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Abstract

Motivation: Understanding the structure and interplay of cellular signalling pathways is one of the

great challenges in molecular biology. Boolean Networks can infer signalling networks from obser-

vations of protein activation. In situations where it is difficult to assess protein activation directly,

Nested Effect Models are an alternative. They derive the network structure indirectly from down-

stream effects of pathway perturbations. To date, Nested Effect Models cannot resolve signalling

details like the formation of signalling complexes or the activation of proteins by multiple alterna-

tive input signals. Here we introduce Boolean Nested Effect Models (B-NEM). B-NEMs combine the

use of downstream effects with the higher resolution of signalling pathway structures in Boolean

Networks.

Results: We show that B-NEMs accurately reconstruct signal flows in simulated data. Using B-NEM

we then resolve BCR signalling via PI3K and TAK1 kinases in BL2 lymphoma cell lines.

Availability and implementation: R code is available at https://github.com/MartinFXP/B-NEM

(github). The BCR signalling dataset is available at the GEO database (http://www.ncbi.nlm.nih.gov/

geo/) through accession number GSE68761.

Contact: martin-franz-xaver.pirkl@ukr.de, Rainer.Spang@ukr.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cells process input signals to output signals using a network of cellular

signalling pathways. For example, a small molecule binds a membrane

receptor. The signal is brought into the cell via structural modification

of the receptor. A set of kinases and other signalling molecules propa-

gate the signal through the cytosol. This involves both activation and

repression of proteins. Often complexes of multiple proteins must

form before a signal propagates. Some of the molecules are also part of

different pathways linking multiple pathways together. Eventually, the

signal enters the nucleus where transcription factors and chromatin

remodelling enzymes become activated. Finally, the combination of

activated transcription factors and regulatory co-factors leads to the

transcription of a large set of genes changing the phenotype of the cell.

Understanding the structure and the interplay of pathways is crucial

both for understanding the cellular mechanism and for designing novel

therapies that target specific pathways.

Inferring networks from molecular profiles is a well-developed

field in bioinformatics. Transcriptional data can be generated more

easily compared with protein activation data. Consequently, many

algorithms were developed that focus on the reconstruction of regu-

latory networks. For example, Gaussian graphical models (Schäfer

and Strimmer, 2005), Bayesian networks (Friedman et al., 2000),

the PC-algorithm (Kalisch and Bühlmann, 2007) or the Algorithm

for the Reconstruction of Accurate Cellular Networks (Margolin
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et al., 2006). All these methods use observational gene expression

data to construct regulatory networks based on different association

scores between genes.

It is no problem to quantify the expression of any gene using

standard methods like qPCR, microarrays or RNAseq. Observing

signalling networks is more complicated. Protein activation can op-

erate on the levels of protein expression, cellular protein localization

or protein modifications like phosphorylation, ubiquitination etc.

Although there are assays to assess activation on any of these levels,

those assays are more elaborate, more expensive and less generic.

Moreover, for every protein a priori information on which type of

modification mediates signal transduction is necessary.

Molecular biologists have been inferring pathways without for-

mal computations for many years. Typically functional/interven-

tional data are used. Pathways are perturbed by activation or

inhibition of genes and the consequences of the interventions are

observed, organized and interpreted. Also a range of algorithms

have been described that formalize these types of arguments and

make them accessible to bigger and more complex pathway models.

Sachs et al. (2005) use flow cytometry data from perturbation

experiments to infer protein signalling pathways with a Bayesian

network approach. They test for conditional independence between

proteins’ states using protein inhibition experiments and direct

measurement of these states.

Markowetz et al. (2005) introduced Nested Effects Models

(NEMs) (Froehlich et al., 2011; Markowetz et al., 2007;

Niederberger et al., 2012). NEMs infer non-transcriptional signalling

pathways by transcriptional downstream effects of pathway perturb-

ation. A pathway is activated in a set of cellular assays where specific

pathway components are silenced. The silencing of a specific compo-

nent blocks the flow of information in a specific branch of the path-

way. As a consequence, genes that normally change expression in

response to the stimulus no longer react in inhibition assays. NEMs

infer the pathway structure from the nesting of these sets: if the ef-

fected genes of perturbing gene B are a noisy subset of the effected

genes of gene A, then A is upstream of B. This concept has been ex-

tended to time series data (Anchang et al., 2009; Dümcke et al., 2014;

Froehlich et al., 2011), evolving networks (Wang et al., 2014), and

network inference with hidden confounders (Sadeh et al., 2013).

