice 4 days

• Inhibited MAO activity
• Up-regulation of serotonin

in and nor-epinephrine
levels

[83]

20, 40, or 80
mg/kg Oral Male ICR

mice 7 days

• Antagonized nitrite levels
and iNOS mRNA
expression via modulating
NF-κB

• Reversed LPS-induced
overexpression of
proinflammatory cytokine
(especially, IL-6, IL-1β and
TNF-α)

[84]

5 mg/kg Oral Male ICR
mice 21 days

• Increased phosphorylation
and activation of TrkB
(pTrkB) in the
hippocampus

[85]

Hyperoside

2.5, 5, and
10 µg/mL I.p. PC12

cell line 4 h

• Cytoprotective action via
increased in expression of
BDNF and as well CREB by
activating signalling
pathway, i.e.,
AC–cAMP–CREB

[87]

10, 20, or 40
mg/kg I.p. Male CF1

mice 14 days
• Activated dopaminergic

system via D2-DA
receptors

[88]

0.6 mg/kg Oral Male CD rats 14–56 days

• Modulated hypothalamic-
pituitary-adrenal axis by
reduction of plasma ACTH
and corticosterone
concentration

[89]

Icariin

20 and 40
mg/kg Oral

Male Sprague–
Dawley
rats

35days

• Anti-oxidant action
• Inhibited activation of

NF-κB signaling and also,
NLRP3
-inflammasome/caspase-
1/IL-1b
axis

• Anti-inflammatory action

[91]

5 and 10
mg/kg Oral

Male
C57BL/6J
mice

28 days

• Increased BDNF
expression

• Inhibited the increases in
serum TNF-α and IL-6
level

• Restored the impairment of
gluco-corticoid sensitivity

[92]
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Table 5. Cont.

Flavones

Isolated
Bioactive

Flavonoids
Doses Route Animal

Species
Treatment
Duration Mechanism of Actions References

20 and 40
mg/kg Oral

Male Sprague–
Dawley
rats

35 days

• Restored the negative
feedback regulation of the
HPA- axis

• Decreased the expression
levels of FKBP5 and SGK1

[93]

60 mg/kg Oral
Male Sprague–
Dawley
rats

21 days

• Increased in hippocampal
BDNF concentrations

• Reversed CORT-induced
depression via regulating
disturbed metabolic
pathways

[94]

Isoquercitrin

0.6 mg/kg Oral Male CD rats 14–56 days

• Modulated hypothalamic-
pituitary-adrenal axis by
reducing plasma
corticosterone and ACTH
concentration

[89]

2.5 mg/kg Oral
Male Sprague–
Dawley
rats

14 days • Protected from oxidative
stress

[95]

Kaempferitrin 1, 5, 10, or
20 mg/kg Oral Male Swiss

Webster mice 4 days • Interacted with presynaptic
5-HT1A receptors and

[98]

Kaempferol

30
mg/kg/day Oral Male ICR

mice 14 days

• Increased expression of
plasma β-endorphin levels
or hypothalamic POMC
mRNA

[100]

0.35
mM/kg I.p. Male Swiss

mice
60 min prior to
the test

• Increased in NE, DA and
5-HT and also reduced
5-HT metabolism

[101]

Kaempferol-
3-O-β-D-
glucose

0.35
mM/kg I.p. Male Swiss

mice
60 min prior to
the test

• Increased in NE, DA and
5-HT and also reduced
5-HT metabolism

[101]

Miquelianin 0.6 mg/kg Oral Male CD rats 14 days

• Modulated hypothalamic-
pituitary-adrenal axis by
reducing plasma ACTH
and corticosterone
concentration

[89]

Myricetin 50 mg/kg I.p.
Male
C57BL/6
mice

21 days

• Increased BDNF
concentrations in
hippocampus

• Reduced oxidative stress

[104]

Myricitrin 10 mg/kg I.p. Male Balb/C
mice 21 days • Facilitated hippocampal

neurogenesis
[106]
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Table 5. Cont.