To date NEMs can infer the upstream/downstream relations of

genes in a pathway (Markowetz et al., 2005), they can distinguish

activation from repression (Vaske et al., 2009) and they can resolve

the flow of information (Anchang et al., 2009; Froehlich et al.,

2011). However they cannot model the role of complex formation

in signalling pathways. If a protein X is activated by a complex, all

members of the complex must be present and in the correct activa-

tion state. The proteins in the complex operate concertedly and are

linked to X by an AND gate. In another scenario, X can be activated

independently by several proteins. In this case the proteins are linked

by an OR gate. Boolean Networks (Kauffman, 1969) model logical

gates. They have been used to simulate signalling pathways (Klamt

et al., 2007) and to reconstruct them from interventional data (Saez-

Rodriguez et al., 2009). Allowing for logical gates lead to identifi-

ability problems of network structures. To resolve these ambiguities,

prior knowledge on the pathway structures is used. Saez-Rodriguez

et al., (2009) describe an algorithm called CellNetOptimizer to con-

struct signalling pathways from directly observed activation states

of proteins in the Boolean Network framework. They combine prior

knowledge networks (PKNs), with protein phosphorylation data

from interventional assays.

Here we describe Boolean Nested Effect Models (B-NEM). This

method combines advantages from Boolean Network Models and

Nested Effect Models. Like Boolean Networks B-NEMs distinguish

between the alternative and cooperative activation of a protein, and

like normal NEMs, B-NEMs do not need direct observations of pro-

tein activity. Moreover, B-NEMs can use data from assays where

several pathway genes are perturbed simultaneously. In the follow-

ing, we will describe the model formalism and define a pathway

score together with a genetic algorithm to search for high scoring

networks. We will then validate our algorithm on simulated data

and use it to analyze B-cell receptor (BCR) signalling in lymphoma

cells.

2 Boolean NEMs

2.1 Pathway model and score
2.1.1 Signalling pathways and deterministic boolean networks

Molecular signalling pathways can be described as Deterministic

Boolean Networks (Saez-Rodriguez et al., 2009). Networks are

encoded as directed acyclic hyper-graphs W ¼ ðS;HÞ consisting of

a set of nodes S ¼ ðS1; . . . ; SNÞ and a set of Hyper-edges H ¼
ðH1; . . . HMÞ. Every node Si represents a signalling protein that can be

either active (Si¼1) or inactive (Si¼0). Hyper-edges describe how the

signal is propagated through the network. Every directed hyper-edge

Hj connects one or more parent nodes with a single child node. Hyper-

edges with one parent node specify whether the child is activated or re-

pressed by its parent. Hyper-edges with more parents specify a unique

activation pattern of the parent nodes that is required for activating the

child. If a node has multiple incoming hyper-edges, it can be independ-

ently activated by all of them. Hence, every hyper-edge with more than

one parent node encodes an AND gate and multiple hyper-edges with

the same child form OR gates (Fig. 1). Signalling pathways form AND

gates, if multiple proteins need to be jointly activated to propagate the

signal to their target molecule. This is often associated with the forma-

tion of larger protein complexes. OR gates in contrast occur when sig-

nalling is organized in a redundant manner. As with Bayesian networks

and NEMs, we assume that the real graph is acyclic. This limits the

scope of the method to models of signalling pathways in which the sig-

nal is propagated from receptors via branching cytosolic effector path-

ways into the nucleus without feedback loops.

2.1.2 Experimental design and data

Our goal is to estimate the signalling pathway model W from a

dataset D. The data consist of K gene expression profiles ðDð1Þ; . . . ;

DðKÞÞ from a set of functional assays with specific perturbations of

the pathway. We assume that the expression data are on a logarithmic

scale. Perturbations include the exogenous stimulation of pathway re-

ceptors and the inhibition of signalling components. Every profile

D(k) is hence associated with a specific experimental condition C(k)

that specifies which receptors were stimulated and which signalling

genes were inhibited. This is the typical experimental set-up of NEMs

(Markowetz et al., 2005, 2007). Following the NEM literature, we

call the signalling pathway components S1; . . . Sn S-Genes and the

genes that show expression changes in response to perturbations E-

Genes. S-genes and E-genes can but need not overlap.

2.1.3 Expected and observed response schemes

For a given hyper-graph W and a given condition C(k), we can calcu-

late the activation states of all nodes in W as follows: (i) root nodes

are initialized to zero, (ii) stimulated nodes are set to 1 and inhibited

nodes are set to 0 independently of any incoming signals from parent

nodes, (iii) all other nodes are determined by propagating activation

states through the directed acyclic graph using the Boolean functions
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defined by the hyper-edges of W. Let C ¼ ðCð1Þ; :::;CðKÞÞ be the set

of all experimental conditions, and A � C�C a set of comparisons

between pairs of conditions. For every pair of conditions i ¼ ðCðkÞ;
CðlÞÞ 2 A we can determine, whether the expected activation of an

S-gene is identical under both conditions or not. We set Uij ¼ 0, if

the predicted state of Sj is identical under Ck and Cl. We set Uij ¼ 1,

if Sj was switched on, i.e. if it is inactive under Ck but active under

Cl and we set Uij ¼ �1, if Sj was switched off. We call U the

Expected S-gene Response Scheme (ERS) of W (Fig. 1, middle).

Analogously, we organize the observed E-gene responses. For a

given E-gene Ej, let Di;j be the expression change of Ej in comparison

i. We call D the Observed E-gene Response Scheme (ORS).

2.1.4 Scoring hyper-graphs

For a given hyper-graph W, we want to score how well its expected

S-gene responses U match the observed E-gene responses D. This

cannot be done directly, because U refers to activation states of S-

genes, while D refers to downstream effects in E-genes. Following

the NEM literature (Markowetz et al., 2005; Tresch and

Markowetz, 2008), we assign E-genes to S-genes. For every E-gene

E we search for the S-gene S�ðEÞ for which the expected S-gene re-

sponses UðSÞ match observed E-gene responses DðEÞ best. We quan-

tify this match by the absolute value of the rank correlation between

expected S-gene and the observed E-gene responses. Finally, we

score the hyper-graph by balancing its data fit with its size:

LðWÞ ¼ 1

m
�
X

E

jqðUðS�ðEÞÞ;DðEÞÞj � f � 1

M
�
X

H2W
# paðHÞ (1)

The first sum runs over all E-genes and the second sum runs over all

hyper-edges in W. qðx; yÞ is the rank correlation of x and y, #pa(H)

is the number of parent nodes of hyper-edge H. f > 0 is a parameter

to calibrate the penalty for network size. The network size penalty is

identical to that used in Saez-Rodriguez et al. (2009). Where m is

the number of E-genes used in the score and M is the maximal

network size possible. This way the score normalizes to ½0;1� and

the size penalty to ½0; f�. This makes f independent of the number of

E-genes or the overall size of the fully connected network.

2.2 Restricting the search space using prior knowledge
Like Bayesian networks and standard NEMs, also B-NEMs are af-

fected by likelihood/score equivalence. It is possible that two differ-

ent networks have the same ERS U. If in addition the networks have

identical size, they yield identical scores no matter what the data

looks like. If not the smaller network is chosen. Note that U depends

on the design of the set of perturbation assays C. Two networks can

be distinguished by one experimental design but not by another.

Figure 2 gives an example, how the design can (i) affect score

equivalence classes and (ii) affect the optimal scoring network.

Interestingly we need an experiment involving only S3 during stimu-

lation of S0 to correctly identify the signalling logic of S4.

If the data cannot distinguish between competing networks it is

still possible that existing domain knowledge can. Like Saez-

Rodriguez et al., (2009) we represent pathway knowledge by a priori

restrictions of the network search space. With these restrictions, we

do not only reduce network ambiguity due to score equivalence, but

also ensure that the constructed networks follow general conventions

of modelling signalling pathways (e.g. the signal is propagated from

receptors, via cytosolic molecules to nuclear factors). We encode prior

knowledge by a directed graph G whose edges are a collection of all

links between S-genes that are a priori possible. In other words, it is

the missing edges of G that define the search space restriction. We

refer to G as a PKN. PKNs are then extended to a Boolean network

by adding hyper-edges such that all Boolean functions allowed in G

are a priori possible. Hence, while B-NEMs use help from prior

knowledge to estimate the network structure they infer logical gates

only from data. Using prior knowledge can resolve score equivalence

problems, but there is no guarantee that it always does.