Flavones

Isolated
Bioactive

Flavonoids
Doses Route Animal

Species
Treatment
Duration Mechanism of Actions References

Quercetin

2.5, 5, 10, 20
and 40
mg/kg

Oral
Male Sprague–
Dawley
rats

14 days • Protected from oxidative
stress

[95]

0.35
mM/kg I.p. Male Swiss

mice
60 min prior to
the test

• Increased in NE, DA and
5-HT and also reduced
5-HT metabolism

[101]

50 or 100
mg/kg I.p. Male Wistar

rats 21 days • Attenuated depressive-like
behaviours

[108]

40 and 80
mg/Kg Oral

Male
olfactory
bulbectomy
rats

14 days

• Neuroprotective effects via
microglial inhibitory
pathway

• Suppressed
oxidative-nitrosative stress
mediated
neuroinflammation-
apoptotic cascade

[109]

25 mg/kg Oral Female Swiss
mice 14 days

• Antagonised NMDA
receptors

• Inhibited synthesis of nitric
oxide

[211]

Quercetin-
3-O-β-D-
glucose

0.35
mM/kg I.p. Male Swiss

mice
60 min prior to
the test

• Increased in NE, DA and
5-HT and also reduced
5-HT metabolism

[101]

Quercitrin 30
mg/kg/day Oral Male ICR

mice 14 days

• Increased expression of
plasma β-endorphin levels
and hypothalamic POMC
mRNA

[100]

Rutin

0.3, 1, 3, 10
mg/kg Oral Male Swiss

mice 4 days

• Increased the concentration
of serotonin and
noradrenaline in the
synaptic cleft

[8]

5 and 10
mg/kg Oral

Male Sprague–
Dawley
rats

14 days • Protected from oxidative
stress

[95]

Flavanones

Hesperidin

25, 50, or
100 mg/kg Oral Male albino

Wistar rats 21 days

• Attenuated
hyperglycaemia and
restored brain monoamines
level

• Increased the neurogenesis
and brain-derived
neurotrophic factor levels

[117]

0.01, 0.1, 0.3,
and 1
mg/kg

I.p Male Swiss
mice 21 days • Interacted with the

κ-opioid receptor
[118]
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Flavonoids
Doses Route Animal

Species
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Duration Mechanism of Actions References

0.01, 0.1, 0.3,
and 1
mg/kg

I.p. Male Swiss
mice 21 days

• Interacted with the 5-HT1A
receptors

• Antioxidant effect
[119]

25 and 50
mg/kg Oral Male ICR

mice 21 days

• Increased ERK
phosphorylation and
BDNF expression in
hippocampus

[121]

0.01, 0.1, 0.3,
and 1
mg/kg

I.p. Male Swiss
mice 21 days

• Increased hippocampal
brain-derived neurotrophic
factor levels

• Inhibited
l-arginine-NO-cGMP
pathway

• Decreased hippocampal
nitrate/nitrite (NOX) levels

[122]

0.4, 4, 8, 16,
and 32
mg/kg

Oral

Male
imprinting
control region
mice

After 1 h • Increased neuronal level of
the 5-HT and dopamine

[119]

50 mg/kg Oral
Male
C57BL/6
mice

13 days

• Increased in hippocampal
BDNF and nerve growth
factor concentrations

• Modulation of
pro-inflammatory cytokine

• Maintained brain plasticity
• Inhibition of

acetylcholinesterase
activity

[217]

Isosakur
anetin-5-O-
rutinoside

15 and 30
mg/kg Oral Male ICR

mice
24, 18, and 1 h
before test

• Significantly inhibited
depression-like behaviours

[123]

Liquiritin 10, 20 and
40 mg/kg G.i. Male mice 30 min before

Sample

• Increased in 5-HT and NE
levels in hippocampus,
hypothalamus and cortex

[124]

Isoliquiritin 10, 20 and
40 mg/kg G.i. Male mice 30 min before

sample

• Increased 5-HT and NE
levels in hippocampus,
hypothalamus and cortex

[124]

Naringenin

5, 10 and 20
mg/kg Oral Male ICR

mice 14 days

• Increased serotonin,
dopamine, norepinephrine
and glucocorticoid receptor
levels in the brain
hippocampus

[130]

20 mg/kg Oral Male ICR
mice 21 days • Activation of hippocampal

BDNF signalling pathway
[128]
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Naringin 50 and 100
mg/kg I.p. Male Wistar

rats 14 days

• Significantly inhibited
DOX-induced raise in
plasma corticosterone,
TNF-α and IL-1β levels in
hippocampus

• Modulated of 5-HT1A and
kappa-opioid receptors

[133]

Flavanonols

Astilbin 10, 20, or 40
mg/kg I.p.

Male
C57BL/6J
mice

21 days

• Upregulated
mono-aminergic
neurotransmitters

• Activated of BDNF
signalling pathway

• Inhibition of MAO activity

[136]

Dihydro
myricetin

10 and 20
mg/kg I.p.

Male
C57BL/6J
mice

7 days

• Increased mRNA
expression for BDNF in the
hippocampus

• Inhibited
neuro-inflammation

[137]

Flavanols

Catechin 88.6 and
58.9 µM - Wistar male

rat - • Inhibition of MAO activity [139]

Epicatechin 88.6 and
58.9 µM - Wistar male

rat - • Inhibition of MAO activity [139]

Epigalloca
techin
gallate

500 ng/mL -
Sprague–
Dawley rat
brains

24 h • Reduced
neuroinflammation

[141]

Other flavonoids

Silibinin 100 and 200
mg/kg Oral Either sex

Wistar rats 14 days

• Altered immunological,
endocrine and
monoamines systems such
as 5-HT, DA, NE, MDA
formation, TNF-α, IL-6 and
BDNF levels in
hippocampus and cerebral
cortex.

[143,144]

4. Future Aspects

In the present literature, flavonoids found to receive much more attention over past
fifteen years and number of beneficial actions has been described. The interaction of
flavonoids with mental health appears to be very significant. The present reviewed litera-
tures are promising to suggest that flavonoids could be a useful food compound. On other
side, as most of research includes only in-vitro studies, which makes difficult to conclude
about usefulness of flavonoids as diet.

Nowadays, the main benefit of nutraceuticals as compared to allopathic treatment
depends on the patient’s compliance, and which seem to have increased. Additionally,
they may be synergistically combined with standard medical drugs, which are currently
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being in use for depression, such as SSRIs or MAO inhibiters, etc. However, at present,
there are insufficient clinical reports to vouch for efficacy of nutraceuticals for treatment of
depression and current information is lies on mainly pre-clinical experimental studies. This
scarcity of documented clinical data suggest the future need of clinical trials. During these
studies, there should be considerable attention on specific populations with stress; either it
is arising due to environmental factors (e.g., stress due to work, daily life or changes in
social life) or genetic factors.

In the present review, a specific emphasis is given on structure base activity relation-
ship of different reported flavonoids, which would help in screening of potent molecules
having ability to undergo clinical trials. On the basis of above discussed SAR of flavonoids
some remarkable points have been concluded as shown in Figure 53. These remarkable
outcomes would help in designing future plant based new phyto-medicine. Furthermore,
the impact of flavonoids treatment on patients’ metabolism and lipidomics profiles could
help in evaluation whether these flavonoids are targeting to particular pathways involved
in the pathogenesis of depression.
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Although there are positive results about antidepressant-like action of certain flavonoids
at pre-clinical level, hence the side effects of prolonged use should be investigated, in-
cluding toxicity study and possible pharmacological interactions, determination of safety,
bioavailability and tolerability in human body. These studies may eventually prove that
certain flavonoids are safer options in clinical practice for treatment of depression. Further-
more, there are not sufficient methods available for measuring in-vivo oxidative damage
and even, objective endpoints measurement is also remains difficult. Hence, there is also
requirement to improve analytical methods to allow for more data collection on excretion
and absorption of flavonoids. In conclusion, present in-vivo studies give a picture of hope
for the future extensive studies.

5. Conclusions

Flavonoids are considered to be very interesting bioactive polyphenols which obtained
from various plant and affecting adult brain. In the present study, we tried to compile and
analyzed the effects of several flavonoids in depression and their effects on behavioural,
molecular and physiological level in rodents. Interestingly, we have observed that one
molecule can exhibit anti-depressive action acting via different mechanisms including
increase in neurogenesis, neurotransmitters, BDNF level, modulation of receptors and
antioxidant action, whereas, clinical data are still limited; sophisticated future research is
therefore needed to confirm the results of the current experimental studies, to completely
understand the mechanisms of action with bio-transformations of their metabolism in
human body and interactions with depression-related receptors.
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