Fig. 1. Hyper-graphs and their response schemes. The two matrices are an ERS of the S-genes and a hypothetical noisy continuous observed E-gene response

scheme of attached E-genes for the hyper-graph left. Black matrix entries indicate up-regulation (þ1), white down-regulation (�1) and gray no change (0). Each

column is a response scheme of an S-gene, respectively E-gene. The rows are comparisons between two conditions. In a condition þ denotes the activation of

the S-gene and � the inhibition independent of the state of the parents. The set of modelled comparisons is restricted to the typical design of a NEM. Included are

comparisons of stimulation versus control and stimulations þ inhibitions versus stimulations only. S0 is a receptor that can be activated. The other S-genes

propagate the signal and can be inhibited. The edge H4 is an AND gate with two parents. S4 is activated by H4, if S1 is active and S2 inactive. Alternatively, the in-

hibition of S3 can activate S4. Hence H4 and H5 implicitly form an OR gate
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2.3 Network search
The size of the space of hyper-graphs that needs to be searched is 2n,

where n is the number of hyper-edges in the extended PKN. Even for

small PKN an exhaustive search is hence impractical. Here we use a

genetic algorithm (Saez-Rodriguez et al., 2009) involving tournament

selection (Sokolov and Whitley, 2005) and complementary insertion

(Louis and Rawlins, 1992) Details are given in the Supplementary

Section S1.

Running time of the GA can be a limiting factor. It is determined

by the size of the search space. The more hyper-edges we exclude a

priori, the smaller the search space and the faster the algorithm. For

n¼504 our algorithm runs <10 h on an Intel(R) Xeon(R) CPU E5-

4620 0 @ 2.20 GHz.

We now describe a generic way to construct PKNs that effect-

ively reduce the search space using prior knowledge that is often

readily available. We first limit the size of AND gates to two incom-

ing nodes then we assign S-genes uniformly to five hierarchical

layers: stimuli, receptors, membrane complexes, cytosolic signalling

and nuclear signalling. Then we assume that it is known whether a

gene is an activator or a repressor. We then exclude a priori all edges

that span more than two adjacent layers. This restricts the search

space for a 30 node network to 504 hyper-edges. Of course, if more

specific domain knowledge is available, we can relax some of these

generic parameters like allowing for larger complexes modelled by

AND gates with more than two parents or edges spanning more

than two layers.

3 Simulations

Before applying B-NEM in practice we check whether the algorithm

can reconstruct networks accurately, if the data is generated from

known Boolean networks. We refer to underlying data generating

networks as Ground Truth Networks (GTNs). GTNs and matching

PKNs are generated by randomly sampling edges from a super PKN

shown in the Supplementary Figure S3. The super PKN has 30 nodes

and 144 edges, respectively 504 hyper-edges after extension. The

nodes fall onto five layers representing ligands, receptors, membrane

complexes, cytosolic and nuclear signalling. Edges connect nodes on

adjacent layers. 90% of edges are stimulating and 10% are inhibit-

ing. We first draw a PKN and then a GTN. To generate a network

of n nodes we randomly choose n nodes from the super PKN, ensur-

ing that there is at least one node at every layer. For this set of n

nodes we take all hyper-edges connecting those nodes as the ex-

tended PKN. From this PKN we randomly sample 50% hyper-edges,

but make sure that the network is at one point stimulated. This

means we reject GTNs which do not change their state during any

stimulation. Similarly we generate networks of n hyper-edges.

Without restricting the GTN to a specific number of nodes. Finally

10 E-genes were attached to every S-gene. Note that the PKN is al-

ways consistent with the GTN, no existing edges are a priori

excluded. For a given GTN and a set of conditions we calculated the

E-gene response scheme and added Gaussian noise � Nð0; rÞ with

r 2 f0:5;1; 2g. Every E-gene profile was generated in triplicates

with independent noise. The experimental conditions consist of con-

trols, single and double stimulations, single inhibitions and the sin-

gle/double stimulations together with single inhibitions. Finally,

observed E-gene response schemes were composed by the differences

between controls and single/double stimulations/inhibitions and the

differences between single/double stimulation and single/double

stimulation with a single inhibition.

3.1 B-NEM accurately estimate the equivalence class of

networks with up to 30 S-genes
We first tested the performance of B-NEM for GTNs with 10, 15,

20, 25 and 30 S-genes. For each size we generated 10 random GTNs

and matching PKNs and run B-NEM on E-gene data generated from

these GTNs. The GTNs consisted of 10% of the allowed edges in

the corresponding PKN, hence the PKNs were consistent with the

GTN and effectively reduce the search space. We then compared the

ERSs of the estimated networks with that of the GTNs. Figure 3,

top shows the sensitivity and specificity of the estimated networks

(solid circle, dashed triangle). The corresponding computation time

is shown as the dotted line connecting crosses. In this setting compu-

tation is a limiting factor for networks with 30 genes, but recon-

struction accuracy is not.

3.2 Network reconstruction is sensitive to

the strength of the PKN
In the previous simulation, we checked whether the algorithm finds

the correct equivalence class of networks. However, equivalence

classes can be large and are hard to interpret. Due to score equiva-

lence multiple networks in the same equivalence class cannot be dis-

tinguished by data. However, equivalence classes can be shrunk

effectively by strong PKNs rendering network reconstruction prac-

tical. Thus, we evaluated the accuracy of the estimated networks as

a function of the strength of the PKN. For 10 random GTNs with

50 hyper-edges drawn randomly from the full PKN, we run B-NEM

using PKNs of 50, 164, 277, 390, 504 a priori possible hyper-edges.

Figure 3, bottom shows the sensitivity and specificity of the recon-

structed networks both on the level of ERSs and the actual net-

works. Although the performance stays very good with respect to

Fig. 2. Network equivalence and experimental designs. The response

schemes of the two networks differ only for the experiment marked by the

arrow. If that experiment was missing the response schemes would be identi-

cal and the left network would score higher due to its smaller size no matter

what the data look like
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response schemes (equivalence classes) it breaks down with respect

to network reconstruction if the PKN becomes weak.

If we do not allow for negative regulation, the PKN needn’t be a

DAG but can have cycles. Cycles in a PKN with negative regulation

can lead to undefined ERSs. See Supplementary Section S2 for

details.

4 Modelling B-cell signalling

We now apply the B-NEM framework to a previously unpublished

dataset monitoring gene expression changes in the Burkitt lymph-

oma cell line BL2 after induction of the BCR. Our analysis explains

how BCR signalling propagates to downstream effector pathways

like the NFjB, MAP kinase, P38 or JNK pathways through activa-

tion of the intermediate messengers TAK1 and PI3K.

BCR signalling was induced in BL2 cells by cross-linking IgM

with an anti-IgM antibody. S-genes were inhibited on protein level

using small molecules: 5Z-7-oxozeaenol (TAK1), IKK2 inhibitor VIII

(IKK2), Ly294002 (PI3K), SB203580 (P38/MAPK14), SP600125

(JNK), U0126 (ERK1/2). In addition to single inhibitions, IKK2, JNK

and P38 were jointly inhibited yielding three double and one triple in-

hibition. All inhibitions were done in triplicate both under BCR

stimulation and control conditions and gene expression profiles were

generated using Affymetrix hgu133plus2 Genechips. Moreover, pro-

files of six negative controls (unstimulated BL2 cells) and six positive

controls (BCR stimulated cells) were produced, yielding a dataset of

72 gene expression profiles in total. The dataset was made available

at the GEO database under GSE68761.

The raw data were normalized (see Supplement Section S3) and

observed E-gene response schemes were calculated for the compari-

sons listed in Table 1. We filtered for E-genes that respond to BCR

stimulation by at least an absolute log2 fold change of 1 and to an-

other comparison by at least an absolute log2 fold change of

log2ð1:5Þ 	 0:58. This corresponds to a change in expression of at

Fig. 3. Simulation results. From left to right we set r ¼ 0:5; 1; 2 in each column respectively. Top: Random GTN of n nodes (x-axis) and the median sensitivity, spe-

cificity of the ERS (solid circle, dashed triangle) and running time (dotted cross) for ten runs. The top axis shows the mean PKN size. Bottom: Results for ten runs

each given a fixed GTN and different PKN sizes (x-axis) including the GTN. Median sensitivity and specificity of the ERS (solid circle, dashed triangle) and the

hyper-edges (dotted cross, dashed-dotted x)

Table 1. Contrasts of conditions used to calculate the observed

E-gene response schemes from the data

Base level Change level

(control) versus (BCRþ)

(BCRþ) versus (BCRþ,PI3K-)

(BCRþ) versus (BCRþ,TAK1-)

(BCRþ) versus (BCRþ,ERK-)

(BCRþ) versus (BCRþ,IKK2-)

(BCRþ) versus (BCRþ,P38-)

(BCRþ) versus (BCRþ,JNK-)

(BCRþ) versus (BCRþ,IKK2-,P38-)

(BCRþ) versus (BCRþ,IKK2-,JNK-)

(BCRþ) versus (BCRþ,P38-,JNK-)

(BCRþ) versus (BCRþ,IKK2-,P38-,JNK-)

þ denotes activation of the node and � inhibition in that particular

condition.
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least 100%, respectively 50%, leaving us with 602 E-genes and their

continuous observed E-gene response scheme.

4.1 Prior knowledge in BCR signalling
The BCR is the cell surface receptor that initiates BCR signalling

upon binding of an antigen. BCR signalling leads to the activation of

IKK2, P38, ERK and JNK (DeFranco, 1997; Richards et al., 2001;

Schuman et al., 2009; Shinohara and Kurosaki, 2009). These four

effector pathways send signals into the nucleus that affect gene ex-

pression. The two proteins PI3K and TAK1 are potential mediators

of BCR induced activation of effector pathways. We do not put any

restriction on the hierarchical ordering of PI3K and TAK1. PI3K

and TAK1 are parts of several other pathways where they are

described as activators and not as repressor of signalling. We thus

assume that the same holds true in BCR induced signalling. What is

not known is which activations depend on which of the two medi-

ators, nor is it known whether they activate downstream pathways

independently from each other (OR gate) or jointly (AND gate).

Furthermore the combinatorial inhibitions of IKK2, P38 and JNK

allow more freedom in the PKN and therefore we do a complete re-

construction on this subnetwork. We summarize this prior know-

ledge situation in the PKN of Figure 4.

4.2 Calibrating the sparseness parameter f

Calibrating f is critical to the performance of B-NEM. We randomly

split the set of E-genes in half. For various settings of f (exponential

decrease f 2 f1; 0:64;0:36;0:16; 0:04; 10�10; 0g) we learn a net-

work using the first half of the data (training set), and then score

this network using the second independent half (test set) but without

employing the complexity penalty in Equation (1). We repeat this

step with 100 different random splits of E-genes and take the mean

of graph size, connected S-genes (both in percent) and scores of the

test sets. Figure 5 shows that the score continuously improves as f
approaches zero. For f¼0 the test accuracy drops again. Note that

for any positive zeta the smaller network wins in case of likelihood

equivalence while for f¼0 there is no size penalty operating at all.

We thus set f to 10�10.

4.3 The role of PI3K and TAK1
We run B-NEM on this data using the PKN and the parameter set-

tings described above. Figure 6 shows the highest scoring network.

The network predicts that the activation of the JNK pathway is only

PI3K dependent, while Erk is only TAK1 dependent. IKK2 activa-

tion is predicted either as redundant by PI3K or alternatively TAK1.

P38 is positively regulated by PI3K via either JNK or alternatively

jointly with IKK2. The signal flow to P38 can be stopped either with

the inhibition of PI3K or the double inhibition of JNK and IKK2.

The ORSs side by side with the corresponding ERSs can be seen in

Supplementary Figures S5–S11.

That TAK1 alone, as proposed by our model, cannot block sig-

nalling into IKK2 and JNK has been detected for toll-like receptor 8

(TLR8) signalling in mouse embryonic fibroblasts (MEF, Qin et al.,

2006). TAK1 knock-out mice still showed an activated NFjB path-

way. TLR8 also seems to be causative in some lymphomas (Ngo et

al., 2011). Furthermore Matta et al., (2012) show that herpes virus

encoded viral FLICE inhibitory protein K13 inducted NFjB activity

is not impaired in TAK1 deficient MEFs. Chen and Debnath (2013)

give evidence that the IKK complex (IKK1, IKK2, NEMO) acts inde-

pendently of PI3K in mammary epithelial cells and Xue et al. (2000)

that ERK can be activated independently from PI3K in nerve growth

factor-dependent sympathetic neurons. Kloo et al. (2011) propose

the regulation of IKK2 by PI3K in diffuse large B-Cell like lymph-

omas. They show in their data, that the PI3K inhibitor only partially

blocks IKK2 inhibitor target genes i.e. downstream targets of PI3K

are a subset of downstream targets of IKK2, which is not true in our

case. In the NEM logic this either places PI3K downstream of IKK2

or PI3K and IKK2 have joint downstream targets. A third explan-

ation is that some NFjB activity is regulated by PI3K, but another

Fig. 4. Prior search space restriction. PKN for BCR signalling into IKK2, P38,

JNK and Erk. We do not allow for negative regulation. Naturally, BCR defines

the top S-gene. PI3K and TAK1 build the second hierarchical layer but we add-

itionally allow for TAK1 above PI3K or the reverse. The third layer consists of

IKK2, P38, JNK and ERK. Because our combinatorial inhibitions reduce the

problem of equivalence classes for IKK2, P38 and JNK we allow for the com-

plete reconstruction of the sub network consisting of these three S-genes

Fig. 5. f calibration. Mean cross validated network scores as a function of the

complexity parameter f. Score on the test dataset (solid circle, log-scale) and

graph size in percent (dashed triangle)
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alternative regulation is possible as depicted in our network in

Figure 6.

As a comparison we applied the original NEM to the data

(Supplementary Section S4).

5 Discussion

We have introduced B-NEM a novel method to infer signalling net-

work structures. B-NEM extends the framework of standard NEMs.

Standard models infer upstream/downstream relations of signalling

genes. B-NEMs in addition resolve the Boolean logic of signal propaga-

tion. They distinguishing between the independent activation of a pro-

tein by multiple upstream proteins and the joint activation by a

complex formed from the upstream proteins. Moreover,

B-NEMs distinguish between activating and inhibiting interactions.

Due to identifiability problems associated with the estimation of

Boolean networks, B-NEM modelling must build on strong prior as-

sumptions on the network structure. Networks cannot be constructed

from scratch, but unknown features of existing networks can be

resolved. We demonstrated this idea by resolving the role of PI3K and

TAK1 as mediators of BCR signalling. In our cancer derived cell lines

signalling was perturbed. Such cancer derived changes in signalling

mechanisms can be further characterized in a comparative B-NEM

analysis of signalling in primary healthy cells and tumor-derived cell

lines.

B-NEM exploits combinatorial perturbations of multiple genes.

Because it is in general not feasible to perform all possible combin-

ations, a subset needs to be chosen. We suggest an iterative proced-

ure. First a B-NEM is learned from single gene perturbations. In

case high scoring networks are incoherent with respect to an import-

ant pathway feature, one can simulate combinatorial perturbation

data from these high scoring networks aiming at identifying those

combinations that resolve the incoherence.

In simulations we showed that B-NEMs identify the correct score

equivalence class of a signalling pathway with high accuracy.

Identifying the correct signalling topology is harder. The most crit-

ical step here is the use of prior knowledge. We implement prior

knowledge by excluding hyper-edges. A full Bayesian framework

allows using softer priors that specify prior distributions on the full

space of network topologies. However, for large networks these are

not practical with B-NEM because a reduction of the search space is

needed for computational reasons. The a priori restriction of the

search space is needed for at least three independent reasons. First,

the search space needs to be reduced in order to achieve practical

running times of the algorithm. Second, together with the regulariz-

ing penalty for overly complex networks the PKN is used to limit

over-fitting. Third, PKNs limit network ambiguities due to score

equivalence of multiple networks. Fortunately, these goals are not

opposing. The stronger the prior assumptions, the faster the algo-

rithm, the less over-fitting we have, and the fewer the ambiguities

due to score equivalence. On the other side, incorrect a priori as-

sumptions can be disastrous as well. They lead to biased and under-

fitted network models. Therefore one must find a good balance be-

tween belief in prior knowledge from literature and the data.
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